SlideShare a Scribd company logo
1 of 20
1
No inicio do ano de 1900, os físicos acreditavam quase
plenamente no poder da Física Clássica para descrever a
natureza, e que a maioria dos fenômenos podiam ser explicados
mediante a física newtoniana, o eletromagnetismo de Maxwell e a
termodinâmica de Boltzman. Apesar de tudo, haviam alguns
problemas “triviais” para serem resolvidos. Em 27 de Abril de
1900, Lord Kelvin falando sobre a Física no Royal Institution of
Great Britain, com o texto completo publicado na Philosophical
Magazine 2, p. 1, em 1901, afirmou: “Vejo apenas duas pequenas
‘nuvens’ no sereno céu do conhecimento físico: a experiência de
Michelson-Morley, realizada em 1887, e a discordância entre os
valores medidos e os valores teóricos, previstos pela
Termodinâmica para os calores específicos em baixas
temperaturas, a catástrofe ultravioleta.”
A solução dessas “duas pequenas nuvens” foi o início da
Mecânica Quântica, uma revolução da Física e do modo de
entender a Natureza.
2
3
Aquecimento de uma barra de ferro por um maçarico, mostrando a
variação de coloração da luz emitida conforme o aumento de
temperatura.
4
Nas cavidades de corpos negros as emissões de
radiação são bem maiores do que nas outras
partes. 5
Quando você coloca algum alimento dentro de um forno e liga a
fonte térmica (chama a gás, por exemplo), o calor é absorvido pelo
sistema (forno mais alimento) e a temperatura obviamente sobe. A
temperatura sobe sem parar ou chega num valor limite?
Todo corpo negro ideal é igualmente um
absorvedor de energia e um emissor ideal de
radiação
A emissão de radiação é a mesma para vários
corpos em equilíbrio térmico, independente do
material constituinte, da massa, do volume,
forma etc. pois depende apenas da
temperatura do corpo
6
Ao explicar, por meio da teoria clássica, os resultados obtidos
observou-se que, para comprimentos de onda elevados, havia razoável
concordância com os resultados experimentais.
Entretanto, para comprimentos de onda menores, a discordância entre
a teoria e a experiência era grande. Essa discordância ficou conhecida
como a “catástrofe do ultravioleta”.
Experimental
Wien
Rayleigh-Jeans (Física
Clássica)
7
8
O máximo do gráfico
depende da temperatura
da cavidade
As curvas obtidas tem
sempre a mesma forma,
independente do material
que constitui a cavidade
9
bTmáx 
 Lei do Deslocamento de Wien:
4
TSP  
 Lei de Stefan-Boltzmann:
b = 2,898 × 10–3 m.K é a constante de Wien
s = 5,67 x 10–8 W/(m2.K4) é a constante de Stefan-Boltzmann
4
TSPI  /
10
Se supusermos que as superfícies estelares se comportam como corpos negros,
podemos obter uma boa estimativa de suas temperaturas medindo-se máx.
Para o Sol, máx = 5100 x 10–10 m. Achar a temperatura dessa estrela.
Para o Sol:
máx ∙ T = b
5100 ∙ 10–10 T = 2,898 ∙ 10–3
T = 5700 K
Usando a Lei de Stefan e a temperatura obtida acima, determinar a potência
irradiada por 1 cm2 da superfície solar.
P = ∙S ∙ T4
P/S =  ∙ T4
I = 5,67 ∙ 10–8 ∙ (5700)4
I = 6000 W/cm2
11
12
Por volta de 1900 o físico alemão Max Planck apresentou uma equação
para a radiação do corpo negro que descrevia por completo os
experimentos, para todas a longitudes de onda.
13













1e
hc2
I
kT
hc
5
2
)T,(
Sendo:
T = temperatura absoluta (K);
c = velocidade da luz no vácuo = 3 × 108 m/s
k = constante de Boltmann = 1,38 × 10-23 J/K
h = 6,63 x 10–34 J.s
I(, T) = radiação espectral do corpo negro: W/m3
 Planck supôs que cada átomo que compõe as paredes da cavidade se
comportam como pequenos osciladores eletromagnéticos, cada um
caracterizado por uma frequência de oscilação.
14
 A onda eletromagnética emitida pela cavidade tem uma frequência
igual a do oscilador atômico.
 Os osciladores eletromagnéticos não podem ter qualquer energia.
Podem ter apenas valores discretos de energia, dada pela equação:
)h(nEn 
Sendo:
 = frequência do oscilador: Hz
h = constante de Planck
n = 0, 1, 2, 3, ... : n° inteiro, denominado número quântico
En = Energia correspondente ao estado quântico “n”: Joule
 A equação En = n (h∙) indica que a energia está quantizada. Isso que
dizer que só pode existir número inteiro de “h∙”, e cada valor de “n”
representa um estado quântico específico
15
 Os osciladores atômicos não emitem de forma contínua, como
estabelecia a teoria clássica da radiação. Eles emitem e absorvem energia
em unidades discretas chamadas “quantum”, cuja energia é “h∙”.
 A energia absorvida ou emitida por um oscilador, quando varia de
estado quântico inicial ni para outro final nf, será:
E = (nf – ni) h∙ = Dn (h∙)
 Quando um oscilador permanece no seu estado quântico, não absorve
e nem emite energia.
 Cada átomo (oscilador) só pode absorver ou emitir radiação de uma
determinada frequência natural.
Um elétron, oscilando com frequência f, emite (ou absorve) uma onda eletromagnética
de igual frequência, porém a energia não é emitida (ou absorvida) continuamente.
 Plank considerou que a energia radiante não é emitida (ou absorvida)
de modo contínuo, mas sim em porções descontínuas, “partículas” que
transportam, cada qual, uma quantidade de energia E bem definidas.
Essas “partículas” de energia foram denominadas fótons.
 Ou seja, o quantum E de energia radiante de frequência f é dado por:
 hE
16
 As teorias de quantização de Planck não foram aceitas tão facilmente.
Porém, com o tempo a constante “h”, que leva seu nome, se tornou uma
das mais importantes constantes da mecânica quântica.
17
 A hipótese de Planck sobre osciladores teve aplicação imediata nos
osciladores harmônico simples (sistema massa-mola), em circuitos
oscilantes tipo LC etc.
 Einstein propôs que se a radiação é emitida e absorvida em quantum
ou fótons, então também deve se propagar como fótons.
Se a energia (E) do fóton é proporcional a sua frequência (n) e cada fóton
se desloca com velocidade (c), então o comprimento de onda (l) associado
a cada fóton pode ser calculado pela seguinte equação:
c
18
 Então, a energia de cada fóton é dada por:








c
hhE
 Os fótons são considerados partículas de luz, com massa de repouso
nula (m = 0) e sem carga (q = 0)
 A energia (E) e a quantidade de movimento (p) de um fóton é dada por:
cp
c
hE 









h
p
19
James Clerk Maxwell
 Teoria clássica da radiação.
 A energia de radiação eletromagnética é proporcional a intensidade
da onda e independe da frequência.
 A radiação eletromagnética é absorvida e emitida de forma
contínua.
Stefan - Boltzmann,
Wien e Rayleigh - Jeans
 Fizeram importantes contribuições ao estudo da radiação de corpo
negro.
Max Planck
 A emissão e absorção de energia eletromagnética acontece de
forma discreta, em pequenas quantidades chamadas “quantum”.
 Introduziu o conceito de quantização de energia (E = h)
Albert Einstein
 Estabeleceu que a radiação eletromagnética está constituída por
“pacotes” de energia chamados “fótons” equivalente ao “quantum de
Planck”.
 A energia do fóton é proporcional a sua frequência (E = hn).
- CARUSO, Francisco e OGURI, Vitor. Física Moderna, Origens Clássicas e Fundamentos Quânticos. Rio de
Janeiro: Ed. Campus, 2006.
- MARTINS, Jader B. A História do Átomo, de Demócrito aos Quarks. Rio de Janeiro: Editora Ciência Moderna,
2001
- EISBERG, Robert e RESNICK, Robert. Física Quântica – Átomos, Moléculas, Sólidos, Núcleos e Partículas. 18ª
tiragem. Rio de Janeiro: Editora Campus, 1979.
-INSTITUTO DE CIENCIAS Y HUMANIDADES. Química, Análises de Principios y Aplicaciones. Tomo I. Lima:
Lumbreras Editores, 2011.
- RAMALHO, Francisco J., JUNIOR, Nicolau G. F. e SOARES, Paulo A. T. Fundamentos da Física. Vol 3, 9ª Ed. São
Paulo: Editora Moderna, 2008.
- SEGRÈ, Emilio. Dos Raios X aos Quarks – Físicos Modernos e Suas Descobertas. Brasília: Editora
Universidade de Brasília, 1987.
- TRANSNATIONAL COLLEGE OF LEX. What Is Quantum Mechanics? A Physics Adventure. Boston, 1996.
20

More Related Content

What's hot (20)

Radioatividade - profª Nília
Radioatividade - profª NíliaRadioatividade - profª Nília
Radioatividade - profª Nília
 
Entropia e Segunda lei da termodinâmica
Entropia e Segunda lei da termodinâmicaEntropia e Segunda lei da termodinâmica
Entropia e Segunda lei da termodinâmica
 
Campo magnético
Campo magnéticoCampo magnético
Campo magnético
 
Aula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de BohrAula 4 - Modelo Atômico de Bohr
Aula 4 - Modelo Atômico de Bohr
 
Física: Indução Magnética - Faraday
Física: Indução Magnética -  FaradayFísica: Indução Magnética -  Faraday
Física: Indução Magnética - Faraday
 
Lei de coulomb
Lei de coulombLei de coulomb
Lei de coulomb
 
Introdução à ondulatória
Introdução à ondulatóriaIntrodução à ondulatória
Introdução à ondulatória
 
Leis de ohm
Leis de ohmLeis de ohm
Leis de ohm
 
Força magnética
Força magnéticaForça magnética
Força magnética
 
Estudo dos gases slides
Estudo dos gases   slidesEstudo dos gases   slides
Estudo dos gases slides
 
A 1ª lei da termodinâmica
A 1ª lei da termodinâmicaA 1ª lei da termodinâmica
A 1ª lei da termodinâmica
 
Física Quântica
Física QuânticaFísica Quântica
Física Quântica
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 
Ondulatória
OndulatóriaOndulatória
Ondulatória
 
Gases e transformações
Gases  e transformaçõesGases  e transformações
Gases e transformações
 
Introdução a Física
Introdução a FísicaIntrodução a Física
Introdução a Física
 
Introdução à física
Introdução à físicaIntrodução à física
Introdução à física
 
Impulso e Quantidade de Movimento
Impulso e Quantidade de MovimentoImpulso e Quantidade de Movimento
Impulso e Quantidade de Movimento
 
Radiações- tipos de radiação e suas aplicações
Radiações- tipos de radiação e suas aplicaçõesRadiações- tipos de radiação e suas aplicações
Radiações- tipos de radiação e suas aplicações
 
Fundamentos da óptica geométrica
Fundamentos da óptica geométricaFundamentos da óptica geométrica
Fundamentos da óptica geométrica
 

Viewers also liked

Aula 7 - Uma Aula de Quântica no Ensino Médio
Aula 7 - Uma Aula de Quântica no Ensino MédioAula 7 - Uma Aula de Quântica no Ensino Médio
Aula 7 - Uma Aula de Quântica no Ensino MédioNewton Silva
 
Radiação não ionizante
Radiação não ionizanteRadiação não ionizante
Radiação não ionizanteelainebassi
 
Planck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroPlanck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroCristiane Tavolaro
 
Radiação de Corpo Negro
Radiação de Corpo NegroRadiação de Corpo Negro
Radiação de Corpo NegroPibid Física
 
A Luz Powerpoint
A Luz PowerpointA Luz Powerpoint
A Luz Powerpoint8ºC
 
Modelo OSI - Camada de Rede
Modelo OSI - Camada de RedeModelo OSI - Camada de Rede
Modelo OSI - Camada de RedeWalyson Vëras
 
Como Fazer Bibliografia E Nota De Rodapé
Como Fazer Bibliografia E Nota De RodapéComo Fazer Bibliografia E Nota De Rodapé
Como Fazer Bibliografia E Nota De RodapéCatedral de Adoração
 
A Luz
A LuzA Luz
A Luz8ºC
 
Aula básica sobre as cores
Aula básica sobre as coresAula básica sobre as cores
Aula básica sobre as coresCéu Barros
 
Como Fazer Referências Bibliográficas
Como Fazer Referências BibliográficasComo Fazer Referências Bibliográficas
Como Fazer Referências Bibliográficasbela610
 
Velocidade das reações químicas
Velocidade das reações químicasVelocidade das reações químicas
Velocidade das reações químicasPiedade Alves
 

Viewers also liked (20)

Aula 7 - Uma Aula de Quântica no Ensino Médio
Aula 7 - Uma Aula de Quântica no Ensino MédioAula 7 - Uma Aula de Quântica no Ensino Médio
Aula 7 - Uma Aula de Quântica no Ensino Médio
 
Abnt referências
Abnt referênciasAbnt referências
Abnt referências
 
Radiação não ionizante
Radiação não ionizanteRadiação não ionizante
Radiação não ionizante
 
Planck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo NegroPlanck E A Radiacao Do Corpo Negro
Planck E A Radiacao Do Corpo Negro
 
Radiação de Corpo Negro
Radiação de Corpo NegroRadiação de Corpo Negro
Radiação de Corpo Negro
 
Os Astros
Os AstrosOs Astros
Os Astros
 
A Luz Powerpoint
A Luz PowerpointA Luz Powerpoint
A Luz Powerpoint
 
Luz
LuzLuz
Luz
 
Redes de Computadores - Modelo de Referência OSI/ISO
Redes de Computadores - Modelo de Referência OSI/ISORedes de Computadores - Modelo de Referência OSI/ISO
Redes de Computadores - Modelo de Referência OSI/ISO
 
Luz e Cor
Luz e CorLuz e Cor
Luz e Cor
 
Modelo OSI - Camada de Rede
Modelo OSI - Camada de RedeModelo OSI - Camada de Rede
Modelo OSI - Camada de Rede
 
Como Fazer Bibliografia E Nota De Rodapé
Como Fazer Bibliografia E Nota De RodapéComo Fazer Bibliografia E Nota De Rodapé
Como Fazer Bibliografia E Nota De Rodapé
 
A Luz
A LuzA Luz
A Luz
 
Luz e fontes de luz - Resumo
Luz e fontes de luz - ResumoLuz e fontes de luz - Resumo
Luz e fontes de luz - Resumo
 
Aula básica sobre as cores
Aula básica sobre as coresAula básica sobre as cores
Aula básica sobre as cores
 
Como Fazer Referências Bibliográficas
Como Fazer Referências BibliográficasComo Fazer Referências Bibliográficas
Como Fazer Referências Bibliográficas
 
Velocidade das reações químicas
Velocidade das reações químicasVelocidade das reações químicas
Velocidade das reações químicas
 
A Cor Power Point
 A Cor Power Point A Cor Power Point
A Cor Power Point
 
Cor luz
Cor luzCor luz
Cor luz
 
Luz e Cor
Luz e CorLuz e Cor
Luz e Cor
 

Similar to Aula 5 - Introdução à Quântica

Fisica moderna
Fisica modernaFisica moderna
Fisica modernadalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2dalgo
 
fisica_sec_xx (1).ppt
fisica_sec_xx (1).pptfisica_sec_xx (1).ppt
fisica_sec_xx (1).pptJordanyGomes
 
aula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaaula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaMarcosOntonio
 
A Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto FerratoA Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto Ferratolasvegas4
 
Teoria De Planck Para A Radia O Do Corpo Negro
Teoria De Planck Para A Radia O Do Corpo NegroTeoria De Planck Para A Radia O Do Corpo Negro
Teoria De Planck Para A Radia O Do Corpo NegroCristiane Tavolaro
 
A física do muito pequeno
A física do muito pequenoA física do muito pequeno
A física do muito pequenoVitor Morais
 
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptx
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptxINTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptx
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptxTancredoSousa
 
A luz: Onda ou Partícula?
A luz: Onda ou Partícula?A luz: Onda ou Partícula?
A luz: Onda ou Partícula?Marivane Biazus
 

Similar to Aula 5 - Introdução à Quântica (20)

Fisica moderna
Fisica modernaFisica moderna
Fisica moderna
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
Fisica moderna2
Fisica moderna2Fisica moderna2
Fisica moderna2
 
A Física do século XX
A Física do século XXA Física do século XX
A Física do século XX
 
Fisica Sec Xx
Fisica Sec XxFisica Sec Xx
Fisica Sec Xx
 
Fisica Sec Xx
Fisica Sec XxFisica Sec Xx
Fisica Sec Xx
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
fisica_sec_xx (1).ppt
fisica_sec_xx (1).pptfisica_sec_xx (1).ppt
fisica_sec_xx (1).ppt
 
aula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisaaula 01.ppt Tudo sobre física quântica que você precisa
aula 01.ppt Tudo sobre física quântica que você precisa
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
Fisica sec xx
Fisica sec xxFisica sec xx
Fisica sec xx
 
A Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto FerratoA Fisica do seculo XX Nicolau Gilberto Ferrato
A Fisica do seculo XX Nicolau Gilberto Ferrato
 
Teoria De Planck Para A Radia O Do Corpo Negro
Teoria De Planck Para A Radia O Do Corpo NegroTeoria De Planck Para A Radia O Do Corpo Negro
Teoria De Planck Para A Radia O Do Corpo Negro
 
A física do muito pequeno
A física do muito pequenoA física do muito pequeno
A física do muito pequeno
 
Moderna02
Moderna02Moderna02
Moderna02
 
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptx
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptxINTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptx
INTRODUÇÃO A FÍSICA QUÂNTICA - TANCREDO.pptx
 
A luz: Onda ou Partícula?
A luz: Onda ou Partícula?A luz: Onda ou Partícula?
A luz: Onda ou Partícula?
 
Física revolução industrial
Física revolução industrialFísica revolução industrial
Física revolução industrial
 

Recently uploaded

praticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiopraticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiorosenilrucks
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfRavenaSales1
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfHELENO FAVACHO
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfHELENO FAVACHO
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSOLeloIurk1
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...Francisco Márcio Bezerra Oliveira
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º anoRachel Facundo
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéisines09cachapa
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMHELENO FAVACHO
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfHELENO FAVACHO
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...HELENO FAVACHO
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaHELENO FAVACHO
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfHELENO FAVACHO
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*Viviane Moreiras
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfLeloIurk1
 
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxProjeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxIlda Bicacro
 
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdfLeloIurk1
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxAntonioVieira539017
 

Recently uploaded (20)

praticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiopraticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médio
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
 
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxProjeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
 
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 

Aula 5 - Introdução à Quântica

  • 1. 1
  • 2. No inicio do ano de 1900, os físicos acreditavam quase plenamente no poder da Física Clássica para descrever a natureza, e que a maioria dos fenômenos podiam ser explicados mediante a física newtoniana, o eletromagnetismo de Maxwell e a termodinâmica de Boltzman. Apesar de tudo, haviam alguns problemas “triviais” para serem resolvidos. Em 27 de Abril de 1900, Lord Kelvin falando sobre a Física no Royal Institution of Great Britain, com o texto completo publicado na Philosophical Magazine 2, p. 1, em 1901, afirmou: “Vejo apenas duas pequenas ‘nuvens’ no sereno céu do conhecimento físico: a experiência de Michelson-Morley, realizada em 1887, e a discordância entre os valores medidos e os valores teóricos, previstos pela Termodinâmica para os calores específicos em baixas temperaturas, a catástrofe ultravioleta.” A solução dessas “duas pequenas nuvens” foi o início da Mecânica Quântica, uma revolução da Física e do modo de entender a Natureza. 2
  • 3. 3
  • 4. Aquecimento de uma barra de ferro por um maçarico, mostrando a variação de coloração da luz emitida conforme o aumento de temperatura. 4
  • 5. Nas cavidades de corpos negros as emissões de radiação são bem maiores do que nas outras partes. 5
  • 6. Quando você coloca algum alimento dentro de um forno e liga a fonte térmica (chama a gás, por exemplo), o calor é absorvido pelo sistema (forno mais alimento) e a temperatura obviamente sobe. A temperatura sobe sem parar ou chega num valor limite? Todo corpo negro ideal é igualmente um absorvedor de energia e um emissor ideal de radiação A emissão de radiação é a mesma para vários corpos em equilíbrio térmico, independente do material constituinte, da massa, do volume, forma etc. pois depende apenas da temperatura do corpo 6
  • 7. Ao explicar, por meio da teoria clássica, os resultados obtidos observou-se que, para comprimentos de onda elevados, havia razoável concordância com os resultados experimentais. Entretanto, para comprimentos de onda menores, a discordância entre a teoria e a experiência era grande. Essa discordância ficou conhecida como a “catástrofe do ultravioleta”. Experimental Wien Rayleigh-Jeans (Física Clássica) 7
  • 8. 8
  • 9. O máximo do gráfico depende da temperatura da cavidade As curvas obtidas tem sempre a mesma forma, independente do material que constitui a cavidade 9
  • 10. bTmáx   Lei do Deslocamento de Wien: 4 TSP    Lei de Stefan-Boltzmann: b = 2,898 × 10–3 m.K é a constante de Wien s = 5,67 x 10–8 W/(m2.K4) é a constante de Stefan-Boltzmann 4 TSPI  / 10
  • 11. Se supusermos que as superfícies estelares se comportam como corpos negros, podemos obter uma boa estimativa de suas temperaturas medindo-se máx. Para o Sol, máx = 5100 x 10–10 m. Achar a temperatura dessa estrela. Para o Sol: máx ∙ T = b 5100 ∙ 10–10 T = 2,898 ∙ 10–3 T = 5700 K Usando a Lei de Stefan e a temperatura obtida acima, determinar a potência irradiada por 1 cm2 da superfície solar. P = ∙S ∙ T4 P/S =  ∙ T4 I = 5,67 ∙ 10–8 ∙ (5700)4 I = 6000 W/cm2 11
  • 12. 12
  • 13. Por volta de 1900 o físico alemão Max Planck apresentou uma equação para a radiação do corpo negro que descrevia por completo os experimentos, para todas a longitudes de onda. 13              1e hc2 I kT hc 5 2 )T,( Sendo: T = temperatura absoluta (K); c = velocidade da luz no vácuo = 3 × 108 m/s k = constante de Boltmann = 1,38 × 10-23 J/K h = 6,63 x 10–34 J.s I(, T) = radiação espectral do corpo negro: W/m3
  • 14.  Planck supôs que cada átomo que compõe as paredes da cavidade se comportam como pequenos osciladores eletromagnéticos, cada um caracterizado por uma frequência de oscilação. 14  A onda eletromagnética emitida pela cavidade tem uma frequência igual a do oscilador atômico.  Os osciladores eletromagnéticos não podem ter qualquer energia. Podem ter apenas valores discretos de energia, dada pela equação: )h(nEn  Sendo:  = frequência do oscilador: Hz h = constante de Planck n = 0, 1, 2, 3, ... : n° inteiro, denominado número quântico En = Energia correspondente ao estado quântico “n”: Joule
  • 15.  A equação En = n (h∙) indica que a energia está quantizada. Isso que dizer que só pode existir número inteiro de “h∙”, e cada valor de “n” representa um estado quântico específico 15  Os osciladores atômicos não emitem de forma contínua, como estabelecia a teoria clássica da radiação. Eles emitem e absorvem energia em unidades discretas chamadas “quantum”, cuja energia é “h∙”.  A energia absorvida ou emitida por um oscilador, quando varia de estado quântico inicial ni para outro final nf, será: E = (nf – ni) h∙ = Dn (h∙)  Quando um oscilador permanece no seu estado quântico, não absorve e nem emite energia.
  • 16.  Cada átomo (oscilador) só pode absorver ou emitir radiação de uma determinada frequência natural. Um elétron, oscilando com frequência f, emite (ou absorve) uma onda eletromagnética de igual frequência, porém a energia não é emitida (ou absorvida) continuamente.  Plank considerou que a energia radiante não é emitida (ou absorvida) de modo contínuo, mas sim em porções descontínuas, “partículas” que transportam, cada qual, uma quantidade de energia E bem definidas. Essas “partículas” de energia foram denominadas fótons.  Ou seja, o quantum E de energia radiante de frequência f é dado por:  hE 16
  • 17.  As teorias de quantização de Planck não foram aceitas tão facilmente. Porém, com o tempo a constante “h”, que leva seu nome, se tornou uma das mais importantes constantes da mecânica quântica. 17  A hipótese de Planck sobre osciladores teve aplicação imediata nos osciladores harmônico simples (sistema massa-mola), em circuitos oscilantes tipo LC etc.  Einstein propôs que se a radiação é emitida e absorvida em quantum ou fótons, então também deve se propagar como fótons. Se a energia (E) do fóton é proporcional a sua frequência (n) e cada fóton se desloca com velocidade (c), então o comprimento de onda (l) associado a cada fóton pode ser calculado pela seguinte equação: c
  • 18. 18  Então, a energia de cada fóton é dada por:         c hhE  Os fótons são considerados partículas de luz, com massa de repouso nula (m = 0) e sem carga (q = 0)  A energia (E) e a quantidade de movimento (p) de um fóton é dada por: cp c hE           h p
  • 19. 19 James Clerk Maxwell  Teoria clássica da radiação.  A energia de radiação eletromagnética é proporcional a intensidade da onda e independe da frequência.  A radiação eletromagnética é absorvida e emitida de forma contínua. Stefan - Boltzmann, Wien e Rayleigh - Jeans  Fizeram importantes contribuições ao estudo da radiação de corpo negro. Max Planck  A emissão e absorção de energia eletromagnética acontece de forma discreta, em pequenas quantidades chamadas “quantum”.  Introduziu o conceito de quantização de energia (E = h) Albert Einstein  Estabeleceu que a radiação eletromagnética está constituída por “pacotes” de energia chamados “fótons” equivalente ao “quantum de Planck”.  A energia do fóton é proporcional a sua frequência (E = hn).
  • 20. - CARUSO, Francisco e OGURI, Vitor. Física Moderna, Origens Clássicas e Fundamentos Quânticos. Rio de Janeiro: Ed. Campus, 2006. - MARTINS, Jader B. A História do Átomo, de Demócrito aos Quarks. Rio de Janeiro: Editora Ciência Moderna, 2001 - EISBERG, Robert e RESNICK, Robert. Física Quântica – Átomos, Moléculas, Sólidos, Núcleos e Partículas. 18ª tiragem. Rio de Janeiro: Editora Campus, 1979. -INSTITUTO DE CIENCIAS Y HUMANIDADES. Química, Análises de Principios y Aplicaciones. Tomo I. Lima: Lumbreras Editores, 2011. - RAMALHO, Francisco J., JUNIOR, Nicolau G. F. e SOARES, Paulo A. T. Fundamentos da Física. Vol 3, 9ª Ed. São Paulo: Editora Moderna, 2008. - SEGRÈ, Emilio. Dos Raios X aos Quarks – Físicos Modernos e Suas Descobertas. Brasília: Editora Universidade de Brasília, 1987. - TRANSNATIONAL COLLEGE OF LEX. What Is Quantum Mechanics? A Physics Adventure. Boston, 1996. 20