Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
See 2020 update: https://derwen.ai/s/h88s
SF Python Meetup, 2017-02-08
https://www.meetup.com/sfpython/events/237153246/
PyTextRank is a pure Python open source implementation of *TextRank*, based on the [Mihalcea 2004 paper](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) -- a graph algorithm which produces ranked keyphrases from texts. Keyphrases generally more useful than simple keyword extraction. PyTextRank integrates use of `TextBlob` and `SpaCy` for NLP analysis of texts, including full parse, named entity extraction, etc. It also produces auto-summarization of texts, making use of an approximation algorithm, `MinHash`, for better performance at scale. Overall, the package is intended to complement machine learning approaches -- specifically deep learning used for custom search and recommendations -- by developing better feature vectors from raw texts. This package is in production use at O'Reilly Media for text analytics.
Login to see the comments