SlideShare a Scribd company logo
1 of 9
Download to read offline
FunciΓ³n Beta
1

𝑑 π‘₯βˆ’1 (1 βˆ’ 𝑑) π‘¦βˆ’1 𝑑𝑑 ;

𝛽 π‘₯, 𝑦 =

π‘₯>0

𝑦>0

0

Si hacemos 𝑑 = 𝑠𝑒𝑛2 πœƒ

𝑑𝑑 = 2 𝑠𝑒𝑛 πœƒ cos πœƒ π‘‘πœƒ

Si reemplazamos limites 𝑑 = 0 β†’ πœƒ = 0

𝑑=1 β†’ πœƒ=

πœ‹
2

Reemplazamos
πœ‹
2

𝛽 π‘₯, 𝑦 = 2

(𝑠𝑒𝑛2 πœƒ) π‘₯βˆ’1 1 βˆ’ 𝑠𝑒𝑛2

π‘¦βˆ’1

𝑠𝑒𝑛 πœƒ cos πœƒ π‘‘πœƒ

0
πœ‹
2

𝛽 π‘₯, 𝑦 = 2

𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ

0
πœ‹
2

1
𝛽 π‘₯, 𝑦 =
2

𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ

0

Si hacemos
𝑑=

1
1+ 𝑒

𝑑𝑒
1+ 𝑒

𝑑𝑑 =

0

𝛽 π‘₯, 𝑦 = βˆ’
∞
∞

𝛽 π‘₯, 𝑦 =
0
∞

𝛽 π‘₯, 𝑦 =
0

2

𝑠𝑖 𝑑 = 0 β†’ 𝑒 = ∞

1
1+ 𝑒

π‘₯βˆ’1

𝑦 𝑠𝑖

1
1βˆ’
1+ 𝑒

𝑑=1β†’0=0

π‘¦βˆ’1

1
1+ 𝑒

π‘₯βˆ’1

1
1+ 𝑒

𝑒 𝑦 βˆ’1
𝑑𝑒
βˆ—
βˆ—
π‘₯βˆ’1
1 + 𝑒 π‘¦βˆ’1 1 + 𝑒

1+ π‘’βˆ’1
1+ 𝑒

𝑒 𝑦 βˆ’1 𝑑𝑒
𝛽 π‘₯, 𝑦 =
1 + 𝑒 π‘₯βˆ’1+π‘¦βˆ’1+2
𝑒 π‘¦βˆ’1 𝑑𝑒
𝛽 π‘₯, 𝑦 =
1 + 𝑒 π‘₯+𝑦

π‘¦βˆ’1

𝑑𝑒
1+ 𝑒

𝑑𝑒
1+ 𝑒
2

2

2
Teorema

𝛽 π‘₯, 𝑦 =

Ξ“xΞ“y
;
Ξ“ x+y

π‘₯>0

𝑦>0

Ejemplo
πœ‹
2

tan πœƒ π‘‘πœƒ

0
πœ‹/2
0

𝑠𝑒𝑛 πœƒ
cos πœƒ

1/2

π‘‘πœƒ

πœ‹/2

𝑠𝑒𝑛 1/2 πœƒ π‘π‘œπ‘  βˆ’1/2 πœƒ π‘‘πœƒ
0

Comparando

1
𝛽 π‘₯, 𝑦 =
2
2π‘₯ βˆ’ 1 =

1
2

2𝑦 βˆ’ 1 = βˆ’

πœ‹
2

𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ

0

β†’ 2π‘₯ =
1
2

1
3
+ 1 β†’ 2π‘₯ =
2
2

β†’ 2𝑦 = βˆ’

β†’

1
1
+ 1 β†’ 2𝑦 =
2
2

𝒙=

πŸ‘
πŸ’

β†’

Si aplicamos el teorema

=

1
βˆ—
2

1
= βˆ—
2

Ξ“ 3 βˆ—Ξ“ 1
4
4
Ξ“ 3+1
4 4
Ξ“ 3 βˆ—Ξ“ 1
4
4
4
; π‘π‘œπ‘šπ‘œ Ξ“
=Ξ“ 1 =1
4
4
Ξ“
4

π’š=

𝟏
πŸ’
1
3
1
= βˆ— Ξ“
βˆ— Ξ“
2
4
4
=

1
1
1
βˆ— Ξ“
βˆ— Ξ“ 1βˆ’
2
4
4

Aplicamos teorema de gamma

=

1
Ο€
βˆ—
Ο€
2
sen
4

=

1
2

=

πœ‹
2
2
πœ‹
2

∞ π‘₯ 𝑝 βˆ’1
0 1+π‘₯

Resolver

𝑑π‘₯

Por definiciΓ³n

𝛽 π‘₯, 𝑦 =

𝑒 𝑦 βˆ’1

𝑑𝑒

1+𝑒

π‘₯ +𝑦

Comparando
y-1=p-1
x+y=1
y=p
x=1–p
Reemplazamos
∞
0

π‘₯ π‘βˆ’1
𝑑π‘₯ = 𝛽 1 βˆ’ 𝑝, 𝑝
1+ π‘₯

= 𝛽 𝑝, 1 βˆ’ 𝑝
=

Ξ“ p Ξ“ 1βˆ’p
Ξ“ p+1βˆ’p

= Ξ“ p Ξ“ 1βˆ’p
Aplicamos teorema de gamma
=

πœ‹
𝑠𝑒𝑛 π‘πœ‹

Resolver
∞
βˆ’βˆž

𝑒 2π‘₯
𝑒 3π‘₯ + 1

2

𝑑π‘₯

𝑒 = 𝑒 3π‘₯ β†’ ln 𝑒 = ln 𝑒 3π‘₯ β†’ ln 𝑒 = 3π‘₯
π‘₯=

1
ln 𝑒 β†’
3

1 𝑑𝑒
3 𝑑π‘₯

𝑑π‘₯ =

Evaluamos los lΓ­mites
Cuando π‘₯ = ∞ β†’

∞
0

1
=
3

𝑒=∞

1
2βˆ— ln 𝑒
𝑒 3

𝑒+1

1 𝑑𝑒
3 𝑒

2
𝑒 3 ln 𝑒

∞
0

βˆ—
2

𝑦 π‘₯ = βˆ’βˆž β†’

𝑒 𝑒+1

2

𝑑𝑒

Por propiedades de euler y logaritmos

1
=
3
1
=
3

∞
0
∞
0

2
𝑒3

βˆ— π‘’βˆ’1
𝑑𝑒
𝑒+1 2
βˆ’1
𝑒3

𝑒+1

2

𝑑𝑒

𝑒=0
Si comparamos con

π‘¦βˆ’1= βˆ’

1
3

𝛽 π‘₯, 𝑦 =

β†’

Reemplazamos
1
4 2
𝛽
,
3
3 3
4
2
1 Ξ“ 3 Ξ“ 3
= βˆ—
4 2
3
Ξ“ 3+3
1
1
2
Ξ“ 3 Ξ“ 3
1
= βˆ— 3
6
3
Ξ“ 3
1
2
1 Ξ“ 3 Ξ“ 3
= βˆ—
9
Ξ“(2)
Ξ“ 2 = 1!
1
1
2
βˆ—Ξ“
Ξ“
9
3
3

=

1
1
1
βˆ—Ξ“
Ξ“ 1βˆ’
9
3
3

Aplicamos teorema de gamma
=

=

=

1
Ο€
βˆ—
9 sen Ο€
3
1 Ο€
βˆ—
9
3
2
2 Ο€
βˆ—
9
3

2
3

𝑑𝑒

1+𝑒 π‘₯ +𝑦

𝑦= βˆ’

π‘₯+ 𝑦 =2 β†’ π‘₯ =2βˆ’

=

𝑒 𝑦 βˆ’1

1
𝟐
+1β†’ π’š=
3
πŸ‘

β†’ 𝒙=

πŸ’
πŸ‘
Resolver
3

𝑑π‘₯
π‘₯βˆ’1

1
3

3βˆ’ π‘₯

1
βˆ’
2

π‘₯βˆ’1

3βˆ’ π‘₯

1
βˆ’
2

𝑑π‘₯

1

Sea x – 1 = 2y οƒ  x = 2y+1 οƒ  dx = 2dy
Cuando x = 1 y = 0
1

=

1
βˆ’
2

2𝑦

cuando x=3 y=1
1
βˆ’
2

3 βˆ’ 2𝑦 + 1

2𝑑𝑦

0
1

=2

1
βˆ’
2

2

1
(𝑦)βˆ’2

3 βˆ’ 2𝑦 + 1

1
βˆ’
2

𝑑𝑦

0

=

=

=

=

1

2
2

1

1

1

𝑦 βˆ’2 2 βˆ’ 2𝑦
1
βˆ’
𝑦 2

1

1
βˆ’
2

2 1βˆ’ 𝑦

1

1

𝑦 βˆ’2 2βˆ’2

𝑑𝑦

1
βˆ’
2

𝑑𝑦

1βˆ’ 𝑦

1
βˆ’
2

𝑑𝑦

0
1

2

=

𝑑𝑦

0

2
2

3 βˆ’ 2𝑦 βˆ’ 1

0

2
2

1
βˆ’
2

0

2
2

1
βˆ’
𝑦 2

𝑦 βˆ’ 1/2 (1 βˆ’ 𝑦)βˆ’ 1/2 𝑑𝑦

2 2

0

οƒ x=Β½

Sea x - 1 = - Β½

y – 1 = - Β½ οƒ  y= Β½

Luego

𝛽
=
= πœ‹

1 1

,

2 2

πœ‹βˆ—

πœ‹
Rta

1

=

1

Ξ“ 2 Ξ“ 2
1 1
Ξ“ 2 +2

1

1

Ξ“ 2 Ξ“ 2
οƒ 
Ξ“(1)

οƒ 

Ξ“

1
2

Ξ“

1
2
Ejercicio especial
Resolver
1

π‘₯

π‘š βˆ’1

1 βˆ’ π‘₯ π‘›βˆ’1
𝑑π‘₯
π‘₯ + π‘Ÿ π‘š +𝑛

0
π‘Ÿ+1 π‘₯

𝑦=

Sugerencia

π‘Ÿ+π‘₯

𝑦 π‘Ÿ+ π‘₯ = π‘Ÿ+1 π‘₯

Derivada de un cociente

π‘¦π‘Ÿ + 𝑦π‘₯ = π‘Ÿ + 1 π‘₯

π‘Ÿ(π‘Ÿ + 1 βˆ’ 𝑦) βˆ’ π‘¦π‘Ÿ(βˆ’1)

π‘¦π‘Ÿ = π‘Ÿ + 1 π‘₯ βˆ’ 𝑦π‘₯

π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 + π‘¦π‘Ÿ

π‘¦π‘Ÿ = π‘Ÿ + 1 βˆ’ 𝑦 π‘₯

π‘Ÿ 2 + π‘Ÿ βˆ’ π‘¦π‘Ÿ + π‘¦π‘Ÿ

π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦

π‘Ÿ2 + π‘Ÿ

π‘₯=

𝑑π‘₯ =

π‘Ÿ(π‘Ÿ + 1)

π‘Ÿ π‘Ÿ + 1 𝑑𝑦
π‘Ÿ+1βˆ’ 𝑦 2
𝑠𝑖 π‘₯ = 0 β†’ 𝑦 = 0

Reemplazamos

1

π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦

0

1
0

1
0

1βˆ’

π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦

π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦+ π‘Ÿ

0

1

π‘š βˆ’1

𝑠𝑖 π‘₯ = 1
π‘›βˆ’1

π‘Ÿ π‘Ÿ+1
π‘Ÿ+1βˆ’ 𝑦

π‘š +𝑛

π‘¦π‘Ÿ π‘š βˆ’1
π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦
π‘Ÿ + 1 βˆ’ 𝑦 π‘š βˆ’1
π‘š +𝑛
π‘¦π‘Ÿ + π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦
π‘Ÿ+1βˆ’ 𝑦

1=
𝑑𝑦

2

π‘Ÿ + 1 βˆ’ 𝑦 = π‘¦π‘Ÿ
π‘Ÿ + 1 = π‘¦π‘Ÿ + 𝑦

π‘›βˆ’1

π‘Ÿ π‘Ÿ+1
π‘Ÿ+1βˆ’ 𝑦

2

𝑑𝑦

π‘¦π‘Ÿ π‘š βˆ’1
π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1
π‘š βˆ’1
π‘Ÿ(π‘Ÿ + 1)
π‘Ÿ+1βˆ’ 𝑦
π‘Ÿ + 1 βˆ’ 𝑦 π‘›βˆ’1
𝑑𝑦
2 + π‘Ÿ βˆ’ π‘¦π‘Ÿ π‘š +𝑛
π‘¦π‘Ÿ + π‘Ÿ
(π‘Ÿ + 1 βˆ’ 𝑦)2
π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛
π‘¦π‘Ÿ

π‘š βˆ’1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘Ÿ 2 + π‘Ÿ
π‘Ÿ + 1 βˆ’ 𝑦 π‘š βˆ’1+π‘›βˆ’1+2
π‘Ÿ 2 + π‘Ÿ π‘š +𝑛
π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛

π‘¦π‘Ÿ
π‘Ÿ+1βˆ’ 𝑦

𝑑𝑦

π‘Ÿ+1= 𝑦 π‘Ÿ+1
π‘Ÿ+1
= 𝑦
π‘Ÿ+1
1= 𝑦
π‘¦π‘Ÿ

1

π‘š βˆ’1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1
π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛
π‘Ÿ 2 + π‘Ÿ π‘š +𝑛
π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛

0

1

π‘¦π‘Ÿ

π‘š βˆ’1

π‘¦π‘Ÿ

π‘š βˆ’1

π‘¦π‘Ÿ

π‘š βˆ’1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
π‘Ÿ 2 + π‘Ÿ π‘š +𝑛

0
1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
2 + π‘Ÿ π‘š +π‘›βˆ’1
π‘Ÿ

0
1

𝑦

π‘š βˆ’1

𝑦

π‘Ÿ

π‘š βˆ’1

π‘Ÿ

π‘šβˆ’1

π‘Ÿ

π‘š +π‘›βˆ’1

1

𝑦

βˆ—

π‘Ÿ

π‘š βˆ’1

π‘Ÿ

0

𝑛

=

π‘Ÿ

π‘š +𝑛

𝑑𝑦

π‘š +𝑛

𝑑𝑦

π‘›βˆ’1

𝑑𝑦

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
π‘Ÿ + 1 π‘š +π‘›βˆ’1

βˆ’π‘š +1

π‘Ÿ+1βˆ’ 𝑦

π‘Ÿ2 + π‘Ÿ

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
π‘Ÿ π‘Ÿ + 1 π‘š +π‘›βˆ’1

π‘š +π‘›βˆ’1

π‘Ÿ

0

π‘›βˆ’1

π‘šβˆ’1

0
1

𝑑𝑦

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘Ÿ 2 + π‘Ÿ
π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 π‘Ÿ 2 + π‘Ÿ

0
1

π‘Ÿ2 + π‘Ÿ

π‘›βˆ’1

𝑑𝑦
π‘›βˆ’1

𝑑𝑦

π‘š +π‘›βˆ’1βˆ’π‘š +1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ
π‘Ÿ + 1 π‘š +π‘›βˆ’1

=

𝑛

π‘Ÿ

π‘›βˆ’1

𝑑𝑦

Como m, n, r son constantes son sacadas de la integral

π‘Ÿ

𝑛

1
π‘Ÿ+1

1

𝑦

π‘š +π‘›βˆ’1

π‘š βˆ’1

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ

π‘›βˆ’1

𝑑𝑦

0

π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ = π‘Ÿ + 1 βˆ’ 𝑦(1 + π‘Ÿ)
= π‘Ÿ + 1 (1 βˆ’ 𝑦)
Nos queda entonces

π‘Ÿ

π‘Ÿ

π‘Ÿ

𝑛

𝑛

𝑛

1
π‘Ÿ+1

1

𝑦

π‘š βˆ’1

π‘Ÿ+1

π‘›βˆ’1

1

1βˆ’ 𝑦

π‘›βˆ’1

0

1
π‘š

𝑦
0

(1 βˆ’ 𝑦) π‘›βˆ’1 𝑑𝑦

0

π‘Ÿ + 1 π‘›βˆ’1
π‘Ÿ + 1 π‘š +π‘›βˆ’1
1
π‘Ÿ+1

π‘š βˆ’1

𝑦

π‘š +π‘›βˆ’1

π‘š βˆ’1

(1 βˆ’ 𝑦) π‘›βˆ’1 𝑑𝑦

𝑑𝑦
Si comparamos con
1

𝑑 π‘₯βˆ’1 1 βˆ’ 𝑑

𝛽 π‘₯, 𝑦 =
0

π‘₯βˆ’1= π‘šβˆ’1 β†’ π‘₯ = π‘š
π‘¦βˆ’1= π‘›βˆ’1 β†’ 𝑦 = 𝑛
Reemplazamos los nuevos valores

=

1
π‘Ÿ

𝑛

π‘Ÿ+1 π‘š

𝛽(π‘š, 𝑛)

… Rta

𝑦 βˆ’1

𝑑𝑑 ;

π‘₯>0

𝑦>0

More Related Content

What's hot

Editando ecuaciones en Word
Editando ecuaciones en WordEditando ecuaciones en Word
Editando ecuaciones en Word
Cyn_008
Β 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
Lara Sati
Β 
Examen 4 unidad matematicas integrales
Examen 4 unidad matematicas   integralesExamen 4 unidad matematicas   integrales
Examen 4 unidad matematicas integrales
Martin Garcia
Β 

What's hot (19)

Editando ecuaciones en Word
Editando ecuaciones en WordEditando ecuaciones en Word
Editando ecuaciones en Word
Β 
νšŒκ·€λͺ¨λΈμ˜ μ’…λ₯˜μ™€ νŠΉμ§•
νšŒκ·€λͺ¨λΈμ˜ μ’…λ₯˜μ™€ νŠΉμ§•νšŒκ·€λͺ¨λΈμ˜ μ’…λ₯˜μ™€ νŠΉμ§•
νšŒκ·€λͺ¨λΈμ˜ μ’…λ₯˜μ™€ νŠΉμ§•
Β 
Euler's function
Euler's functionEuler's function
Euler's function
Β 
Taller 11Β° maths_integrales_indf_p4_2015
Taller 11Β° maths_integrales_indf_p4_2015Taller 11Β° maths_integrales_indf_p4_2015
Taller 11Β° maths_integrales_indf_p4_2015
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
GuΓ­a ejercicios
GuΓ­a ejerciciosGuΓ­a ejercicios
GuΓ­a ejercicios
Β 
La recta
La rectaLa recta
La recta
Β 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
Β 
Examen 4 unidad matematicas integrales
Examen 4 unidad matematicas   integralesExamen 4 unidad matematicas   integrales
Examen 4 unidad matematicas integrales
Β 
Aplikasi analisis
Aplikasi analisisAplikasi analisis
Aplikasi analisis
Β 
Parcial ii analisis numerico
Parcial ii analisis numericoParcial ii analisis numerico
Parcial ii analisis numerico
Β 
Transformada de Laplace
Transformada de LaplaceTransformada de Laplace
Transformada de Laplace
Β 
Tugas matematika kalkulus
Tugas matematika kalkulusTugas matematika kalkulus
Tugas matematika kalkulus
Β 
Demostrar el determinante
Demostrar el determinanteDemostrar el determinante
Demostrar el determinante
Β 
Font Design with Progressive invariant GAN
Font Design with Progressive invariant GANFont Design with Progressive invariant GAN
Font Design with Progressive invariant GAN
Β 

Viewers also liked

PresentaciΓ³ Judit GrΓ cia
PresentaciΓ³ Judit GrΓ ciaPresentaciΓ³ Judit GrΓ cia
PresentaciΓ³ Judit GrΓ cia
Sagrada FamΓ­lia
Β 
The Host
The HostThe Host
The Host
JCMHawke
Β 
Llargs i negres 1 r premi pili garcia
Llargs i negres 1 r premi pili garciaLlargs i negres 1 r premi pili garcia
Llargs i negres 1 r premi pili garcia
Biblioteca Almenar
Β 

Viewers also liked (20)

Pressupost 2010
Pressupost 2010Pressupost 2010
Pressupost 2010
Β 
Surat al mulk
Surat al mulkSurat al mulk
Surat al mulk
Β 
felicitat
 felicitat felicitat
felicitat
Β 
PresentaciΓ³ Judit GrΓ cia
PresentaciΓ³ Judit GrΓ ciaPresentaciΓ³ Judit GrΓ cia
PresentaciΓ³ Judit GrΓ cia
Β 
Presentacio 1 Aleix
Presentacio 1 AleixPresentacio 1 Aleix
Presentacio 1 Aleix
Β 
The Host
The HostThe Host
The Host
Β 
Real Estate Institute of Canada - June 2013
Real Estate Institute of Canada - June 2013Real Estate Institute of Canada - June 2013
Real Estate Institute of Canada - June 2013
Β 
Llargs i negres 1 r premi pili garcia
Llargs i negres 1 r premi pili garciaLlargs i negres 1 r premi pili garcia
Llargs i negres 1 r premi pili garcia
Β 
Top 5 issues niagara niagara business club - 2015
Top 5 issues niagara   niagara business club - 2015Top 5 issues niagara   niagara business club - 2015
Top 5 issues niagara niagara business club - 2015
Β 
Gotl Slide Show
Gotl Slide ShowGotl Slide Show
Gotl Slide Show
Β 
Consumer Awareness
Consumer AwarenessConsumer Awareness
Consumer Awareness
Β 
Presentacio Paes Igualada
Presentacio Paes IgualadaPresentacio Paes Igualada
Presentacio Paes Igualada
Β 
Novetats novelΒ·la estiu
Novetats novelΒ·la estiuNovetats novelΒ·la estiu
Novetats novelΒ·la estiu
Β 
Ecstasies
EcstasiesEcstasies
Ecstasies
Β 
clorinda
clorindaclorinda
clorinda
Β 
HBT-landstinget stockholm
HBT-landstinget stockholmHBT-landstinget stockholm
HBT-landstinget stockholm
Β 
Leading Today's Teams - Cultivating a culture that embraces change - Ontario ...
Leading Today's Teams - Cultivating a culture that embraces change - Ontario ...Leading Today's Teams - Cultivating a culture that embraces change - Ontario ...
Leading Today's Teams - Cultivating a culture that embraces change - Ontario ...
Β 
Buying A Home
Buying A HomeBuying A Home
Buying A Home
Β 
Super Typhoon Haiyan update 9 November 2013
Super Typhoon Haiyan update 9 November 2013Super Typhoon Haiyan update 9 November 2013
Super Typhoon Haiyan update 9 November 2013
Β 
Snow Tsunami Temporarily Spares Northeastern USA 25 January 2015
Snow Tsunami Temporarily Spares Northeastern USA 25 January 2015Snow Tsunami Temporarily Spares Northeastern USA 25 January 2015
Snow Tsunami Temporarily Spares Northeastern USA 25 January 2015
Β 

Betta

  • 1. FunciΓ³n Beta 1 𝑑 π‘₯βˆ’1 (1 βˆ’ 𝑑) π‘¦βˆ’1 𝑑𝑑 ; 𝛽 π‘₯, 𝑦 = π‘₯>0 𝑦>0 0 Si hacemos 𝑑 = 𝑠𝑒𝑛2 πœƒ 𝑑𝑑 = 2 𝑠𝑒𝑛 πœƒ cos πœƒ π‘‘πœƒ Si reemplazamos limites 𝑑 = 0 β†’ πœƒ = 0 𝑑=1 β†’ πœƒ= πœ‹ 2 Reemplazamos πœ‹ 2 𝛽 π‘₯, 𝑦 = 2 (𝑠𝑒𝑛2 πœƒ) π‘₯βˆ’1 1 βˆ’ 𝑠𝑒𝑛2 π‘¦βˆ’1 𝑠𝑒𝑛 πœƒ cos πœƒ π‘‘πœƒ 0 πœ‹ 2 𝛽 π‘₯, 𝑦 = 2 𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ 0 πœ‹ 2 1 𝛽 π‘₯, 𝑦 = 2 𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ 0 Si hacemos 𝑑= 1 1+ 𝑒 𝑑𝑒 1+ 𝑒 𝑑𝑑 = 0 𝛽 π‘₯, 𝑦 = βˆ’ ∞ ∞ 𝛽 π‘₯, 𝑦 = 0 ∞ 𝛽 π‘₯, 𝑦 = 0 2 𝑠𝑖 𝑑 = 0 β†’ 𝑒 = ∞ 1 1+ 𝑒 π‘₯βˆ’1 𝑦 𝑠𝑖 1 1βˆ’ 1+ 𝑒 𝑑=1β†’0=0 π‘¦βˆ’1 1 1+ 𝑒 π‘₯βˆ’1 1 1+ 𝑒 𝑒 𝑦 βˆ’1 𝑑𝑒 βˆ— βˆ— π‘₯βˆ’1 1 + 𝑒 π‘¦βˆ’1 1 + 𝑒 1+ π‘’βˆ’1 1+ 𝑒 𝑒 𝑦 βˆ’1 𝑑𝑒 𝛽 π‘₯, 𝑦 = 1 + 𝑒 π‘₯βˆ’1+π‘¦βˆ’1+2 𝑒 π‘¦βˆ’1 𝑑𝑒 𝛽 π‘₯, 𝑦 = 1 + 𝑒 π‘₯+𝑦 π‘¦βˆ’1 𝑑𝑒 1+ 𝑒 𝑑𝑒 1+ 𝑒 2 2 2
  • 2. Teorema 𝛽 π‘₯, 𝑦 = Ξ“xΞ“y ; Ξ“ x+y π‘₯>0 𝑦>0 Ejemplo πœ‹ 2 tan πœƒ π‘‘πœƒ 0 πœ‹/2 0 𝑠𝑒𝑛 πœƒ cos πœƒ 1/2 π‘‘πœƒ πœ‹/2 𝑠𝑒𝑛 1/2 πœƒ π‘π‘œπ‘  βˆ’1/2 πœƒ π‘‘πœƒ 0 Comparando 1 𝛽 π‘₯, 𝑦 = 2 2π‘₯ βˆ’ 1 = 1 2 2𝑦 βˆ’ 1 = βˆ’ πœ‹ 2 𝑠𝑒𝑛2π‘₯βˆ’1 πœƒ βˆ— cos2yβˆ’1 πœƒ π‘‘πœƒ 0 β†’ 2π‘₯ = 1 2 1 3 + 1 β†’ 2π‘₯ = 2 2 β†’ 2𝑦 = βˆ’ β†’ 1 1 + 1 β†’ 2𝑦 = 2 2 𝒙= πŸ‘ πŸ’ β†’ Si aplicamos el teorema = 1 βˆ— 2 1 = βˆ— 2 Ξ“ 3 βˆ—Ξ“ 1 4 4 Ξ“ 3+1 4 4 Ξ“ 3 βˆ—Ξ“ 1 4 4 4 ; π‘π‘œπ‘šπ‘œ Ξ“ =Ξ“ 1 =1 4 4 Ξ“ 4 π’š= 𝟏 πŸ’
  • 3. 1 3 1 = βˆ— Ξ“ βˆ— Ξ“ 2 4 4 = 1 1 1 βˆ— Ξ“ βˆ— Ξ“ 1βˆ’ 2 4 4 Aplicamos teorema de gamma = 1 Ο€ βˆ— Ο€ 2 sen 4 = 1 2 = πœ‹ 2 2 πœ‹ 2 ∞ π‘₯ 𝑝 βˆ’1 0 1+π‘₯ Resolver 𝑑π‘₯ Por definiciΓ³n 𝛽 π‘₯, 𝑦 = 𝑒 𝑦 βˆ’1 𝑑𝑒 1+𝑒 π‘₯ +𝑦 Comparando y-1=p-1 x+y=1 y=p x=1–p Reemplazamos ∞ 0 π‘₯ π‘βˆ’1 𝑑π‘₯ = 𝛽 1 βˆ’ 𝑝, 𝑝 1+ π‘₯ = 𝛽 𝑝, 1 βˆ’ 𝑝
  • 4. = Ξ“ p Ξ“ 1βˆ’p Ξ“ p+1βˆ’p = Ξ“ p Ξ“ 1βˆ’p Aplicamos teorema de gamma = πœ‹ 𝑠𝑒𝑛 π‘πœ‹ Resolver ∞ βˆ’βˆž 𝑒 2π‘₯ 𝑒 3π‘₯ + 1 2 𝑑π‘₯ 𝑒 = 𝑒 3π‘₯ β†’ ln 𝑒 = ln 𝑒 3π‘₯ β†’ ln 𝑒 = 3π‘₯ π‘₯= 1 ln 𝑒 β†’ 3 1 𝑑𝑒 3 𝑑π‘₯ 𝑑π‘₯ = Evaluamos los lΓ­mites Cuando π‘₯ = ∞ β†’ ∞ 0 1 = 3 𝑒=∞ 1 2βˆ— ln 𝑒 𝑒 3 𝑒+1 1 𝑑𝑒 3 𝑒 2 𝑒 3 ln 𝑒 ∞ 0 βˆ— 2 𝑦 π‘₯ = βˆ’βˆž β†’ 𝑒 𝑒+1 2 𝑑𝑒 Por propiedades de euler y logaritmos 1 = 3 1 = 3 ∞ 0 ∞ 0 2 𝑒3 βˆ— π‘’βˆ’1 𝑑𝑒 𝑒+1 2 βˆ’1 𝑒3 𝑒+1 2 𝑑𝑒 𝑒=0
  • 5. Si comparamos con π‘¦βˆ’1= βˆ’ 1 3 𝛽 π‘₯, 𝑦 = β†’ Reemplazamos 1 4 2 𝛽 , 3 3 3 4 2 1 Ξ“ 3 Ξ“ 3 = βˆ— 4 2 3 Ξ“ 3+3 1 1 2 Ξ“ 3 Ξ“ 3 1 = βˆ— 3 6 3 Ξ“ 3 1 2 1 Ξ“ 3 Ξ“ 3 = βˆ— 9 Ξ“(2) Ξ“ 2 = 1! 1 1 2 βˆ—Ξ“ Ξ“ 9 3 3 = 1 1 1 βˆ—Ξ“ Ξ“ 1βˆ’ 9 3 3 Aplicamos teorema de gamma = = = 1 Ο€ βˆ— 9 sen Ο€ 3 1 Ο€ βˆ— 9 3 2 2 Ο€ βˆ— 9 3 2 3 𝑑𝑒 1+𝑒 π‘₯ +𝑦 𝑦= βˆ’ π‘₯+ 𝑦 =2 β†’ π‘₯ =2βˆ’ = 𝑒 𝑦 βˆ’1 1 𝟐 +1β†’ π’š= 3 πŸ‘ β†’ 𝒙= πŸ’ πŸ‘
  • 6. Resolver 3 𝑑π‘₯ π‘₯βˆ’1 1 3 3βˆ’ π‘₯ 1 βˆ’ 2 π‘₯βˆ’1 3βˆ’ π‘₯ 1 βˆ’ 2 𝑑π‘₯ 1 Sea x – 1 = 2y οƒ  x = 2y+1 οƒ  dx = 2dy Cuando x = 1 y = 0 1 = 1 βˆ’ 2 2𝑦 cuando x=3 y=1 1 βˆ’ 2 3 βˆ’ 2𝑦 + 1 2𝑑𝑦 0 1 =2 1 βˆ’ 2 2 1 (𝑦)βˆ’2 3 βˆ’ 2𝑦 + 1 1 βˆ’ 2 𝑑𝑦 0 = = = = 1 2 2 1 1 1 𝑦 βˆ’2 2 βˆ’ 2𝑦 1 βˆ’ 𝑦 2 1 1 βˆ’ 2 2 1βˆ’ 𝑦 1 1 𝑦 βˆ’2 2βˆ’2 𝑑𝑦 1 βˆ’ 2 𝑑𝑦 1βˆ’ 𝑦 1 βˆ’ 2 𝑑𝑦 0 1 2 = 𝑑𝑦 0 2 2 3 βˆ’ 2𝑦 βˆ’ 1 0 2 2 1 βˆ’ 2 0 2 2 1 βˆ’ 𝑦 2 𝑦 βˆ’ 1/2 (1 βˆ’ 𝑦)βˆ’ 1/2 𝑑𝑦 2 2 0 οƒ x=Β½ Sea x - 1 = - Β½ y – 1 = - Β½ οƒ  y= Β½ Luego 𝛽 = = πœ‹ 1 1 , 2 2 πœ‹βˆ— πœ‹ Rta 1 = 1 Ξ“ 2 Ξ“ 2 1 1 Ξ“ 2 +2 1 1 Ξ“ 2 Ξ“ 2 οƒ  Ξ“(1) οƒ  Ξ“ 1 2 Ξ“ 1 2
  • 7. Ejercicio especial Resolver 1 π‘₯ π‘š βˆ’1 1 βˆ’ π‘₯ π‘›βˆ’1 𝑑π‘₯ π‘₯ + π‘Ÿ π‘š +𝑛 0 π‘Ÿ+1 π‘₯ 𝑦= Sugerencia π‘Ÿ+π‘₯ 𝑦 π‘Ÿ+ π‘₯ = π‘Ÿ+1 π‘₯ Derivada de un cociente π‘¦π‘Ÿ + 𝑦π‘₯ = π‘Ÿ + 1 π‘₯ π‘Ÿ(π‘Ÿ + 1 βˆ’ 𝑦) βˆ’ π‘¦π‘Ÿ(βˆ’1) π‘¦π‘Ÿ = π‘Ÿ + 1 π‘₯ βˆ’ 𝑦π‘₯ π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 + π‘¦π‘Ÿ π‘¦π‘Ÿ = π‘Ÿ + 1 βˆ’ 𝑦 π‘₯ π‘Ÿ 2 + π‘Ÿ βˆ’ π‘¦π‘Ÿ + π‘¦π‘Ÿ π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦 π‘Ÿ2 + π‘Ÿ π‘₯= 𝑑π‘₯ = π‘Ÿ(π‘Ÿ + 1) π‘Ÿ π‘Ÿ + 1 𝑑𝑦 π‘Ÿ+1βˆ’ 𝑦 2 𝑠𝑖 π‘₯ = 0 β†’ 𝑦 = 0 Reemplazamos 1 π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦 0 1 0 1 0 1βˆ’ π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦 π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦+ π‘Ÿ 0 1 π‘š βˆ’1 𝑠𝑖 π‘₯ = 1 π‘›βˆ’1 π‘Ÿ π‘Ÿ+1 π‘Ÿ+1βˆ’ 𝑦 π‘š +𝑛 π‘¦π‘Ÿ π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦 π‘Ÿ + 1 βˆ’ 𝑦 π‘š βˆ’1 π‘š +𝑛 π‘¦π‘Ÿ + π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 π‘Ÿ+1βˆ’ 𝑦 1= 𝑑𝑦 2 π‘Ÿ + 1 βˆ’ 𝑦 = π‘¦π‘Ÿ π‘Ÿ + 1 = π‘¦π‘Ÿ + 𝑦 π‘›βˆ’1 π‘Ÿ π‘Ÿ+1 π‘Ÿ+1βˆ’ 𝑦 2 𝑑𝑦 π‘¦π‘Ÿ π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘š βˆ’1 π‘Ÿ(π‘Ÿ + 1) π‘Ÿ+1βˆ’ 𝑦 π‘Ÿ + 1 βˆ’ 𝑦 π‘›βˆ’1 𝑑𝑦 2 + π‘Ÿ βˆ’ π‘¦π‘Ÿ π‘š +𝑛 π‘¦π‘Ÿ + π‘Ÿ (π‘Ÿ + 1 βˆ’ 𝑦)2 π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 π‘¦π‘Ÿ π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘Ÿ 2 + π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 π‘š βˆ’1+π‘›βˆ’1+2 π‘Ÿ 2 + π‘Ÿ π‘š +𝑛 π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 π‘¦π‘Ÿ π‘Ÿ+1βˆ’ 𝑦 𝑑𝑦 π‘Ÿ+1= 𝑦 π‘Ÿ+1 π‘Ÿ+1 = 𝑦 π‘Ÿ+1 1= 𝑦
  • 8. π‘¦π‘Ÿ 1 π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 π‘Ÿ 2 + π‘Ÿ π‘š +𝑛 π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 0 1 π‘¦π‘Ÿ π‘š βˆ’1 π‘¦π‘Ÿ π‘š βˆ’1 π‘¦π‘Ÿ π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘Ÿ 2 + π‘Ÿ π‘š +𝑛 0 1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ 2 + π‘Ÿ π‘š +π‘›βˆ’1 π‘Ÿ 0 1 𝑦 π‘š βˆ’1 𝑦 π‘Ÿ π‘š βˆ’1 π‘Ÿ π‘šβˆ’1 π‘Ÿ π‘š +π‘›βˆ’1 1 𝑦 βˆ— π‘Ÿ π‘š βˆ’1 π‘Ÿ 0 𝑛 = π‘Ÿ π‘š +𝑛 𝑑𝑦 π‘š +𝑛 𝑑𝑦 π‘›βˆ’1 𝑑𝑦 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘Ÿ + 1 π‘š +π‘›βˆ’1 βˆ’π‘š +1 π‘Ÿ+1βˆ’ 𝑦 π‘Ÿ2 + π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘Ÿ π‘Ÿ + 1 π‘š +π‘›βˆ’1 π‘š +π‘›βˆ’1 π‘Ÿ 0 π‘›βˆ’1 π‘šβˆ’1 0 1 𝑑𝑦 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 π‘Ÿ 2 + π‘Ÿ π‘Ÿ + 1 βˆ’ 𝑦 π‘š +𝑛 π‘Ÿ 2 + π‘Ÿ 0 1 π‘Ÿ2 + π‘Ÿ π‘›βˆ’1 𝑑𝑦 π‘›βˆ’1 𝑑𝑦 π‘š +π‘›βˆ’1βˆ’π‘š +1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘Ÿ + 1 π‘š +π‘›βˆ’1 = 𝑛 π‘Ÿ π‘›βˆ’1 𝑑𝑦 Como m, n, r son constantes son sacadas de la integral π‘Ÿ 𝑛 1 π‘Ÿ+1 1 𝑦 π‘š +π‘›βˆ’1 π‘š βˆ’1 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ π‘›βˆ’1 𝑑𝑦 0 π‘Ÿ + 1 βˆ’ 𝑦 βˆ’ π‘¦π‘Ÿ = π‘Ÿ + 1 βˆ’ 𝑦(1 + π‘Ÿ) = π‘Ÿ + 1 (1 βˆ’ 𝑦) Nos queda entonces π‘Ÿ π‘Ÿ π‘Ÿ 𝑛 𝑛 𝑛 1 π‘Ÿ+1 1 𝑦 π‘š βˆ’1 π‘Ÿ+1 π‘›βˆ’1 1 1βˆ’ 𝑦 π‘›βˆ’1 0 1 π‘š 𝑦 0 (1 βˆ’ 𝑦) π‘›βˆ’1 𝑑𝑦 0 π‘Ÿ + 1 π‘›βˆ’1 π‘Ÿ + 1 π‘š +π‘›βˆ’1 1 π‘Ÿ+1 π‘š βˆ’1 𝑦 π‘š +π‘›βˆ’1 π‘š βˆ’1 (1 βˆ’ 𝑦) π‘›βˆ’1 𝑑𝑦 𝑑𝑦
  • 9. Si comparamos con 1 𝑑 π‘₯βˆ’1 1 βˆ’ 𝑑 𝛽 π‘₯, 𝑦 = 0 π‘₯βˆ’1= π‘šβˆ’1 β†’ π‘₯ = π‘š π‘¦βˆ’1= π‘›βˆ’1 β†’ 𝑦 = 𝑛 Reemplazamos los nuevos valores = 1 π‘Ÿ 𝑛 π‘Ÿ+1 π‘š 𝛽(π‘š, 𝑛) … Rta 𝑦 βˆ’1 𝑑𝑑 ; π‘₯>0 𝑦>0