SlideShare a Scribd company logo
1 of 23
Download to read offline
0
RANGKUMAN MATERI, SOAL DAN PEMBAHASAN
BAB XIII
LANJUTAN ISOMETRI
disusun guna melengkapi tugas mata kuliah Geometri Transformasi
Dosen pengampu Bapak Ishaq Nuriadin, M.Pd
Oleh
Niamatus Saadah 1201125122
JURUSAN MATEMATIKA
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS MUHAMMADIYAH PROF DR.HAMKA
2015
1
BAB XIII
ISOMETRI LANJUTAN
Dalam isometri dasar, terdapat empat jenis isometri yaitu :
1. Reflexi pada garis,
2. Translasi,
3. Rotasi,
4. Reflexi geser.
Apabila reflexi geser dikalikan dengan salah satu dari ketiga isometri yang semula atau
reflexi geser dikalikan dengan reflexi geser yang lain, maka apakah kita akan memperoleh suatu
isometri yang baru ?
Contoh kasus:
1. Hasil kali reflexi geser dengan translasi.
Andaikan R sebuah reflexi geser dengan sumbu t sehingga R= GABMt dengan AB // t.
Andaikan GCD sebuah translasi.
Maka GCD R = GCD (GABMt)
= (GCD GAB ) Mt
Karena hasil kali dari dua translasi adalah translasi, maka ada dua garis berarah EF
sehingga GCD GAB = GEF.
Dengan demikian maka GCD R = GEF Mt.
Apabila EF t, maka GEF Mt adalah suatu reflexi pada sebuah garis yang sejajar
dengan t.
Apabila EF tidak tegak lurus pada t, maka GEF Mt adalah suatu reflexi geser.
Jadi dapat disimpulkan bahwa hasil kali reflexi geser dengan sebuah translasi adalah
suatu reflexi atau reflexi geser.
2. Hasil kali reflexi geser dengan reflexi.
Misalkan Ms adalah reflexi pada garis s.
Misalkan R sebuah reflexi geser.
Maka Ms R = Ms (GAB Mt)
= Ms (Mt GAB)
2
= (Ms Mt) GAB
Apabila s // t,
maka Ms Mt sebuah translasi.
Jadi (Ms Mt) GAB juga merupakan translasi.
Sehingga Ms R juga merupakan translasi.
Apabila s tidak sejajar t,
Maka Ms Mt sebuah rotasi.
Dari teorema reflexi geser, diperoleh Ms R = R Ms juga merupakan rotasi.
Jadi dapat disimpulkan bahwa hasil kali reflexi geser dengan reflexi adalah sebuah
translasi atau sebuah rotasi.
Di atas telah dibicarakan berbagai jenis isometri. Lalu timbul pertanyaan, kalau diketahui
dua titik A dan A’, maka ada banyak sekali isometri yang memetakan A pada A’, sebab setiap
titik pada sumbu dapat digunakan sebagai pusat – pusat rotasi yang membawa A ke A’. Ada
pula translasi GAA’, kecuali itu kalau T titik tengah AA’ maka ST adalah setengah putaran yang
memetakan A pada A’.
Apabila ada titik – titik A, A’ dan B, B’, dan jika AB = A’B’ maka ada paling sedikit dua
isometri yang memetakan A pada A’ dan B pada B’.
Bukti :
Dipunyai tiga titik yang tak kolinear (A, B, C).
Andaikan ada dua isometri T1 dan T2 sehingga,
T1(A) = A’ = T2(A)
T1(B) = B’ = T2(B)
Teorema 13.1.(Teorema Ketunggalan Isometri)
Diketahui tiga titik yang tak kolinear yaitu A, B dan C.
Jika pada tiga titik lain A’,B’,C’ maka ada paling banyak satu isometri
yang memetakan A pada A’, B pada B’, dan C pada C’.
3
T1(C) = C’ = T2(C)
Karena T1 dan T2 isometri – isometri, maka
AB = A’B’
AC = A’C’
BC = B’C’
Karena A, B, C tak segaris, maka A’, B’, C’ juga tak segaris.
Andaikan T1(P) T2(P) dan T1(P) = P’, T2(P) = P’’,
Maka PA = P’A’ = P’’A’.
Jadi A’ terletak pada sumbu ruas garis .
Dengan cara yang serupa, didapat B’, C’ juga terletak pada sumbu .
Jadi A’, B’, C’ segaris.
Ini tentunya berlawanan dengan sifat bahwa A’, B’, C’ tak segaris.
Jadi haruslah T1(P) = T2(P), .
Ini berarti T1 = T2.
Jadi ada paling banyak satu isometri yang memetakan A pada A’, B pada B’, dan C pada C’
Bahwa tidak selalu ada isometri, dapat kita lihat apabila tidak kongruen dengan
.
Bukti:
Dipunyai sebuah sistem koordinat, dengan titik A = (1,0) , B = (h,k) , P = (x,y) dan s garis
melalui titik asal sistem koordinat.
Perhatikan gambar berikut
Teorema 13.2 (Perluasan Teorema Ketunggalan Isometri).
Jka s sebuah garis melalui titik asal sebuah sistem koordinat orthogonal dan
jika Ms memetakan A = (1,0) pada B = (h,k) dan P = (x,y) maka Ms(P) =
(hx + ky, kx - hy).
4
Andaikan T memetakan P = (x,y) pada titik (hx + ky, kx – hy), T(P) = (hx + ky, kx – hy).
Akan dibuktikan bahwa T = Ms.
1. Akan dibuktikan bahwa T sebuah isometri.
Andaikan P1= (x1,y1), P2 = (x2,y2) dua titik sebarang,
Maka P’1=T(P1) = (hx1 + ky1, kx1 – hy1), dan P’2=T(P2) = (hx2 + ky2, kx2 – hy2).
Sehingga,
(P’1P’2)2
= [(hx1 + ky1) – (hx2 + ky2)]2
+ [(kx1 – hy1) – (kx2 – hy2)]2
= [h(x1- x2) + k(y1– y2)]2
+ [k(x1 – x2) – h(y1 – y2)]2
= (h2
+ k2
)(x1-x2)2
+ (k2
+h2
)(y1-y2)2
Oleh karena itu B = Ms(A) dan Ms(O) = O.
Maka OB = OA.
Karena OA = 1 dan OB = maka h2
+ k2
= 1.
Sehingga
Jadi T sebuah isometri.
2. Akan dibuktikan T = Ms.
Dari uraian di atas, diperoleh :
T(O) = (0,0)
T(A) = (h,k)
T(B) = (h.h + k.k , kh – hk) = (h2
+ k2
, 0) = (1,0).
s
B(h,k)
O A(1,0)
Gambar 13.1
5
Contoh :
Jika O titik asal sebuah sistem koordinat, dan P = (x,y) sebuah titik, tentukan peta P terhadap
rotasi .
Jawab :
Andaikan s sebuah garis melalui O sehingga sudut dari sumbu –x ke garis s adalah 300
.
Kita tahu bahwa Ms(1,0) = .
Jadi Ms(P) = .
Andaikan t adalah sumbu x, maka R0,60 = MsMt.
Jadi R0,60(P) = MsMt(P) = Ms(x-y)
= .
300
sMs(A)
O A(1,0)
Gambar 13.2
Teorema 13.3.
Himpunan transformasi-transformasi yang terdiri atas translasi,
reflexi, rotasi dan reflexi geser adalah tertutup terhadap operasi komposisi
(perkalian).
6
Bukti :
Dipunyai dua ruas garis dan ruas garis sehingga .
Kasus 1 : .
Perhatikan gambar berikut:
Andaikan dan s sumbu ruas
Maka
Karena A = C maka
Sehingga s melalui A
Jadi dan
Sehingga adalah isometri lawan
Andaikan adalah garis t
Maka
Dan
Jadi adalah isometri langsung.
Teorema 13.4.
Apabila ada dua ruas garis dan ruas garis sehingga
. Maka ada dua isometri yang satu isometri langsung dan yang lain
isometri lawan yang memetakan A pada C dan B pada D.
A=C
B
D
s
t
Gambar 13.3
7
Kasus 2 : dan s sumbu
Perhatikan gambar berikut:
Diperoleh
Andaikan
maka (gambar 13.4) dan (gambar 13.5)
Apabila maka
Jadi satu isometri
Misalkan = t
Maka dan
Maka adalah suatu isometri langsung
Misalkan dan u sumbu
Maka C u karena
t
A
B
C
B’=D
Gambar 13.4
Gambar 13.5
B’
t
A
B
C
u
D
8
Jadi dan
Maka dan
Jadi adalah isometri langsung
Apabila maka MtMuMs(A) = MtMu(C) = Mt(C) = C
Sedangkan MtMuMs(B) = MtMu(B’
) = Mt(D) = D
Jadi MtMuMs isometri lawan
Kasus 3 : A= C, B = D
Maka jika
Diperoleh Ms(A) = C dan Ms(B) = D yaitu isometri lawan
Sedangkan I = MsMt adalah isometri langsung
Bukti:
Andaikan T sebuah isometri dan ada tiga titik (A, B, C) yang tak segaris.
Andaikan bahwa T(A) = A’ , T(B) = B’ , T(C) = C’.
Karena , maka menurut teorema 13.4, paling sedikit ada dua isometri yang
memetekan A pada A’ dan B pada B’ , yaitu suatu isometri langsung L+ dan suatu isometri lawan
L-.
Dengan L+ adalah hasil kali dua reflexi garis MtMs dan L- adalah refleksi Ms atau hasil kali tiga
refleksi garis MtMuMs.
Pilih diantara L- dan L+ salah satu yang dapat dinyatakan dengan hasil kali refleksi yang
banyaknya paling sedikit.
Jika L- = Ms, kita misalkan N = L- dan kita ambil N = L+ jika L- = MtMuMs.
Teorema 13.5 :
Setiap isometri adalah hasil kali dari paling banyak tiga refleksi garis.
9
Perhatikan gambar berkut:
Perhatikan C1 = N(C).
Kasus 1. Jika C’ = C1.
Maka N memetakan A pada A’, B pada B’ dan C pada C’.
Jadi menurut teorema ketunggalan isometri, maka T = N.
Kasus 2. Jika C’ C1.
Andaikan = v.
Oleh karena T dan N adalah isometri, maka AC = A’C’ = A’C, dan BC = B’C’=B’C.
Ini berarti bahwa A’ dan B’ sama jauhnya dari ujung – ujung rua garis .
Ini berarti bahwa v adalah sumbu , sehingga Mv(C1)=C’.
Jadi diperoleh:
MvN(A) = MvN(A’) = A’
MvN(B) = MvN(B’) = B’
MvN(C) = MvN(C’) = C’
Dengan menggunakan teorema ketunggalan isometri, maka T = MvN.
Dari kasus 1 dan 2, dapat disimpulkan bahwa T = N atau T = MvN.
Oleh karena N adalah sebuah refleksi garis atau hasil kali dua refleksi garis, maka T adalah hasil
kali dari paling banyak tiga refleksi garis.
A
C
B C’
A’=T(A)
B’=T(B)
(Gambar 13.6)
10
Akibat: Setiap isometri langsung adalah suatu translasi atau suatu rotasi, sedangkan suatu
isometri lawan adalah suatu refleksi atau refleksi geser.
Misalnya MsMtMvMwMr adalah suatu refleksi garis atau suatu refleksi geser sedangkan
GABMuRA,GCDMt adalah sebuah translasi atau suatu rotasi.
Bukti:
Menurut teorema ketunggalan isometri, maka hanya terdapat satu isometri.
Kita tahu bahwa ada sebuah isometri T yang bersifat T(A) = A’ dan T(B) = B’.
Ini disebabkan AB = A’B’.
Andaikan C1 = T(C).
Jika C1=C’, maka bukti selesai.
Jika C1≠ C’, andaikan u = .
Karena A’C1 = A’C’ dan B’C1 = B’C’, maka u adalah sumbu C’C1.
Jadi Mu(C1) = C’.
Dengan demikian diperoleh
MuT(A) = MuT(A’) = A’
MuT(B) = MuT(B’) = B’
MuT(C) = MuT(C’) = C’
Dengan demikian telah terbukti adanya suatu isometri yang memetakan A pada A’ ; B pada B’ ;
dan C pada C’ , yaitu T atau MuT yang memetakan pada .
Teorema 13.6 :
Jika ∆𝐴𝐵𝐶 ≅ ∆𝐴′𝐵′𝐶′ maka ada tepat satu isometri yang memetakan
A pada A’ ; B pada B’ ; C pada C’.
11
O
SOAL - SOAL
Soal I.
1. Diketahui XYZABC  , jika isometri T memetakan ABC pada XYZ , lukislah
).('
PTP 
Penyelesaian :
Perhatikan gambar di samping,
Buat XYZABC  dimana T memetakan
ABC pada XYZ dengan T merupakan
suatu refleksi. Sehingga untuk setiap titik
di V berlaku T(P) = MS(P) = P’.
Perhatikan gambar di samping,
Buat XYZABC  dimana T memetakan
ABC pada XYZ dengan T merupakan
suatu rotasi. Sehingga untuk setiap titik di
V berlaku T(P) = R0, = P’
2. Diketahui ABC dengan A = (-2,1) B = (-2,-1) dan C = (-3,1); DEF dengan D = (1,0), E
= (3,0) dan F = (3,1). T sebuah isometri yang memetakan ABC pada DEF . Jika P = (x,y)
tentukan koordinat-koordinat T(P).
Penyelesaian :
Diketahui : ABC dengan A = (-2,1) B = (-2,-1) dan C = (-3,1)
s
12
DEF dengan D = (1,0), E = (3,0) dan F = (3,1)
Pilih T1 = R0,90
T2 = GAX dengan titik X = (0,-1)
Perhatikan gambar di bawah ini :
Karena T1 = R0,90
Diperoleh T1(A) = T1(-2,1) = A’(1,2)
T1(B) = T1(-2,-1) = B’(-1,2)
T1(C) = T1(-3,1) = C’(1,3)
Karena T2 = GAX
Diperoleh T2(A’) = T2(1,2) = E(3,0)
T2(B’) = T2(-1,2) = D(1,0)
T2(C’) = T2(1,3) = F(3,1)
Jadi T = T2T1= GAXR0,90
Ambil sembarang P(x,y)
maka diperoleh T(x,y) = GAXR0,90(x,y) = GAX(y,-x) = (y+2,-x+2)
Jadi koordinat-koordinat titik P(x,y) = P’ = GAX(y,-x) dan P(x,y) = P’’ = (y+2,-x+2)
13
3. Diketahui ABC dengan A = (0,0), B = (2,0) dan C = (2,1) dan XYZ dengan
X = (-3,0), Y = (-3,-2) dan Z = (-2,-2). T sebuah isometri yang memetakan ABC pada
XYZ . Jika P = (x,y) tentukan koordinat-koordinat T (P).
Penyelesaian :
Diketahui : ABC dengan A = (0,0) B = (2,0) dan C = (2,1)
XYZ dengan D = (-3,0), E = (-3,2) dan F = (-2,2)
Pilih T1 = R0,-90
T2 = Mt dengan garis t : x= −
3
2
Perhatikan gambar di bawah ini :
Karena T1 = R0,-90
Diperoleh T1(A) = T1(0,0) = A’(0,0)
T1(B) = T1(2,0) = B’(0,-2)
T1(C) = T1(2,1) = A’(-1,-2)
Karena T2 = Mt
Diperoleh T2(A’) = T2(0,0) = X(-3,0)
T2(B’) = T2(0,-2) = Y(-3,-2)
T2(C’) = T2(-1,-2) = Z(-2,-2)
14
Jadi T = T2T1= MtR0,-90
Ambil sembarang P(x,y)
maka diperoleh T(x,y) = MtR0,-90 (x,y) = Mt (-y,-x) = (2k+y,-x)
Jadi koordinat-koordinat titik P(x,y) = P’ = Mt (-y,-x) dan P(x,y) = P’’ = (2k+y,-x).
4. a) Suatu padanan T ditentukan oleh persamaan T[(x,y)] = (2x+y, -x+2y). Apakah T
sebuah refleksi?
b) Putaran ,0R memetakan titik P = (x,y) pada titik (hx – ky),kx + hy). Tentukanlah
.)]([ 1
,0

PR 
Penyelesaian :
1. Diketahui : Suatu padanan T dengan T[(x,y)] = (2x+y,-x+2y).
Perhatikan gambar berikut:
Pilih titik A = (1,0) ; B = (3,0).
Jelas AB = 2 satuan
Diperoleh T(A) = T[(1,0)] = (2.1+ 0,-1+2.0) = (2,-1)
T(B) = T[(3,0)] = (2.3+ 0,-3+2.0) = (6,-3)
15
Jelas T(A) = A’ = (2,-1)
T(B) = B’ = (6,-3)
Sehingga 𝐴′
𝐵′
= √(𝑥1−𝑥2)2 + (𝑦1 − 𝑦2)2 = √(2 − 6)2 − (−1 + 3)2 = √12
Jadi AB ≠ A’B’
Karena refleksi merupakan suatu isometri dan salah satu sifat dari isometri adalah
mengawetkan jarak. Maka refleksi juga harus bersifat mengawetkan jarak.
Karena AB ≠ A’B’, maka padanan T bukan merupakan refleksi.
1. Penyelesaian :
Diketahui :
,0R memetakan titik P = (x,y) pada titik (hx – ky),kx + hy).
Ini berarti x’ = x cos  - y sin  = xh – yk.
Y’ = x sin  + y cos  = xk + yh.
Sehingga cos  = h dan sin  = k
Sedangkan untuk - , maka cos (-) = h dan sin (-) = -k .
Jelas bahwa [Ro,(P)]’. [Ro,(P)]=1
 [Ro,(P)] = [Ro,(P)]-1
Jadi [Ro,(P)] = (xh+yk,-xk+yh)
2. Andaikan s sebuah garis melalui O = (0,0) dan  besarnya sudut dari sumbu-x ke garis s.
Andaikan P = (x,y). Tentukan )(PMs apabila
a) 0
5,22 ; b) 0
135 ; c) 0
15
Penyelesaian :
1. x'
= x cos 22,50
- y sin 22,50
= 0,923 x – 0,38 y
y'
= x sin 22,50
+ y cos 22,50
= 0,38 x + 0,923 y
16
2. x'
= x cos 1350
- y sin 1350
= 0,202 x – 0,707 y
y'
= x sin 1350
+ y cos 1350
=0,707 x + 0,202 y
3. x'
= x cos (-150
) - y sin (-150
)
= 0,966 x – 0,259 y
y'
= x sin (-150
) + y cos (-150
)
=0,259 x + 0,966 y
Soal II.
1. Jika AB = CD, maka ada isometri langsung L yang memetakan A pada C dan B pada D.
Lukislah garis-garis s dan t sehingga ts MML 
Penyelesaian:
Buatlah sebuah ruas garis (AB) .
Kemudian refleksikan AB terhadap garis t lalu refleksikan lagi terhadap garis s,
Perhatikan gambar berikut:
sehingga diperoleh MsMt (A) = Ms(A’) = A’’ = C
MsMt (B) = Ms(B’) = B’’ = D
Jadi MsMt merupakan suatu isometri langsung L+.
2. Jika EF = GH maka ada isometri lawan T yang memetakan E pada G dan F pada H. Jika
EF sejajar dengan GH . Lukislah garis-garis s, t dan u sehingga T = Apakah
penyelesaian itu tunggal?
A’A
B B’
A’’=C
B’’=D
st
17
Penyelesaian:
Diketahui: - EF = GH
- EF // GH
- T(E) = G dan T(F) = H
Perhatikan gambar berikut:
Diperoleh T(E) = MsMtMu(E)
= MsMt (E)
= Ms(H)
= G
T(F) = MsMtMu(F)
= MsMt (G)
= Ms(G)
= H
Jelas bahwa T= MsMtMu, dengan T memetakan E pada G dan F pada H.
Jadi pemilihan garis s,t,u pada gambar di atas merupakan penyelesaian.
Akan dibuktikan bahwa ada isometri lain yang memetakan E pada G dan F pada H.
Perhatikan gambar berikut:
Diperoleh T(E) = MsMtMu(E)
= MsMt (E)
= Ms(G)
= G
T(F) = MsMtMu(F)
= MsMt (F)
= Ms(H)
18
= H
Sehingga pemilihan garis s, t, u di atas juga merupakan penyelesaian.
Jadi Penyelesaian untuk masalah di atas tidak tunggal.
1. Diketahui ruas-ruas garis yang kongruen , dan ; A = (3,-1), B = (6,-1), C =
(-1,2), D = (-1,5), E = , F = (a,b) sedangkan melalui titik asal O = (0,0). F di
kuadran pertama. Jika P = (x,y).
a) Tentukan sebuah isometri langsung yang memetakan A pada C dan B pada D.
Tentukan pula T(P).
b) Tentukan pula isometri lawan yang memetakan A pada D dan B pada C. Tentukan
pula T(P).
Penyelesaian:
Perhatikan gambar berikut
1. Pilih T=R0,90GAX , dengan X=(2,-1)
Diperoleh T(A) = R0,90GAX (A)
= R0,90GAX [(3,-1)]
= R0,90(2,-1)
= (-1,2)
= C
19
Dan,
T(B) = R0,90GAX (B)
= R0,90GAX [(6,-1)]
= R0,90(5,-1)
= (-1,5)
= D
Jadi isometri langsung T=R0,90GAX memetakan A pada C dan B pada D.
2. Pilih T=R0,90GAXMs , dengan X=(2,-1) dan garis s:
Diperoleh T(A) = R0,90GAX Ms (A)
= R0,90GAX Ms [(3,-1)]
= R0,90 GAX (6,-1)
= R0,90 (5,-1)
= (-1,5)
= D
Dan,
Diperoleh T(B) = R0,90GAX Ms (A)
= R0,90GAX Ms [(6,-1)]
= R0,90 GAX (3,-1)
= R0,90 (2,-1)
= (-1,2)
= C
Jadi isometri langsung T=R0,90GAX Ms memetakan A pada D dan B pada C
3. Diketahui dan yang sama kaki dengan , dan
 sedangkan garis tinggi yang melalui D membuat sudut 0
45 dengan garis
tinggi yang melalui A.
Sebutlah isometri-isometri yang memetakan pada . Nyatakanlah isometri-
isometri ini sebagai hasil kali rotasi-rotasi, translasi-translasi atau reflexi-reflexi.
20
Penyelesaian:
Diketahui: - dan yang sama kaki
- , dan 
- garis tinggi yang melalui D membuat sudut 0
45 dengan garis tinggi yang
melalui A.
Perhatikan gambar berikut:
Jelas bahwa isometri yang dapat memetakan
pada adalah T = R0,22,5R0,22,5
4. Diketahui ABCD sebuah bujursangkar. Sebutkanlah semua isometri yang memetakan
ABCD pada dirinya sendiri.
Penyelesaian:
Perhatikan gambar berikut:
Diperoleh MsMs (A) = Ms(A’) = A’’ = A
MsMs (B) = Ms(B’) = B’’ = B
A=A’’ B=B’’
D=D’’ C=C’’
B’ A’
C’ D’
s
21
MsMs (C) = Ms(C’) = C’’ = C
MsMs (D) = Ms(D’) = D’’ = D
Jadi Bujur sangkar ABCD dengan isometri dua kali refleksi terhadap satu garis yang
sama akan memetakan pada dirinya sendiri.
Diperoleh SNSN (A) = SN(A’) = A’’ = A
SNSN (B) = SN(B’) = B’’ = B
SNSN (C) = SN(C’) = C’’ = C
SNSN (D) = SN(D’) = D’’ = D
Jadi Bujur sangkar ABCD dengan isometri dua kali setengah putaran terhadap satu pusat
yang sama maka akan memetakan pada dirinya sendiri.
A=A’’ B=B’’
D=D’’ C=C’’
B’
A’
C’
D’
s
t
A=A’ B=B’
D=D’ C=C’
xO
N
22
Diperoleh Ro,360 (A) = A’ = A
Ro,360 (B) = B’ = B
Ro,360 (C) = C’ = C
Ro,360 (D) = D’ = D
Jadi Bujur sangkar ABCD dengan isometri sebuah rotasi terhadap pusat koordinat O
dengan sudut 360o
maka akan memetakan pada dirinya sendiri.
Jadi, Isometri – isometri yang memetakan ABCD pada dirinya sendiri adalah 2 kali
refleksi pada garis yang sama, dua kali setengah putaran dan rotasi 3600
.

More Related Content

What's hot

Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
Ummu Zuhry
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
Kabhi Na Kehna
 
Materi ajar-geometri-transformasi
Materi ajar-geometri-transformasiMateri ajar-geometri-transformasi
Materi ajar-geometri-transformasi
derin4n1
 

What's hot (20)

PEMETAAN STRUKTUR ALJABAR
PEMETAAN STRUKTUR ALJABARPEMETAAN STRUKTUR ALJABAR
PEMETAAN STRUKTUR ALJABAR
 
Rangkuman materi Isometri
Rangkuman materi IsometriRangkuman materi Isometri
Rangkuman materi Isometri
 
Sub grup normal dan grup fakto
Sub grup normal dan grup faktoSub grup normal dan grup fakto
Sub grup normal dan grup fakto
 
Ring faktor dan homomorfisma
Ring faktor dan homomorfismaRing faktor dan homomorfisma
Ring faktor dan homomorfisma
 
Bab ix ruas garis berarah
Bab ix ruas garis berarahBab ix ruas garis berarah
Bab ix ruas garis berarah
 
Grup siklik
Grup siklikGrup siklik
Grup siklik
 
2.pencerminan
2.pencerminan2.pencerminan
2.pencerminan
 
Rangkuman materi Hasilkali Transformasi
Rangkuman materi Hasilkali TransformasiRangkuman materi Hasilkali Transformasi
Rangkuman materi Hasilkali Transformasi
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
 
Semigrup dan monoid
Semigrup dan monoidSemigrup dan monoid
Semigrup dan monoid
 
Ring
RingRing
Ring
 
Modul 2 keterbagian bilangan bulat
Modul 2   keterbagian bilangan bulatModul 2   keterbagian bilangan bulat
Modul 2 keterbagian bilangan bulat
 
Analisis real-lengkap-a1c
Analisis real-lengkap-a1cAnalisis real-lengkap-a1c
Analisis real-lengkap-a1c
 
Makalah transformasi balikan
Makalah transformasi balikanMakalah transformasi balikan
Makalah transformasi balikan
 
Aljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabarAljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabar
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
 
Modul 1 bilangan bulat
Modul 1 bilangan bulatModul 1 bilangan bulat
Modul 1 bilangan bulat
 
Materi ajar-geometri-transformasi
Materi ajar-geometri-transformasiMateri ajar-geometri-transformasi
Materi ajar-geometri-transformasi
 
BAB 1 Transformasi
BAB 1 Transformasi BAB 1 Transformasi
BAB 1 Transformasi
 
Homomorfisma grup
Homomorfisma grupHomomorfisma grup
Homomorfisma grup
 

Similar to Rangkuman materi isometri lanjutan

Catatan irna nuraeni 4.7 some euclidean results concerning triangles
Catatan irna nuraeni 4.7 some euclidean results concerning trianglesCatatan irna nuraeni 4.7 some euclidean results concerning triangles
Catatan irna nuraeni 4.7 some euclidean results concerning triangles
Irna Nuraeni
 
The four pillars of geometry
The four pillars of geometryThe four pillars of geometry
The four pillars of geometry
okto feriana
 
Makalah bab iii
Makalah bab iiiMakalah bab iii
Makalah bab iii
Ririn Skn
 
Geometri (Transformasi)
Geometri (Transformasi)Geometri (Transformasi)
Geometri (Transformasi)
Desy Aryanti
 

Similar to Rangkuman materi isometri lanjutan (20)

adoc.pub_tugas-mata-kuliah-geometri-transformasi.pdf
adoc.pub_tugas-mata-kuliah-geometri-transformasi.pdfadoc.pub_tugas-mata-kuliah-geometri-transformasi.pdf
adoc.pub_tugas-mata-kuliah-geometri-transformasi.pdf
 
3.isometri
3.isometri3.isometri
3.isometri
 
fungsi trigonometri
fungsi trigonometrifungsi trigonometri
fungsi trigonometri
 
Catatan irna nuraeni 4.7 some euclidean results concerning triangles
Catatan irna nuraeni 4.7 some euclidean results concerning trianglesCatatan irna nuraeni 4.7 some euclidean results concerning triangles
Catatan irna nuraeni 4.7 some euclidean results concerning triangles
 
PPT trnsformasi komlit.pptx
PPT trnsformasi komlit.pptxPPT trnsformasi komlit.pptx
PPT trnsformasi komlit.pptx
 
Geometri Netral dan Hiperbolik.pptx
Geometri Netral dan Hiperbolik.pptxGeometri Netral dan Hiperbolik.pptx
Geometri Netral dan Hiperbolik.pptx
 
My netral
My netralMy netral
My netral
 
Materi 1-geo
Materi 1-geoMateri 1-geo
Materi 1-geo
 
The four pillars of geometry
The four pillars of geometryThe four pillars of geometry
The four pillars of geometry
 
Soal
SoalSoal
Soal
 
Geometri hiperbolik bisa.pptx copy11
Geometri hiperbolik bisa.pptx   copy11Geometri hiperbolik bisa.pptx   copy11
Geometri hiperbolik bisa.pptx copy11
 
Bab 1 transformasi
Bab 1   transformasiBab 1   transformasi
Bab 1 transformasi
 
Makalah bab iii
Makalah bab iiiMakalah bab iii
Makalah bab iii
 
himpunan vektor resiprokal dan hasil kali triple
himpunan vektor resiprokal dan hasil kali triple himpunan vektor resiprokal dan hasil kali triple
himpunan vektor resiprokal dan hasil kali triple
 
Un fisika 2004
Un fisika 2004Un fisika 2004
Un fisika 2004
 
Trigonometri
TrigonometriTrigonometri
Trigonometri
 
Remedial Ulangan Harian Geometri Matematika Peminatan
Remedial Ulangan Harian Geometri Matematika Peminatan Remedial Ulangan Harian Geometri Matematika Peminatan
Remedial Ulangan Harian Geometri Matematika Peminatan
 
Geometri (Transformasi)
Geometri (Transformasi)Geometri (Transformasi)
Geometri (Transformasi)
 
TRIGONOMETRI
TRIGONOMETRITRIGONOMETRI
TRIGONOMETRI
 
Geometri netral (Neutral Geometry)
Geometri netral (Neutral Geometry)Geometri netral (Neutral Geometry)
Geometri netral (Neutral Geometry)
 

Recently uploaded

Contoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptxContoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptx
IvvatulAini
 
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptxPPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
MaskuratulMunawaroh
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
JarzaniIsmail
 
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 20241. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
DessyArliani
 
.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx
furqanridha
 
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docxKisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
FitriaSarmida1
 

Recently uploaded (20)

Contoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptxContoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptx
 
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptxOPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
 
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptxPPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
PPT SOSIALISASI PENGELOLAAN KINERJA GURU DAN KS 2024.pptx
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
 
TUGAS RUANG KOLABORASI 1.3 PRAKARSA PERUBAHAN
TUGAS RUANG KOLABORASI 1.3 PRAKARSA PERUBAHANTUGAS RUANG KOLABORASI 1.3 PRAKARSA PERUBAHAN
TUGAS RUANG KOLABORASI 1.3 PRAKARSA PERUBAHAN
 
Konseptual Model Keperawatan Jiwa pada manusia
Konseptual Model Keperawatan Jiwa pada manusiaKonseptual Model Keperawatan Jiwa pada manusia
Konseptual Model Keperawatan Jiwa pada manusia
 
PPT PENDIDIKAN KELAS RANGKAP MODUL 3 KELOMPOK 3.pptx
PPT PENDIDIKAN KELAS RANGKAP MODUL 3 KELOMPOK 3.pptxPPT PENDIDIKAN KELAS RANGKAP MODUL 3 KELOMPOK 3.pptx
PPT PENDIDIKAN KELAS RANGKAP MODUL 3 KELOMPOK 3.pptx
 
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 20241. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
1. Kisi-kisi PAT IPA Kelas 7 Kurmer 2024
 
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
 
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdfMODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 6 KURIKULUM MERDEKA.pdf
 
MODUL AJAR MATEMATIKA KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 3 KURIKULUM MERDEKA.pdfMODUL AJAR MATEMATIKA KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 3 KURIKULUM MERDEKA.pdf
 
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
Aksi Nyata Menyebarkan (Pemahaman Mengapa Kurikulum Perlu Berubah) Oleh Nur A...
 
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdfMODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
 
.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx
 
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdfAksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
 
Prakarsa Perubahan dan kanvas ATAP (1).pptx
Prakarsa Perubahan dan kanvas ATAP (1).pptxPrakarsa Perubahan dan kanvas ATAP (1).pptx
Prakarsa Perubahan dan kanvas ATAP (1).pptx
 
BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
BAHAN PAPARAN UU DESA NOMOR 3 TAHUN 2024
 
Pengenalan Figma, Figma Indtroduction, Figma
Pengenalan Figma, Figma Indtroduction, FigmaPengenalan Figma, Figma Indtroduction, Figma
Pengenalan Figma, Figma Indtroduction, Figma
 
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docxKisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
 
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
 

Rangkuman materi isometri lanjutan

  • 1. 0 RANGKUMAN MATERI, SOAL DAN PEMBAHASAN BAB XIII LANJUTAN ISOMETRI disusun guna melengkapi tugas mata kuliah Geometri Transformasi Dosen pengampu Bapak Ishaq Nuriadin, M.Pd Oleh Niamatus Saadah 1201125122 JURUSAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH PROF DR.HAMKA 2015
  • 2. 1 BAB XIII ISOMETRI LANJUTAN Dalam isometri dasar, terdapat empat jenis isometri yaitu : 1. Reflexi pada garis, 2. Translasi, 3. Rotasi, 4. Reflexi geser. Apabila reflexi geser dikalikan dengan salah satu dari ketiga isometri yang semula atau reflexi geser dikalikan dengan reflexi geser yang lain, maka apakah kita akan memperoleh suatu isometri yang baru ? Contoh kasus: 1. Hasil kali reflexi geser dengan translasi. Andaikan R sebuah reflexi geser dengan sumbu t sehingga R= GABMt dengan AB // t. Andaikan GCD sebuah translasi. Maka GCD R = GCD (GABMt) = (GCD GAB ) Mt Karena hasil kali dari dua translasi adalah translasi, maka ada dua garis berarah EF sehingga GCD GAB = GEF. Dengan demikian maka GCD R = GEF Mt. Apabila EF t, maka GEF Mt adalah suatu reflexi pada sebuah garis yang sejajar dengan t. Apabila EF tidak tegak lurus pada t, maka GEF Mt adalah suatu reflexi geser. Jadi dapat disimpulkan bahwa hasil kali reflexi geser dengan sebuah translasi adalah suatu reflexi atau reflexi geser. 2. Hasil kali reflexi geser dengan reflexi. Misalkan Ms adalah reflexi pada garis s. Misalkan R sebuah reflexi geser. Maka Ms R = Ms (GAB Mt) = Ms (Mt GAB)
  • 3. 2 = (Ms Mt) GAB Apabila s // t, maka Ms Mt sebuah translasi. Jadi (Ms Mt) GAB juga merupakan translasi. Sehingga Ms R juga merupakan translasi. Apabila s tidak sejajar t, Maka Ms Mt sebuah rotasi. Dari teorema reflexi geser, diperoleh Ms R = R Ms juga merupakan rotasi. Jadi dapat disimpulkan bahwa hasil kali reflexi geser dengan reflexi adalah sebuah translasi atau sebuah rotasi. Di atas telah dibicarakan berbagai jenis isometri. Lalu timbul pertanyaan, kalau diketahui dua titik A dan A’, maka ada banyak sekali isometri yang memetakan A pada A’, sebab setiap titik pada sumbu dapat digunakan sebagai pusat – pusat rotasi yang membawa A ke A’. Ada pula translasi GAA’, kecuali itu kalau T titik tengah AA’ maka ST adalah setengah putaran yang memetakan A pada A’. Apabila ada titik – titik A, A’ dan B, B’, dan jika AB = A’B’ maka ada paling sedikit dua isometri yang memetakan A pada A’ dan B pada B’. Bukti : Dipunyai tiga titik yang tak kolinear (A, B, C). Andaikan ada dua isometri T1 dan T2 sehingga, T1(A) = A’ = T2(A) T1(B) = B’ = T2(B) Teorema 13.1.(Teorema Ketunggalan Isometri) Diketahui tiga titik yang tak kolinear yaitu A, B dan C. Jika pada tiga titik lain A’,B’,C’ maka ada paling banyak satu isometri yang memetakan A pada A’, B pada B’, dan C pada C’.
  • 4. 3 T1(C) = C’ = T2(C) Karena T1 dan T2 isometri – isometri, maka AB = A’B’ AC = A’C’ BC = B’C’ Karena A, B, C tak segaris, maka A’, B’, C’ juga tak segaris. Andaikan T1(P) T2(P) dan T1(P) = P’, T2(P) = P’’, Maka PA = P’A’ = P’’A’. Jadi A’ terletak pada sumbu ruas garis . Dengan cara yang serupa, didapat B’, C’ juga terletak pada sumbu . Jadi A’, B’, C’ segaris. Ini tentunya berlawanan dengan sifat bahwa A’, B’, C’ tak segaris. Jadi haruslah T1(P) = T2(P), . Ini berarti T1 = T2. Jadi ada paling banyak satu isometri yang memetakan A pada A’, B pada B’, dan C pada C’ Bahwa tidak selalu ada isometri, dapat kita lihat apabila tidak kongruen dengan . Bukti: Dipunyai sebuah sistem koordinat, dengan titik A = (1,0) , B = (h,k) , P = (x,y) dan s garis melalui titik asal sistem koordinat. Perhatikan gambar berikut Teorema 13.2 (Perluasan Teorema Ketunggalan Isometri). Jka s sebuah garis melalui titik asal sebuah sistem koordinat orthogonal dan jika Ms memetakan A = (1,0) pada B = (h,k) dan P = (x,y) maka Ms(P) = (hx + ky, kx - hy).
  • 5. 4 Andaikan T memetakan P = (x,y) pada titik (hx + ky, kx – hy), T(P) = (hx + ky, kx – hy). Akan dibuktikan bahwa T = Ms. 1. Akan dibuktikan bahwa T sebuah isometri. Andaikan P1= (x1,y1), P2 = (x2,y2) dua titik sebarang, Maka P’1=T(P1) = (hx1 + ky1, kx1 – hy1), dan P’2=T(P2) = (hx2 + ky2, kx2 – hy2). Sehingga, (P’1P’2)2 = [(hx1 + ky1) – (hx2 + ky2)]2 + [(kx1 – hy1) – (kx2 – hy2)]2 = [h(x1- x2) + k(y1– y2)]2 + [k(x1 – x2) – h(y1 – y2)]2 = (h2 + k2 )(x1-x2)2 + (k2 +h2 )(y1-y2)2 Oleh karena itu B = Ms(A) dan Ms(O) = O. Maka OB = OA. Karena OA = 1 dan OB = maka h2 + k2 = 1. Sehingga Jadi T sebuah isometri. 2. Akan dibuktikan T = Ms. Dari uraian di atas, diperoleh : T(O) = (0,0) T(A) = (h,k) T(B) = (h.h + k.k , kh – hk) = (h2 + k2 , 0) = (1,0). s B(h,k) O A(1,0) Gambar 13.1
  • 6. 5 Contoh : Jika O titik asal sebuah sistem koordinat, dan P = (x,y) sebuah titik, tentukan peta P terhadap rotasi . Jawab : Andaikan s sebuah garis melalui O sehingga sudut dari sumbu –x ke garis s adalah 300 . Kita tahu bahwa Ms(1,0) = . Jadi Ms(P) = . Andaikan t adalah sumbu x, maka R0,60 = MsMt. Jadi R0,60(P) = MsMt(P) = Ms(x-y) = . 300 sMs(A) O A(1,0) Gambar 13.2 Teorema 13.3. Himpunan transformasi-transformasi yang terdiri atas translasi, reflexi, rotasi dan reflexi geser adalah tertutup terhadap operasi komposisi (perkalian).
  • 7. 6 Bukti : Dipunyai dua ruas garis dan ruas garis sehingga . Kasus 1 : . Perhatikan gambar berikut: Andaikan dan s sumbu ruas Maka Karena A = C maka Sehingga s melalui A Jadi dan Sehingga adalah isometri lawan Andaikan adalah garis t Maka Dan Jadi adalah isometri langsung. Teorema 13.4. Apabila ada dua ruas garis dan ruas garis sehingga . Maka ada dua isometri yang satu isometri langsung dan yang lain isometri lawan yang memetakan A pada C dan B pada D. A=C B D s t Gambar 13.3
  • 8. 7 Kasus 2 : dan s sumbu Perhatikan gambar berikut: Diperoleh Andaikan maka (gambar 13.4) dan (gambar 13.5) Apabila maka Jadi satu isometri Misalkan = t Maka dan Maka adalah suatu isometri langsung Misalkan dan u sumbu Maka C u karena t A B C B’=D Gambar 13.4 Gambar 13.5 B’ t A B C u D
  • 9. 8 Jadi dan Maka dan Jadi adalah isometri langsung Apabila maka MtMuMs(A) = MtMu(C) = Mt(C) = C Sedangkan MtMuMs(B) = MtMu(B’ ) = Mt(D) = D Jadi MtMuMs isometri lawan Kasus 3 : A= C, B = D Maka jika Diperoleh Ms(A) = C dan Ms(B) = D yaitu isometri lawan Sedangkan I = MsMt adalah isometri langsung Bukti: Andaikan T sebuah isometri dan ada tiga titik (A, B, C) yang tak segaris. Andaikan bahwa T(A) = A’ , T(B) = B’ , T(C) = C’. Karena , maka menurut teorema 13.4, paling sedikit ada dua isometri yang memetekan A pada A’ dan B pada B’ , yaitu suatu isometri langsung L+ dan suatu isometri lawan L-. Dengan L+ adalah hasil kali dua reflexi garis MtMs dan L- adalah refleksi Ms atau hasil kali tiga refleksi garis MtMuMs. Pilih diantara L- dan L+ salah satu yang dapat dinyatakan dengan hasil kali refleksi yang banyaknya paling sedikit. Jika L- = Ms, kita misalkan N = L- dan kita ambil N = L+ jika L- = MtMuMs. Teorema 13.5 : Setiap isometri adalah hasil kali dari paling banyak tiga refleksi garis.
  • 10. 9 Perhatikan gambar berkut: Perhatikan C1 = N(C). Kasus 1. Jika C’ = C1. Maka N memetakan A pada A’, B pada B’ dan C pada C’. Jadi menurut teorema ketunggalan isometri, maka T = N. Kasus 2. Jika C’ C1. Andaikan = v. Oleh karena T dan N adalah isometri, maka AC = A’C’ = A’C, dan BC = B’C’=B’C. Ini berarti bahwa A’ dan B’ sama jauhnya dari ujung – ujung rua garis . Ini berarti bahwa v adalah sumbu , sehingga Mv(C1)=C’. Jadi diperoleh: MvN(A) = MvN(A’) = A’ MvN(B) = MvN(B’) = B’ MvN(C) = MvN(C’) = C’ Dengan menggunakan teorema ketunggalan isometri, maka T = MvN. Dari kasus 1 dan 2, dapat disimpulkan bahwa T = N atau T = MvN. Oleh karena N adalah sebuah refleksi garis atau hasil kali dua refleksi garis, maka T adalah hasil kali dari paling banyak tiga refleksi garis. A C B C’ A’=T(A) B’=T(B) (Gambar 13.6)
  • 11. 10 Akibat: Setiap isometri langsung adalah suatu translasi atau suatu rotasi, sedangkan suatu isometri lawan adalah suatu refleksi atau refleksi geser. Misalnya MsMtMvMwMr adalah suatu refleksi garis atau suatu refleksi geser sedangkan GABMuRA,GCDMt adalah sebuah translasi atau suatu rotasi. Bukti: Menurut teorema ketunggalan isometri, maka hanya terdapat satu isometri. Kita tahu bahwa ada sebuah isometri T yang bersifat T(A) = A’ dan T(B) = B’. Ini disebabkan AB = A’B’. Andaikan C1 = T(C). Jika C1=C’, maka bukti selesai. Jika C1≠ C’, andaikan u = . Karena A’C1 = A’C’ dan B’C1 = B’C’, maka u adalah sumbu C’C1. Jadi Mu(C1) = C’. Dengan demikian diperoleh MuT(A) = MuT(A’) = A’ MuT(B) = MuT(B’) = B’ MuT(C) = MuT(C’) = C’ Dengan demikian telah terbukti adanya suatu isometri yang memetakan A pada A’ ; B pada B’ ; dan C pada C’ , yaitu T atau MuT yang memetakan pada . Teorema 13.6 : Jika ∆𝐴𝐵𝐶 ≅ ∆𝐴′𝐵′𝐶′ maka ada tepat satu isometri yang memetakan A pada A’ ; B pada B’ ; C pada C’.
  • 12. 11 O SOAL - SOAL Soal I. 1. Diketahui XYZABC  , jika isometri T memetakan ABC pada XYZ , lukislah ).(' PTP  Penyelesaian : Perhatikan gambar di samping, Buat XYZABC  dimana T memetakan ABC pada XYZ dengan T merupakan suatu refleksi. Sehingga untuk setiap titik di V berlaku T(P) = MS(P) = P’. Perhatikan gambar di samping, Buat XYZABC  dimana T memetakan ABC pada XYZ dengan T merupakan suatu rotasi. Sehingga untuk setiap titik di V berlaku T(P) = R0, = P’ 2. Diketahui ABC dengan A = (-2,1) B = (-2,-1) dan C = (-3,1); DEF dengan D = (1,0), E = (3,0) dan F = (3,1). T sebuah isometri yang memetakan ABC pada DEF . Jika P = (x,y) tentukan koordinat-koordinat T(P). Penyelesaian : Diketahui : ABC dengan A = (-2,1) B = (-2,-1) dan C = (-3,1) s
  • 13. 12 DEF dengan D = (1,0), E = (3,0) dan F = (3,1) Pilih T1 = R0,90 T2 = GAX dengan titik X = (0,-1) Perhatikan gambar di bawah ini : Karena T1 = R0,90 Diperoleh T1(A) = T1(-2,1) = A’(1,2) T1(B) = T1(-2,-1) = B’(-1,2) T1(C) = T1(-3,1) = C’(1,3) Karena T2 = GAX Diperoleh T2(A’) = T2(1,2) = E(3,0) T2(B’) = T2(-1,2) = D(1,0) T2(C’) = T2(1,3) = F(3,1) Jadi T = T2T1= GAXR0,90 Ambil sembarang P(x,y) maka diperoleh T(x,y) = GAXR0,90(x,y) = GAX(y,-x) = (y+2,-x+2) Jadi koordinat-koordinat titik P(x,y) = P’ = GAX(y,-x) dan P(x,y) = P’’ = (y+2,-x+2)
  • 14. 13 3. Diketahui ABC dengan A = (0,0), B = (2,0) dan C = (2,1) dan XYZ dengan X = (-3,0), Y = (-3,-2) dan Z = (-2,-2). T sebuah isometri yang memetakan ABC pada XYZ . Jika P = (x,y) tentukan koordinat-koordinat T (P). Penyelesaian : Diketahui : ABC dengan A = (0,0) B = (2,0) dan C = (2,1) XYZ dengan D = (-3,0), E = (-3,2) dan F = (-2,2) Pilih T1 = R0,-90 T2 = Mt dengan garis t : x= − 3 2 Perhatikan gambar di bawah ini : Karena T1 = R0,-90 Diperoleh T1(A) = T1(0,0) = A’(0,0) T1(B) = T1(2,0) = B’(0,-2) T1(C) = T1(2,1) = A’(-1,-2) Karena T2 = Mt Diperoleh T2(A’) = T2(0,0) = X(-3,0) T2(B’) = T2(0,-2) = Y(-3,-2) T2(C’) = T2(-1,-2) = Z(-2,-2)
  • 15. 14 Jadi T = T2T1= MtR0,-90 Ambil sembarang P(x,y) maka diperoleh T(x,y) = MtR0,-90 (x,y) = Mt (-y,-x) = (2k+y,-x) Jadi koordinat-koordinat titik P(x,y) = P’ = Mt (-y,-x) dan P(x,y) = P’’ = (2k+y,-x). 4. a) Suatu padanan T ditentukan oleh persamaan T[(x,y)] = (2x+y, -x+2y). Apakah T sebuah refleksi? b) Putaran ,0R memetakan titik P = (x,y) pada titik (hx – ky),kx + hy). Tentukanlah .)]([ 1 ,0  PR  Penyelesaian : 1. Diketahui : Suatu padanan T dengan T[(x,y)] = (2x+y,-x+2y). Perhatikan gambar berikut: Pilih titik A = (1,0) ; B = (3,0). Jelas AB = 2 satuan Diperoleh T(A) = T[(1,0)] = (2.1+ 0,-1+2.0) = (2,-1) T(B) = T[(3,0)] = (2.3+ 0,-3+2.0) = (6,-3)
  • 16. 15 Jelas T(A) = A’ = (2,-1) T(B) = B’ = (6,-3) Sehingga 𝐴′ 𝐵′ = √(𝑥1−𝑥2)2 + (𝑦1 − 𝑦2)2 = √(2 − 6)2 − (−1 + 3)2 = √12 Jadi AB ≠ A’B’ Karena refleksi merupakan suatu isometri dan salah satu sifat dari isometri adalah mengawetkan jarak. Maka refleksi juga harus bersifat mengawetkan jarak. Karena AB ≠ A’B’, maka padanan T bukan merupakan refleksi. 1. Penyelesaian : Diketahui : ,0R memetakan titik P = (x,y) pada titik (hx – ky),kx + hy). Ini berarti x’ = x cos  - y sin  = xh – yk. Y’ = x sin  + y cos  = xk + yh. Sehingga cos  = h dan sin  = k Sedangkan untuk - , maka cos (-) = h dan sin (-) = -k . Jelas bahwa [Ro,(P)]’. [Ro,(P)]=1  [Ro,(P)] = [Ro,(P)]-1 Jadi [Ro,(P)] = (xh+yk,-xk+yh) 2. Andaikan s sebuah garis melalui O = (0,0) dan  besarnya sudut dari sumbu-x ke garis s. Andaikan P = (x,y). Tentukan )(PMs apabila a) 0 5,22 ; b) 0 135 ; c) 0 15 Penyelesaian : 1. x' = x cos 22,50 - y sin 22,50 = 0,923 x – 0,38 y y' = x sin 22,50 + y cos 22,50 = 0,38 x + 0,923 y
  • 17. 16 2. x' = x cos 1350 - y sin 1350 = 0,202 x – 0,707 y y' = x sin 1350 + y cos 1350 =0,707 x + 0,202 y 3. x' = x cos (-150 ) - y sin (-150 ) = 0,966 x – 0,259 y y' = x sin (-150 ) + y cos (-150 ) =0,259 x + 0,966 y Soal II. 1. Jika AB = CD, maka ada isometri langsung L yang memetakan A pada C dan B pada D. Lukislah garis-garis s dan t sehingga ts MML  Penyelesaian: Buatlah sebuah ruas garis (AB) . Kemudian refleksikan AB terhadap garis t lalu refleksikan lagi terhadap garis s, Perhatikan gambar berikut: sehingga diperoleh MsMt (A) = Ms(A’) = A’’ = C MsMt (B) = Ms(B’) = B’’ = D Jadi MsMt merupakan suatu isometri langsung L+. 2. Jika EF = GH maka ada isometri lawan T yang memetakan E pada G dan F pada H. Jika EF sejajar dengan GH . Lukislah garis-garis s, t dan u sehingga T = Apakah penyelesaian itu tunggal? A’A B B’ A’’=C B’’=D st
  • 18. 17 Penyelesaian: Diketahui: - EF = GH - EF // GH - T(E) = G dan T(F) = H Perhatikan gambar berikut: Diperoleh T(E) = MsMtMu(E) = MsMt (E) = Ms(H) = G T(F) = MsMtMu(F) = MsMt (G) = Ms(G) = H Jelas bahwa T= MsMtMu, dengan T memetakan E pada G dan F pada H. Jadi pemilihan garis s,t,u pada gambar di atas merupakan penyelesaian. Akan dibuktikan bahwa ada isometri lain yang memetakan E pada G dan F pada H. Perhatikan gambar berikut: Diperoleh T(E) = MsMtMu(E) = MsMt (E) = Ms(G) = G T(F) = MsMtMu(F) = MsMt (F) = Ms(H)
  • 19. 18 = H Sehingga pemilihan garis s, t, u di atas juga merupakan penyelesaian. Jadi Penyelesaian untuk masalah di atas tidak tunggal. 1. Diketahui ruas-ruas garis yang kongruen , dan ; A = (3,-1), B = (6,-1), C = (-1,2), D = (-1,5), E = , F = (a,b) sedangkan melalui titik asal O = (0,0). F di kuadran pertama. Jika P = (x,y). a) Tentukan sebuah isometri langsung yang memetakan A pada C dan B pada D. Tentukan pula T(P). b) Tentukan pula isometri lawan yang memetakan A pada D dan B pada C. Tentukan pula T(P). Penyelesaian: Perhatikan gambar berikut 1. Pilih T=R0,90GAX , dengan X=(2,-1) Diperoleh T(A) = R0,90GAX (A) = R0,90GAX [(3,-1)] = R0,90(2,-1) = (-1,2) = C
  • 20. 19 Dan, T(B) = R0,90GAX (B) = R0,90GAX [(6,-1)] = R0,90(5,-1) = (-1,5) = D Jadi isometri langsung T=R0,90GAX memetakan A pada C dan B pada D. 2. Pilih T=R0,90GAXMs , dengan X=(2,-1) dan garis s: Diperoleh T(A) = R0,90GAX Ms (A) = R0,90GAX Ms [(3,-1)] = R0,90 GAX (6,-1) = R0,90 (5,-1) = (-1,5) = D Dan, Diperoleh T(B) = R0,90GAX Ms (A) = R0,90GAX Ms [(6,-1)] = R0,90 GAX (3,-1) = R0,90 (2,-1) = (-1,2) = C Jadi isometri langsung T=R0,90GAX Ms memetakan A pada D dan B pada C 3. Diketahui dan yang sama kaki dengan , dan  sedangkan garis tinggi yang melalui D membuat sudut 0 45 dengan garis tinggi yang melalui A. Sebutlah isometri-isometri yang memetakan pada . Nyatakanlah isometri- isometri ini sebagai hasil kali rotasi-rotasi, translasi-translasi atau reflexi-reflexi.
  • 21. 20 Penyelesaian: Diketahui: - dan yang sama kaki - , dan  - garis tinggi yang melalui D membuat sudut 0 45 dengan garis tinggi yang melalui A. Perhatikan gambar berikut: Jelas bahwa isometri yang dapat memetakan pada adalah T = R0,22,5R0,22,5 4. Diketahui ABCD sebuah bujursangkar. Sebutkanlah semua isometri yang memetakan ABCD pada dirinya sendiri. Penyelesaian: Perhatikan gambar berikut: Diperoleh MsMs (A) = Ms(A’) = A’’ = A MsMs (B) = Ms(B’) = B’’ = B A=A’’ B=B’’ D=D’’ C=C’’ B’ A’ C’ D’ s
  • 22. 21 MsMs (C) = Ms(C’) = C’’ = C MsMs (D) = Ms(D’) = D’’ = D Jadi Bujur sangkar ABCD dengan isometri dua kali refleksi terhadap satu garis yang sama akan memetakan pada dirinya sendiri. Diperoleh SNSN (A) = SN(A’) = A’’ = A SNSN (B) = SN(B’) = B’’ = B SNSN (C) = SN(C’) = C’’ = C SNSN (D) = SN(D’) = D’’ = D Jadi Bujur sangkar ABCD dengan isometri dua kali setengah putaran terhadap satu pusat yang sama maka akan memetakan pada dirinya sendiri. A=A’’ B=B’’ D=D’’ C=C’’ B’ A’ C’ D’ s t A=A’ B=B’ D=D’ C=C’ xO N
  • 23. 22 Diperoleh Ro,360 (A) = A’ = A Ro,360 (B) = B’ = B Ro,360 (C) = C’ = C Ro,360 (D) = D’ = D Jadi Bujur sangkar ABCD dengan isometri sebuah rotasi terhadap pusat koordinat O dengan sudut 360o maka akan memetakan pada dirinya sendiri. Jadi, Isometri – isometri yang memetakan ABCD pada dirinya sendiri adalah 2 kali refleksi pada garis yang sama, dua kali setengah putaran dan rotasi 3600 .