SlideShare a Scribd company logo
1 of 19
異常検知と変化検知
7章 方向データの
異常検知
担当 株式会社VOYAGE GROUP 中野智文
2015/11/04 機械学習プロフェッショナルシリーズ輪読会
扱うデータ
距離が1
補足スライド:方向データ
• 自然言語処理のよくありそうなパターン
• 文書の語彙をbag of wordsにして
• それを更にTF-IDFで重み付け
• それらさらに重み合計1に正規化
• 次元圧縮行列(これがミソ)を使って、ベクトル化
• ベクトル化されたものを距離1で正規化
• これを使って分類や最近傍法を行う
補足スライド:方向データ
1で正規化されているので
1で正規化されているので
正規化されていれば(方向データは)cosでも距離でも同じ意味となる
cos類似度の場合:
ユークリッド距離の場合:
球体の上の正規分布?
フォンミーゼス・フィッシャー分布
平均方向 集中度
第一種変形ベッセル関数
(7.1)
(7.2)
フォンミーゼス・フィッシャー分布
(疑問1) 一周(3.14)したら0にもどるはず… πが最小値なのでは?
(疑問2) 確率密度分布は全部合計したら、1になるはず。しかしそ
のようには見えない…
7.2 平均方向の最尤推定
ただし (7.3)
最尤推定
を制約にラグランジュの未定乗数法にて
ただし
(7.4)
これを解くと、
より
を使って
最後に
その解き方
方向データの異常度とその確率分布
(7.5)
(1) 最尤推定量 の確率分布
(2) の確率分布が必要。
(1)
を とみなす。
置換積分 デルタ関数の基本性質(2.20) ↑ より
sinθ
cosθ
式(2.19) ※おそらく誤植なので勝手に修正しています
定期式(2.10)より、自由度M-1、スケール因子1/(2κ)のカイ二乗分布
a<<1 より次のように近似
定理7.1 (方向データの異常度の確率分布)
のとき、κが十分大きければ、近似的に
(7.6)
7.4 積率法にいよるカイ二乗分布の当てはめ
• カイ二乗分布に従うことは分かったが、パラメータは分からない。
• 積率法(モーメント法)による当てはめ
これから
(7.8) (7.9)
(7.7)
7.5 補足:フォンミーゼスフィッシャー分布の
性質
あまりこの章が興味なさそうなので、省略

More Related Content

What's hot

GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Yoshitaka Ushiku
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組みAtsushi_Ando
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解するAtsukiYamaguchi1
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...Deep Learning JP
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and EditingDeep Learning JP
 
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured PredictionDeep Learning JP
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向Koichiro Mori
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
[DL輪読会]Glow: Generative Flow with Invertible 1×1 ConvolutionsDeep Learning JP
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State SpacesDeep Learning JP
 
Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由tancoro
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?hoxo_m
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理Taiji Suzuki
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習hagino 3000
 

What's hot (20)

GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解する
 
BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
 
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction
[DL輪読会]Reward Augmented Maximum Likelihood for Neural Structured Prediction
 
数式からみるWord2Vec
数式からみるWord2Vec数式からみるWord2Vec
数式からみるWord2Vec
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
[DL輪読会]Glow: Generative Flow with Invertible 1×1 Convolutions
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
 
Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由Cosine Based Softmax による Metric Learning が上手くいく理由
Cosine Based Softmax による Metric Learning が上手くいく理由
 
トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?トピックモデルの評価指標 Perplexity とは何なのか?
トピックモデルの評価指標 Perplexity とは何なのか?
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習
 

More from 智文 中野

ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜
ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜
ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜智文 中野
 
ロケーションエンジンの紹介
ロケーションエンジンの紹介ロケーションエンジンの紹介
ロケーションエンジンの紹介智文 中野
 
ロバストモーメント法による超母数推定の語彙出現率への応用
ロバストモーメント法による超母数推定の語彙出現率への応用ロバストモーメント法による超母数推定の語彙出現率への応用
ロバストモーメント法による超母数推定の語彙出現率への応用智文 中野
 
モーメント法に基づく超パラメータのロバスト推定
モーメント法に基づく超パラメータのロバスト推定モーメント法に基づく超パラメータのロバスト推定
モーメント法に基づく超パラメータのロバスト推定智文 中野
 
Wilson score intervalを使った信頼区間の応用
Wilson score intervalを使った信頼区間の応用Wilson score intervalを使った信頼区間の応用
Wilson score intervalを使った信頼区間の応用智文 中野
 
6章 最適腕識別とA/Bテスト
6章 最適腕識別とA/Bテスト6章 最適腕識別とA/Bテスト
6章 最適腕識別とA/Bテスト智文 中野
 
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法智文 中野
 
ノンパラメトリックベイズ4章クラスタリング
ノンパラメトリックベイズ4章クラスタリングノンパラメトリックベイズ4章クラスタリング
ノンパラメトリックベイズ4章クラスタリング智文 中野
 
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)智文 中野
 

More from 智文 中野 (9)

ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜
ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜
ポアソン分布を仮定した 少頻度の信頼区間と経験ベイズ 〜大標本中の少頻度の信頼区間〜
 
ロケーションエンジンの紹介
ロケーションエンジンの紹介ロケーションエンジンの紹介
ロケーションエンジンの紹介
 
ロバストモーメント法による超母数推定の語彙出現率への応用
ロバストモーメント法による超母数推定の語彙出現率への応用ロバストモーメント法による超母数推定の語彙出現率への応用
ロバストモーメント法による超母数推定の語彙出現率への応用
 
モーメント法に基づく超パラメータのロバスト推定
モーメント法に基づく超パラメータのロバスト推定モーメント法に基づく超パラメータのロバスト推定
モーメント法に基づく超パラメータのロバスト推定
 
Wilson score intervalを使った信頼区間の応用
Wilson score intervalを使った信頼区間の応用Wilson score intervalを使った信頼区間の応用
Wilson score intervalを使った信頼区間の応用
 
6章 最適腕識別とA/Bテスト
6章 最適腕識別とA/Bテスト6章 最適腕識別とA/Bテスト
6章 最適腕識別とA/Bテスト
 
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
 
ノンパラメトリックベイズ4章クラスタリング
ノンパラメトリックベイズ4章クラスタリングノンパラメトリックベイズ4章クラスタリング
ノンパラメトリックベイズ4章クラスタリング
 
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)
ブートストラップ手法を用いた学習不用語の除去(言語と統計2015)
 

異常検知と変化検知 7章方向データの異常検知

Editor's Notes

  1. \cos(\bm{x}, \bm{y}) = \frac{\bm{x}\cdot\bm{y}}{|\bm{x}||\bm{y}|} \cos(\bm{x}, \bm{y}) = \bm{x}\cdot\bm{y} (\bm{x}-\bm{y})^2 = |\bm{x}|^2+2\bm{x}\cdot\bm{y}+|\bm{y}|^2 (\bm{x}-\bm{y})^2 = 2\bm{x}\cdot\bm{y} + 2
  2. \mathcal{M}(\bm{x} | \bm{\mu}, \kappa) = \frac{\kappa^{M/2-1}}{ (2\pi)^{M/2} I_{M/2-1}(\kappa)}\exp(\kappa \bm{\mu}^{\top} \bm{x} ) I_{\alpha}(\kappa) = \frac{2^{-\alpha}\kappa^{-\alpha}}{\sqrt{\pi} \Gamma(\alpha + (1/2))}\int_0^{\phi}d\phi \sin^{2\alpha}\phi e^{\kappa \cos \phi}
  3. L(\bm{\mu}, \kappa | \mathcal{D}) = \ln \prod_{n=1}^{N}c_{M}(\kappa) e^{\kappa \bm{\mu}^{\top} \bm{x}^{(n)}} = \sum_{n=1}^{N} \bigg( \ln c_{M}(\kappa) + \kappa \bm{\mu}^{\top} \bm{x}^{(n)} \bigg) c_{M}(\kappa) = \frac{\kappa^{M/2-1}}{ (2\pi)^{M/2} I_{M/2-1}(\kappa)}
  4. L(\bm{\mu}, \kappa | \mathcal{D}) = \sum_{n=1}^{N} \bigg( \ln c_{M}(\kappa) + \kappa \bm{\mu}^{\top} \bm{x}^{(n)} \bigg) \bm{\mu}^{\top}\bm{\mu} = 1 0 = \frac{\partial}{\partial \bm{\mu}} \bigg\{ L(\bm{\mu}, \kappa | \mathcal{D}) - \lambda \bm{\mu}^{\top} \bm{\mu} \bigg\} = \kappa \sum_{n=1}^{N} \bm{x}^{(n)} - 2 \lambda \bm{\mu}
  5. 0 = \kappa \sum_{n=1}^{N} \bm{x}^{(n)} - 2 \lambda \bm{\mu} \hat{\bm{\mu}}=\frac{\bm{m}}{\sqrt{\bm{m}^{\top} \bm{m}}} \bm{m} = \frac{1}{N}\sum_{n=1}^{N}\bm{x}^{(n)}
  6. 0 = \kappa \sum_{n=1}^{N} \bm{x}^{(n)} - 2 \lambda \bm{\mu} \bm{m} = \frac{1}{N}\sum_{n=1}^{N}\bm{x}^{(n)} \frac{\kappa \bm{m}}{2 \bm{\mu}} = \lambda \bm{\mu}^{\top}\bm{\mu} = 1 \frac{\kappa^2 \bm{m}^{\top}\bm{m}}{2^2 } = \lambda^2 \frac{\kappa \sqrt{\bm{m}^{\top}\bm{m}}}{2 } = \lambda \hat{\bm{\mu}}=\frac{\bm{m}}{\sqrt{\bm{m}^{\top} \bm{m}}}
  7. a(\bm{x}') = 1 - \hat{\bm{\mu}}^{\top}\bm{x}' \hat{\bm{\mu}}^{\top}\bm{x}'
  8. q(z) = \int_{-\infty}^{\infty}d\bm{x}\delta(z-f(x_{1},...,x_{M}))p(x_{1},...,x_{M}) p(a) =\int_{S_M}d\bm{x}\delta(a-(1-\hat{\bm{\mu}}^{\top}\bm{x}))c_{M}(\kappa)\exp(\kappa \hat{\bm{\mu}}^{\top} \bm{x}) p(a) \propto \int_{0}^{\pi}d\theta_1 \sin^{M-2}\theta_1 \delta(a-(1-\cos \theta_1))\exp(\kappa \cos \theta_1) q(z) = \int_{-\infty}^{\infty}dx\delta(x-b)f(x)=f(b) p(a) \propto (2a-a^2)^{(M-3)/2}\exp(\kappa (1-a))
  9. p(a) \propto (2a-a^2)^{(M-3)/2}\exp(\kappa (1-a)) p(a) \propto a^{(M-1)/2-1}\exp(-\kappa a)
  10. \bm{x'} \sim \mathcal{M}(\bm{\mu},\kappa) 1-\bm{\mu}^{\top}\bm{x'} \sim \chi ^2\bigg(M-1,\frac{1}{2\kappa}\bigg)
  11. \langle a \rangle = \int_{0}^{\infty} da \ a \chi^2(a|m,s) = ms \langle a^2 \rangle = \int_{0}^{\infty} da \ a^2 \chi^2(a|m,s) = m(m+2)s^2 \langle a \rangle \approx \frac{1}{N}\sum_{n=1}^{N} a^{(n)} \langle a^2 \rangle \approx \frac{1}{N}\sum_{n=1}^{N} (a^{(n)})^2 \hat{m}_{\mbox{mo}} = \frac{2\langle a \rangle ^2}{\langle a^2 \rangle - {\langle a \rangle}^2} \hat{s}_{\mbox{mo}} = \frac{\langle a^2 \rangle - {\langle a \rangle}^2}{2\langle a \rangle ^2}