SlideShare a Scribd company logo
1 of 96
Circulación de materia y energía
en la Ecosfera
A escala global la TIERRA es un
único ECOSISTEMA
Todos los ecosistemas de la
Tierra forman el ecosistema
planetario o ECOSFERA
Ecosfera: Es el conjunto formado por todos los ecosistemas de la tierra, o sea, es
el gran ecosistema planetario.
Biosfera: Es el conjunto formado por todos los seres vivos que habitan la tierra.
Los límites están entre los aproximadamente 6.500 m de altitud y los 2.900-
3.000 m de las profundidades oceánicas. No es uniforme en grosor ni en
densidad. Es, por tanto, la biocenosis o comunidad ecológica (parte biótica) de
la ecosfera.
6.500 m
3.000 m
La biosfera es un término que también se refiere
al conjunto de todos los seres vivos que habitan la
tierra y se puede considerar un sistema:
1. Dinámico
2. Abierto
3. Discontinuo
4. Interactivo con los otros sistemas terrestres
(hidrosfera, atmósfera, geosfera)
COMPOSICIÓN Y ESTRUCTURA DE LA
BIOSFERA
o POBLACIÓN: Conjunto de seres vivos de la misma especie que viven en un
ecosistema en un momento determinado.
o ESTRUCTURA DE UN ECOSISTEMA : Se refiere a la forma en que disponen las
poblaciones y las interrelaciones que tienen lugar entre ellos. Estas relaciones se
basan básicamente en términos de FLUJO DE ENERGÍA Y CICLOS DE MATERIA
o TEORIA DE SISTEMAS.
 Desde el punto de vista de los modelos se considera que entre las poblaciones
de seres vivos y el medio existen una serie de relaciones CAUSALES.
 Desde el punto de vista termodinámico, la biosfera debe considerarse como un
subsistema ABIERTO (intercambia materia y energía), mientras que la Tierra en
su conjunto sería un sistema CERRADO (solamente intercambia energía).
ECOSISTEMA
Es un sistema
interactivo constituido
por componentes físicos,
químicos y biológicos
del ambiente
Los organismos que viven en
un área particular junto con el
ambiente físico con el que
interactúan constituyen un
ecosistema
Los componentes básicos de un ecosistema son...
Elementos
abióticos
Productores
consumidores
Energía radiante
Respiración
Nutrientes
CO2
O2
H 2O
Consumo
Descomposición
Deposición
CO2
O2
H 2O
Nutrientes
Caída
de
hojas
Translocación
Dinámica de la ecosfera
El estudio de la ecosfera es muy complejo, se recurre a unidades más pequeñas,
los ECOSISTEMAS.
Los ecosistemas son unidades naturales formados por componentes vivos y no
vivos que interactúan entre sí y cuyos límites son mas o menos definibles.
Se compone de:
Componentes vivos: BIOCENOSIS
Componentes no vivos: BIOTOPO
Biotopo
Se denomina así a una zona de características ambientales uniformes ocupada
por una comunidad de seres vivos. Es un conjunto de factores físico-químicos
abióticos que rodean a una comunidad y que se compone de un medio físico y
unos factores del medio (Factores abióticos)
MEDIO FÍSICO:
Es el lugar donde los seres vivos desarrollan sus funciones vitales. Básicamente
hay dos tipos de medios: Líquido y gaseoso y ambos tienen un límite inferior
sólido sobre el que se sustentan los organismos.
FACTORES ABIÓTICOS (limitantes):
Son las características fisicoquímicas del medio ambiente. Cada medio tiene unas
características propias y otras más generales. Vamos a estudiar cómo influyen
algunos de estos factores en los ecosistemas: Temperatura, luz, humedad,
composición química, salinidad, presión, etc.
Estos últimos son determinantes de la distribución y abundancia de los seres
vivos, ya que éstos sólo pueden soportarlos dentro de ciertos límites: intervalo
biológico o límites de tolerancia. Cada factor abiótico tiene también su punto
óptimo.
Biotopo
Existen organismos que pueden vivir dentro de intervalos de valores muy amplios
de determinado factor abiótico. Son los llamados organismos eurioicos o
generalistas (euritermos, eurihalinos, eurihigros, etc.).
Otros, por el contrario, sólo toleran intervalos muy pequeños, llamándose
organismos estenoicos o especialistas (estenotermos, estenohalinos, etc.).
Puede ocurrir que un organismo sea eurioico para algunos factores y estenoico
para otros.
Se denomina valencia ecológica al campo o intervalo de tolerancia de una
determinada especie respecto a un factor cualquiera del medio (como pueden
ser la luz, la temperatura, la humedad, el pH o la concentración de fósforo,
nitrógeno u otro elemento químico) que actúa como factor limitante.
Nºindividuos
Valor del factor limitante
Valencia
ecológica
Estenoica
Eurioica
Comparación entre estrategas de la r y de la k
Característica Estrategas de la r Estrategas de la k
Tiempo de vida Corto Largo
Duración del desarrollo Corto Largo
Reproducción de los
individuos
Pronto, sólo una vez Tarde, varias veces
Descendientes Muchos Pocos, con cuidado de las
crías
Tamaño de la población Muy variable, suele estar por
debajo de la capacidad de
carga del ecosistema
Bastante constante, próximo
a la capacidad de carga del
ecosistema
Mortalidad A menudo catastrófica Dependiente de la densidad
de población
Clima, alimentación Inseguro, no previsible Constante o previsiblemente
variable
Hábitats ocupados Tierra virgen, hábitats
inestables, a menudo
recolonización anual
Hábitats estables
12Eduardo Gómez La Ecosfera 12
Biocenosis
Está formada por los seres vivos y las relaciones que existen entre ellos.
Los seres vivos no viven solos ni aislados, sino que se agrupan formando
poblaciones de la misma especie y comunidades junto con otras especies.
FACTORES BIÓTICOS:
Son las relaciones que existen entre los diferentes seres vivos.
Pueden ser de dos tipos:
• Intraespecíficas, cuando se producen entre individuos de la misma especie.
• Interespecíficas cuando se producen entre individuos de las diferentes
especies que habitan en el ecosistema.
Algunas de las relaciones que vamos a estudiar son: la depredación, el parasitismo,
la simbiosis, el colonialismo, las asociaciones familiares....
Hábitat y Nicho ecológico
Cada una de las especies del ecosistema tiene su HÁBITAT: espacio físico que
reúne las condiciones físico-químicas adecuadas para que esa especie pueda vivir.
También, cada especie tiene su NICHO ECOLÓGICO, que supone el papel, la
función que cada especie desempeña en el ecosistema. Es decir, el conjunto de
circunstancias, relaciones con el ambiente, conexiones tróficas y funciones
ecológicas que definen el “oficio” en el ecosistema de esa especie determinada.
El concepto de nicho deriva de la competencia entre las especies, ya que si dos
de ellas tienen el mismo oficio en el ecosistema, es decir, el mismo nicho
ecológico, competirán entre sí y una de las dos especies quedará excluida.
Puede ser útil considerar al hábitat como la dirección de un organismo (donde
vive) y al nicho ecológico como su profesión (lo que hace biológicamente). El
nicho ecológico no es un espacio demarcado físicamente, sino una abstracción
que comprende todos los factores físicos, químicos, fisiológicos y bióticos que
necesita un organismo para vivir.
Tres especies de garzas comparten un mismo hábitat, pero tienen
distinto nicho ecológico. Anidan en distinto sitio, se alimentan de presas
diferentes, su actividad no es la misma…..
1
2
3
Una sola especie puede ocupar diferentes
nichos en distintas regiones, en función de
factores como el alimento disponible y el
número de competidores. Algunos organismos,
por ejemplo, los animales con distintas fases en
su ciclo vital, ocupan sucesivamente nichos
diferentes.
Un renacuajo es un consumidor primario, que
se alimenta de plantas, pero la rana adulta es un
consumidor secundario y digiere insectos y
otros animales.
En contraste, tortugas jóvenes de río son
consumidores secundarios, comen caracoles,
gusanos e insectos, mientras que las tortugas
adultas son consumidores primarios y se
alimentan de plantas verdes, como por ejemplo
el apio acuático.
Se pueden distinguir dos tipos de nichos:
Nicho ecológico potencial (IDEAL):
Es el que satisface todas las necesidades de una especie. Muy difícil de
alcanzar (en laboratorio o en cautividad, pero no en la vida real)
Nicho ecológico real:
Es el nicho que ocupa una especie en condiciones naturales y donde influye
mucho la competencia.
Existen especies muy próximas que ocupan nichos ecológicos distintos
(murciélagos de América central) y otras especies que ocupan nichos equivalentes
en zonas geográficas alejadas para evitar la competencia (canguro, bisonte, vaca…)
A estos últimos tipos de especies se les denomina VICARIAS
Mismo nicho
ecológico,
distinto
hábitat
Mismo
hábitat,
distinto
nicho
ecológico
Mismo nicho
ecológico, distinto
hábitat
Mismo hábitat, distinto
nicho ecológico
Cadenas y redes tróficas
La materia y la energía circulan en los ecosistemas en forma de relaciones tróficas
(relaciones alimentarias), que se producen entre los organismos, vivos o muertos.
Se representan mediante CADENAS TRÓFICAS, en las que cada organismo ocupa una
posición llamada ESLABONES O NIVELES TRÓFICOS. Hay tres grandes grupos o niveles
tróficos:
a) Productores
b) Consumidores
c) Descomponedores
Cuando varias cadenas tróficas se entrecruzan forman REDES TRÓFICAS.
La representación se puede hacer mediante PIRÁMIDES TRÓFICAS.
Productores
Son los ORGANISMOS AUTÓTROFOS, constituyen el primer eslabón de la cadena
alimentaria. Pueden ser:
Fotoautótrofos:
Son organismos FOTOSINTÉTICOS. Usan la luz del sol. Algas
verdeazuladas (bacterias fotosintéticas), algas eucariotas
unicelulares y pluricelulares (protistas) y el reino de las
plantas o metafitos.
Quimioautótrofos:
Son organismos QUIMIOSINTÉTICOS. Usan
energía procedente de reacciones químicas
inorgánicas exotérmicas. Son las bacterias
nitrificantes, sulfobacterias, etc.
o Se caracterizan por usar la energía solar para producir moléculas orgánicas (por
ejemplo hidratos de carbono) y otros compuestos que luego serán transformados en
energía química.
o Los productores constituyen el 99% de toda la materia orgánica del mundo vivo.
o Son organismos capaces de captar y aprovechar la energía solar o lumínica (que es
prácticamente toda la energía exterior que recibe el ecosistema) para transformar
sustancias inorgánicas (agua, dióxido de carbono y sales minerales), pobres en
energía química, en sustancias orgánicas ricas en energía química.
o En los ecosistemas terrestres, los
principales productores primarios
son las plantas superiores:
angiospermas y gimnospermas.
o Los mayores productores primarios de los
ecosistemas acuáticos son las algas que a
menudo forman el fitoplancton en las capas
superficiales de los océanos y lagos.
Materia
inorgánica
Materia
orgánica
Necesidades
propias
Otros niveles
tróficos
Respiración,
crecimiento,
etc.
Metabolismo autótrofo, propio de los productores
Consumidores
Estos organismos aprovechan la materia orgánica de los productores para convertirla
en materia orgánica propia.
Consumidores primarios: Se alimentan de los productores primarios y son los
denominados herbívoros.
• En la tierra, los herbívoros típicos incluyen insectos, reptiles, pájaros y
mamíferos.
• En los ecosistemas acuáticos (de agua dulce y salada) los herbívoros son
típicamente pequeños crustáceos y moluscos. Estos, junto con los protozoos
forman el zooplancton, el cual se alimenta del fitoplancton.
Consumidores secundarios: Este nivel está constituido por animales que comen
otros animales, se alimentan de los herbívoros y por lo tanto son carnívoros, por
ejemplo: halcón, orca, carpa, etc.
Consumidores terciarios: Se alimentan de los consumidores secundarios, y por lo
tanto también son carnívoros (supercarnívoros), por ejemplo: león, cocodrilo, etc.
Saprófagos
Es un tipo de consumidores. Se alimentan de materia orgánica muerta, pueden ser:
• NECRÓFAGOS O CARROÑEROS. Se alimentan de cadáveres y materia
orgánica descompuesta.
• COPRÓFAGOS. Se alimentan de excrementos.
• DETRITÍVOROS. Se alimentan de materia orgánica muy fragmentada, como
los pólipos y las lombrices.
Omnívoros
Otro tipo especial de consumidores. Usan más de una fuente de materia orgánica,
es decir, ocupan varios niveles tróficos.
Descomponedores
Son organismos que aprovechan la materia y la energía que aún contienen los
restos de seres vivos (cuerpos muertos, deyecciones, etc), descomponiendo la
materia orgánica en materia inorgánica (descomponedores mineralizadores)
A este grupo pertenecen los hongos, bacterias y otros microorganismos,
quienes segregan enzimas digestivas sobre el material muerto o de desecho y
luego absorben los productos de la digestión (descomponedores saprofitos)
Los animales carroñeros (buitres, algunos córvidos, hienas, etc.) no se
consideran descomponedores, ya que aprovechan los restos de animales
muertos.
Son fundamentales en los ecosistemas puesto que reciclan la materia, así
devuelven la materia inorgánica a los productores.
Se alimentan del cuerpo
muerto de otros organismos
o de sus productos de
desecho
Disipan energía y devuelven
nutrientes al ecosistema
para su reciclaje
DESCOMPONEDORES
macrodescomponedores
microdescomponedores
Colémbolos, ácaros,
miriápodos, lombrices,
babosas, moluscos,
cangrejos...
Bacterias y Hongos
Redes tróficas
Las múltiples interacciones existentes entre los
individuos impide definir individualmente con
claridad una cadena trófica, ya que, según las
circunstancias, un depredador puede al mismo
tiempo ser presa. Por ello es más propio hablar
de red alimentaria o trófica.
En una red alimentaria cada individuo ocupa un
nudo en una intersección de relaciones tróficas.
Si un nudo desaparece (extinción de una
especie), el ecosistema en conjunto reajusta sus
hábitos alimentarios, aunque este proceso es muy
lento.
¿Qué niveles tróficos pueden ocupar los
herrerillos en el robledal?
¿Qué nivel trófico tiene la
ballena azul?
¿Qué especies ocupan la cúspide de la pirámide trófica y qué niveles tienen?
Ciclo de la materia
• La materia es el vehículo de la transferencia de energía, que se transforma
continuamente mediante reacciones químicas de OXIDO-REDUCCIÓN.
• Cuando la materia se reduce, almacena ENERGÍA QUÍMICA y cuando se oxida, la
libera en también en forma de ENERGÍA QUÍMICA O CALOR.
• A diferencia de la Energía, la Materia puede circular en el ecosistema.
• La circulación consiste en la transferencia desde los medios inertes en donde suele
estar OXIDADA, hasta los seres vivos en donde aparece REDUCIDA y de nuevo a los
medios inertes.
• Los procesos implicados en estas transformaciones son LA FOTOSÍNTESIS Y LA
RESPIRACIÓN.
• La circulación de la materia en los ecosistemas es abierta, ya que siempre hay salida y
entrada de organismos, fijación de gases, pérdidas por erosión, precipitación,
gasificación, lixiviados...
• Sin embargo, si tenemos en cuenta el sistema TIERRA, el CICLO de la materia puede
considerarse CERRADO, aunque algunos materiales pueden quedar fuera del circuito
durante mucho tiempo, permaneciendo en yacimientos.
Circulación de la materia
Flujo de energía
En los ecosistemas, la energía fluye de un nivel trófico a otro de forma unidireccional,
no forma un ciclo cerrado como la materia. De la energía solar que llega a la
superficie de un ecosistema se aprovecha sólo un 1 % aproximadamente y se
almacena mediante la fotosíntesis.
En el mismo ecosistema hay pérdida de energía, porque cerca de la mitad de la
producción primaria es gastada por los productores en su metabolismo y se pierde
como calor, y sólo la otra mitad está disponible para los consumidores como alimento
(carbohidratos, celulosa, lignina, grasas, proteínas, etc.).
En la cadena trófica, al pasar de un eslabón a otro, hay más pérdida de energía a
través de la respiración y los procesos metabólicos de los individuos, porque el
mantener vivo un organismo implica gastar, en forma de calor, parte de la energía
captada; las sustancias no digeribles, que son excretadas o regurgitadas y
descompuestas por los detritívoros; y la muerte de individuos, que ocasiona pérdidas,
pero la energía es devuelta, en parte, por los descomponedores.
Se estima que el índice de
aprovechamiento de los recursos en
los ecosistemas terrestres es como
máximo del 10%, y que de un nivel
trófico a otro no pasa más de un
10% de la energía del nivel anterior,
por eso las cadenas tróficas no
pueden tener más de 4 o 5
eslabones.
En una cadena trófica, la energía que entra es igual a la acumulada en forma de
materia orgánica en cada nivel más la desprendida en forma de calor, luego la
energía se conserva.
Flujo de energía en el ecosistema
Productores
Consumidores
primarios
Consumidores
secundarios
Consumidor final
Descomponedores
Calor
Energía
solar
Calor
Calor
Calor
Calor
En el flujo de energía y de nutrientes inorgánicos, es posible
hacer algunas generalizaciones:
o La fuente primaria de energía (en la mayoría de los
ecosistemas) es el Sol.
o El destino final de la energía en los ecosistemas es
perderse como calor.
o La energía y los nutrientes pasan de un organismo a otro a
través de la cadena alimenticia, a medida que un
organismo se come a otro.
o Los descomponedores extraen la energía que permanece
en los restos de los organismos.
o Los nutrientes inorgánicos son reciclados, pero la energía
no.
Parámetros tróficos
Se usan para estudiar la estructura y el funcionamiento de
los ecosistemas; pueden referirse a cada nivel trófico o al
ecosistema completo. Los más usados son:
1. BIOMASA
2. PRODUCCIÓN BIOLÓGICA BRUTA Y NETA
3. PRODUCTIVIDAD DEL ECOSISTEMA
4. TIEMPO DE RENOVACIÓN
5. EFICIENCIA ECOLÓGICA
Biomasa (B)
Representa la cantidad de Energía (generalmente solar), fijada como
materia orgánica viva o muerta en un nivel trófico, en un ecosistema o en
la Biosfera.
La BIOMASA se expresa de dos formas:
1. Peso seco de materia orgánica viva (fitomasa y zoomasa) y
muerta (necromasa) por unidad de superficie (en zonas
terrestres) o volumen (en zonas oceánicas).
2. Energía por unidad de superficie o volumen.
En la Geosfera la biomasa vegetal es más abundante que la animal,
aunque entre los diferentes puntos varía mucho.
En la Hidrosfera la biomasa vegetal es menor que la animal.
Se pueden considerar tres tipos de biomasa:
1.- BIOMASA PRIMARIA:
La producida directamente por los productores.
2.- BIOMASA SECUNDARIA:
La producida por consumidores y descomponedores.
3.- BIOMASA RESIDUAL:
La producida como resultado de la acción antrópica, tanto
de origen primario (serrín, paja, alpechín) o secundario (
estiércol, residuos alimenticios...).
Producción (P)
Es una medida del flujo de Energía que circula por un ecosistema
o por cada nivel trófico.
Es la cantidad de energía acumulada como materia orgánica por
unidad de superficie o volumen y por unidad de tiempo, en el
ecosistema o en determinado nivel trófico.
Se expresa en unidades de biomasa o energía por unidad de
superficie y tiempo: g de C/m2/día ; Kcal/ha/año ....
Se puede diferenciar entre:
PRODUCCIÓN PRIMARIA (Pp)
• Energía capturada por los productores por unidad de superficie
o volumen en una unidad de tiempo.
• Depende de la Energía solar recibida y de una serie de factores
que pueden actuar como limitantes.
PRODUCCIÓN SECUNDARIA (Ps)
• Energía capturada por el resto de los niveles tróficos por unidad
de superficie o volumen en una unidad de tiempo.
PRODUCCIÓN BRUTA (Pb)
• Cantidad total de energía capturada por unidad de
superficie o volumen por unidad de tiempo,
generalmente en un año.
• Hay Ppb (Producción primaria bruta) y Psb (Producción
secundaria bruta).
• Se corresponde con el porcentaje de alimento asimilado
del total consumido.
• En los carnívoros es un 40-60 % y en los herbívoros del
10-30 %.
PRODUCCIÓN NETA (Pn)
Cantidad de Energía almacenada por unidad de superficie o
volumen en una unidad de tiempo y que puede ser
potencialmente transferida al siguiente nivel trófico.
Representa el aumento de la biomasa por unidad de
tiempo y se calcula restando de la producción bruta la
energía consumida en el proceso de respiración y
automantenimiento (no asimilado):
Pn = Pb – (R + NA)
Los ecosistemas naturales de mayor
producción son los arrecifes de coral, los
estuarios, las zonas costeras, los bosques
ecuatoriales y las zonas húmedas de los
continentes.
Los menos productivos son los desiertos y
las zonas centrales de los océanos.
Productividad (p)
Es la relación entre la producción y la biomasa.
p = P / B
La productividad bruta será :
pb = Pb / B
La productividad neta (o tasa de renovación):
pn (r) = Pn / B
La tasa de renovación varía entre 0 (mínima) y 1 (máxima) e indica la
producción de nueva biomasa en cada nivel trófico en relación con la
existente. Representa, por tanto, la velocidad con que se renueva la
biomasa.
Productividad y tasa de renovación
La tasa de renovación es en muchos casos un parámetro mucho
mejor que la producción neta para valorar el flujo de energía de
un ecosistema.
Por ejemplo: El plancton tiene una producción menor que los
vegetales terrestres, sin embargo tienen una mayor
productividad porque su tasa de reproducción es muy alta y se
renuevan muy rápidamente.
Por este motivo la biomasa, que habitualmente es menor a
medida que subimos en los escalones de la pirámide trófica, en
este caso es al revés y la biomasa es mayor en los herbívoros
que en los productores.
Cuando se empieza a colonizar un territorio la productividad es muy alta, a
medida que el territorio se va colonizando y se alcanza la estabilidad la
biomasa alcanza un valor máximo y la productividad es mínima.
• En un cultivo agrícola la tasa de renovación sería próxima a 1.
• En un pastizal sería entre 0 y 1.
• En un bosque maduro sería cercana al 0.
Un ecosistema estable y muy organizado tiene una gran cantidad de
biomasa y una elevada biodiversidad, pero su productividad es baja y
disminuye el flujo de energía: entra mucha energía pero se gasta
manteniendo una gran cantidad de biomasa.
• La selva tropical tiene una producción muy alta pero una
productividad cercana al 0.
• En las explotaciones agrícolas, el ser humano extrae del ecosistema
una gran parte o la totalidad de la biomasa al final de la temporada.
Esto disminuye los gastos por respiración y un aumento de la
productividad. Sin embargo debe reponerse al suelo la materia
extraída.
Tiempo de renovación
Es el tiempo que tarda un nivel trófico, o un ecosistema completo, en
renovar su biomasa.
tr = B / Pn
Mide el tiempo de permanencia de los elementos químicos dentro de las
estructuras biológicas del ecosistema.
Los productores pueden presentar dos estrategias en relación a su tr:
1. Especies rápidas. Son pequeños, de estructura y morfología simple,
y con una tasa de reproducción alta. Fitoplancton
2. Especies lentas. Son de gran tamaño, estructura y morfología
compleja, y una tasa de reproducción muy baja. Bosques de encinas.
En los ecosistemas suelen estar presentes ambos tipos para asegurar un
aporte energético suficiente al ecosistema. En un lago suele haber
fitoplancton y algas más lentas. En un encinar hay también un estrato
herbáceo.
Eficiencia biológica
Mide el rendimiento energético de un nivel trófico o de un ecosistema
completo, es decir, la capacidad de incorporar materia orgánica a sus
tejidos.
Indica cuanta energía entra, se pierde o se acumula en cada nivel trófico o en
un ecosistema completo. Se calcula mediante entradas y salidas:
PRODUCTORES: Se puede medir mediante la relación:
energía asimilada / energía solar incidente
Los valores son muy bajos, entre el 1 y 3%.
También se puede medir la relación Pn / Pb.
Así se calculan las pérdidas por respiración, excreción,...
En el fitoplancton supone del 10 al 40 %. En vegetales terrestres el 50%
CONSUMIDORES: Se suele usar la relación:
Pn / alimento ingerido o, para los ganaderos, Engorde / alimento ingerido.
La eficiencia ecológica es la fracción de la producción neta de un
determinado nivel trófico que se convierte en producción neta del nivel
siguiente, es decir:
Ef = (Pn / Pn del nivel anterior) × 100
Las medidas de eficiencia son interesantes para valorar los ecosistemas
explotados por el ser humano, siempre que se contabilicen correctamente
las entradas y salidas del sistema, especialmente los costes ocultos o
INSUMOS: combustibles de las máquinas, gastos en semillas especiales,
administración, vacunación de los animales, etc.
Una manera de mejorar la eficiencia en la producción de alimentos es
acortar las cadenas tróficas, obtenerlos de los primeros niveles tróficos. Así,
se aprovecha mejor la energía que entra en el ecosistema y se puede
alimentar a un mayor número de personas, aunque, según las
recomendaciones de la FAO, para una alimentación completa es necesario
añadir a la dieta vegetariana unos 60 g de proteínas al día.
Pirámides ecológicas
Son esquemas que se utilizan para representar cuantitativamente las relaciones
tróficas entre los distintos niveles de un ecosistema.
Se utilizan barras superpuestas que suelen tener una altura constante y una
longitud proporcional al parámetro elegido, de manera que el área representada es
proporcional al valor del parámetro que se mide.
El nivel de los DESCOMPONEDORES no se suele representar, ya que es difícil
de cuantificar.
Se suelen usar tres tipos de pirámides:
1. Pirámides de energía
2. Pirámides de biomasa
3. Pirámides de números.
PIRÁMIDES DE ENERGÍA
Expresa el contenido energético que cada nivel trófico pone a disposición del nivel superior,
es decir la producción neta de cada nivel. También se llaman PIRÁMIDES DE
PRODUCCIÓN.
Las unidades se suelen expresar en:
Energía (Kcal o Kjul) / unidad de superficie y unidad de tiempo
Siempre tendrán forma decreciente hacia arriba por la Ley del 10%.
Proporciona información sobre el FLUJO ENERGÉTICO en el ecosistema.
PIRÁMIDES DE BIOMASA
Indican la biomasa acumulada en cada nivel
trófico, expresada en:
peso seco de materia orgánica / unidad de
superficie o volumen o su equivalente en:
energía / unidad de superficie o volumen.
Estas pirámides se refieren a periodos de
tiempo corto por lo que no informan sobre
la cantidad de materia producida a lo largo
del tiempo o de su velocidad de producción.
Esto puede inducir a que en algunos momentos se observen PIRÁMIDES INVERTIDAS
debido a que los datos se toman en un momento determinado, por ejemplo cuando
los datos se toman en el momento de mayor consumo por parte de los herbívoros,
como en algunos ecosistemas marinos. Esta situación sólo es posible temporalmente,
ya que si se mantuviera mucho tiempo el ecosistema desaparecería.
Proporciona información sobre LA CANTIDAD DE MATERIA ORGÁNICA PRESENTE EN
CADA NIVEL TRÓFICO y sobre LA COMPOSICIÓN Y FUNCIONAMIENTO DEL
ECOSISTEMA.
PIRÁMIDES DE NÚMEROS
Expresan el nº concreto de individuos
de cada nivel trófico por unidad de
superficie (medio terrestre) o volumen
(medio acuático).
La información que proporcionan NO
ES ÚTIL SI SE QUIEREN
COMPARAR DOS ECOSISTEMAS ya
que considera igual a organismos muy
diferentes (por ejemplo, saltamontes y
vacas).
En el caso de que incluyan parásitos
pueden tener una forma INVERTIDA.
Factores limitantes de la producción primaria
Los factores limitantes de un proceso son los que, en determinadas condiciones,
influyen limitando o impidiendo dicho proceso. Cualquier factor que influye en un
proceso puede llegar a ser limitante si se cumple la ley del mínimo: “Cualquier
proceso que depende de varios factores está controlado por el factor que más se
aproxima al valor para el cual el proceso se detiene”.
Los principales factores limitantes de la fotosíntesis
son:
• Temperatura y humedad
• Falta de nutrientes
• Luz, disposición y estructura de los
fotosistemas
1. Temperatura y humedad
Con respecto a la temperatura, un aumento excesivo provoca un descenso brusco en la fotosíntesis.
Pero sin llegar a esos extremos, un clima cálido, tropical o desértico provoca también un descenso
de la producción primaria debido al incremento de la fotorrespiración.
Las plantas de climas húmedos, las llamadas C3, cuando se encuentran en condiciones secas y/o
calurosas, reaccionan cerrando sus estomas para evitar la pérdida de agua. Entonces disminuye la
concentración de CO2 y aumenta la de O2 porque la fotosíntesis continúa, hasta que la relación
[CO2]/[O2] toma un valor tal que la eficacia fotosintética disminuye mucho debido al incremento de
la fotorrespiración.
En cambio, otras plantas, las llamadas C4, como el maíz o la caña de azúcar, están adaptadas al clima
seco y cálido. Estas plantas tienen una vía alternativa para fijar el CO2 atmosférico, aunque esté en
cantidades muy bajas y, posteriormente, pasa a las células fotosintéticas donde continúa la
fotosíntesis. Así, se eleva notablemente la eficacia fotosintética.
Otras plantas desérticas, como los cactus y las plantas crasas, además de tener adaptaciones
morfológicas (hojas reducidas y tallos carnosos, entre otras) y ser plantas C4, son también plantas
CAM (Crassulaceam Acid Metabolism), que consiste, básicamente, en que fijan el CO2 por la noche
sobre ácidos orgánicos y luego, de día, lo incorporan a la fotosíntesis ya con los estomas cerrados.
Por el contrario, si la temperatura desciende mucho durante el invierno, las adaptaciones más
frecuentes consisten en ciclos biológicos cortos (herbáceas anuales), desarrollo de estructuras
hibernantes subterráneas (bulbos, tubérculos, rizomas), y la aparición de un fotoperiodo o época de
máximo desarrollo de hojas y flores, alternando con una época de mínima actividad metabólica o
período latente.
Plantas CAM
Estructura de las hojas en plantas C3 y C4
Comparación de los
tres tipos de
metabolismo Fs.
2. Falta de nutrientes
El CO2 y los nitratos no actúan como factores limitantes, ya que el CO2 es un gas abundante en la
atmósfera y está disuelto en el agua en cantidad suficiente; el nitrógeno es muy abundante en la
atmósfera y la existencia de microorganismos fijadores de nitrógeno asegura la presencia de sus sales en
los suelos y en el agua.
Las sales de fósforo sí son un factor limitante de la producción primaria porque, aunque el fósforo es
abundante, la mayor parte está inmovilizada en la litosfera. Así, en muchos ecosistemas marinos la
reutilización de las sales minerales por los productores se ve dificultada por la distancia entre el lugar
que se realiza la fotosíntesis (fótica o superficial) y la zona donde se encuentran los organismos
mineralizadores (el fondo).
En estos casos, el problema se soluciona gracias a la energía exosomática (viento, oleaje, corrientes
marinas) que transporta los nutrientes desde los fondos marinos hacia la superficie (donde está el
fitoplancton) por las llamadas zonas de afloramiento. Estas áreas son extraordinariamente productivas y
en ellas se localizan los principales caladeros de pesca.
Otras zonas marinas muy productivas son las plataformas continentales, pero aquí el oleaje es el
causante de la llegada de nutrientes hasta la superficie. Además, también hay que considerar los
nutrientes aportados por los ríos a estas zonas.
En los ecosistemas terrestres no suele darse este problema, ya que la distancia entre productores y
mineralizadores es pequeña. Sin embargo, a veces se necesita energía exosomática en forma de trabajo
humano para facilitar la llegada de nutrientes hasta los productores.
3. Luz, disposición y estructura de los fotosistemas
Al aumentar la intensidad luminosa incidente la actividad fotosintética se
incrementa, pero llega un momento en el que deja de aumentar aunque
siga creciendo dicha intensidad. Esto ocurre por dos motivos:
• La disposición de las unidades fotosintéticas en los
cloroplastos, que hace que se den sombra unas a otras
respecto a la luz incidente.
• La estructura de dichas unidades o fotosistemas, ya que el
número de moléculas de los pigmentos que captan los
fotones (energía solar) es muy superior (unas 300 veces) al de
las moléculas encargadas de transformarla en energía
química. Esto hace que a partir de una determinada
intensidad luminosa, los fotosistemas se saturan y la actividad
fotosintética no aumenta aunque siga incrementándose
aquélla. Es el típico efecto de “cuello de botella”.
Por estos motivos, el rendimiento fotosintético alcanza su valor máximo
con intensidades luminosas bajas, en las primeras y últimas horas del día,
y no en las horas de mayor intensidad. En consecuencia, la estructura de
las unidades fotosintéticas hace imposible elevar la producción de los
cultivos más allá de un máximo, aunque se añadan abonos, agua,
plaguicidas, etc., y se mantengan los cultivos en condiciones ambientales
óptimas mediante invernaderos.
Ciclos biogeoquímicos
Los elementos químicos más importantes que forman parte de la materia
viva están presentes en la atmósfera, hidrosfera y geosfera y son
incorporados por los seres vivos a sus tejidos.
De esta manera, siguen un ciclo biogeoquímico que tiene una zona abiótica
y una zona biótica.
 La primera suele contener grandes cantidades de elementos
biogeoquímicos pero el flujo de los mismos es lento, tienen largos
tiempos de residencia.
 En la parte biótica del ciclo, el flujo es rápido pero hay poca
cantidad de tales sustancias formando parte de los seres vivos.
Fases y tipos de ciclos biogeoquímicos
En estos ciclos se suelen dar dos fases bien diferenciadas:
1.- Fase de depósito: Circulación muy lenta del elemento.
2.- Fase de intercambio: El elemento está en un proceso activo de entrada y salida en
los organismos, hasta que vuelva a acumularse en algún depósito o sedimento.
Se distinguen dos grandes tipos de ciclos, según donde ocurre la fase de depósito y la
existencia o no de pérdidas laterales importantes del elemento en el ciclo:
• Ciclos cerrados o atmosféricos: La fase de depósito se da en la atmósfera y es más
o menos rápida, no existiendo apenas pérdidas laterales del elemento. Ejemplos
son los ciclos del carbono y del nitrógeno.
• Ciclos abiertos o litosféricos: La fase de depósito se da en la litosfera, en forma de
sedimentos profundos. Esta fase es muy lenta y con pérdidas laterales del
elemento, de tal forma que si no hay levantamientos orogénicos el elemento
perdido no se pone de nuevo en circulación. Ejemplos son los ciclos del fósforo y
del azufre.
CICLOS BIOGEOQUÍMICOS
Los diferentes elementos químicos pasan del suelo, el agua o
el aire a los organismos y de unos seres vivos a otros, hasta
que vuelven, cerrándose el ciclo, al suelo o al agua o al aire.
GASEOSOS
SEDIMENTARIOS
atmósfera – océanos
suelo-rocas-minerales
Ciclo del Carbono
Detritos/materia
orgánica del suelo
Biomasa vegetal
y animal
Atmósfera
El ciclo del carbono resulta de la
superposición de dos ciclos: uno en el mar y
otro en los continentes accionados por la
difusión del CO2 a la atmósfera.
La gran reserva de carbono en la biosfera son
los sedimentos marinos y los combustibles
fósiles. Al ser el fondo del mar un medio
reductor, se acumulan allí muchos
sedimentos carbonosos que no se destruyen
por oxidación.
Ciclo del fósforo
Completamente
sedimentario
Reservorios en rocas y
depósitos naturales de
fosfatos
Desconocido en la
atmósfera
El fósforo tiende a circular a través de la descomposición de los productos orgánicos
fosfatados quedando después a disposición de las plantas, mientras que el depósito de fósforo
son las rocas fosfatadas, como el guano. Estas rocas y los seres vivos son las únicas fuentes de
fósforo de los ecosistemas. Gran parte del fósforo es lavado y erosionado, acumulándose
posteriormente en los fondos marinos, muchas veces de forma irrecuperable.
Ciclo del Nitrógeno
Ciclo del Nitrógeno
Nitrógeno
Componente esencial de las
proteínas y de la atmósfera
Estado gaseoso (N2)
Debe fijarse para su utilización
Acción química de
alta energía
Biológico
Bacterias
fijadoras de
nitrógeno
Radiación cósmica
Relámpagos y rayos
Por la muerte de seres vivos se obtiene nitrógeno orgánico, que
después se va oxidando hasta formar nitritos y nitratos. Estos últimos
son los compuestos nitrogenados más utilizados por las plantas y por
ciertos microorganismos (bacterias desnitrificantes), que reducirán
los nitratos para volver a formar el nitrógeno molecular atmosférico.
Ciclo del azufre El azufre disuelto proviene del desgaste de las rocas,
de la erosión y de la descomposición de la materia
orgánica
El azufre gaseoso
tiene como fuentes la
descomposición de la
materia orgánica, la
emisión de DMS
(dimetil sulfuro) por
algas de los océanos y
las erupciones
volcánicas
El Dióxido de azufre (SO2) es un contaminante
atmosférico, ya que puede reaccionar con agua para
producir ácido sulfúrico (lluvia ácida)
Sucesión ecológica
Eduardo Gómez La Ecosfera 71
Los ecosistemas cambian a lo largo del tiempo. Además son capaces de
mantener y aumentar su organización, reajustándose, adaptándose a
cualquier tipo de variación, usando continuamente materia y energía.
Si no hay perturbaciones tienen a ser más complejos. El proceso de cambio
se llama sucesión ecológica en él, unas comunidades sustituyen a otras
LA SUCESIÓN ECOLÓGICA se define como:
Un proceso dinámico resultante de la interacción de los
factores bióticos y abióticos en el tiempo, que da lugar a la
formación de un ecosistema complejo y estable.
Eduardo Gómez La Ecosfera 72
Eduardo Gómez La Ecosfera 73
Es un proceso lento y gradual, en el
que las poblaciones que son inestables
sufren modificaciones, tanto en su
composición como en su tamaño,
buscando el equilibrio.
Cuando se consigue este equilibrio, el
CLÍMAX, la comunidad tenderá a
mantenerse estable y no será
sustituida por otra, mientras no
cambien las condiciones físico químicas
y climáticas.
Tipos de sucesiones
Eduardo Gómez La Ecosfera 74
SUCESIONES PRIMARIAS
Se producen en territorios vírgenes que aún no han sido colonizados. Es el caso de
las lavas volcánicas, los aluviones, las dunas.
Los primeros organismos en colonizar son los líquenes y musgos, que van
formando el suelo, posteriormente bacterias y hongos y las primeras hierbas.
SUCESIONES SECUNDARIAS
Ocurren en ecosistemas que han sufrido una regresión que ha interrumpido su
camino hacia el clímax o lo ha roto. Todavía se conserva el suelo y parte de la
vegetación.
Al cabo de un cierto tiempo, si las
condiciones ambientales no han
variado, el ecosistema se recupera
y continúa con su sucesión o se
estabiliza.
Eduardo Gómez La Ecosfera 75
Regresiones
Eduardo Gómez La Ecosfera 76
La REGRESIÓN puede ocurrir por causas naturales (incendios, inundaciones, cambio
climático, volcanes,...) o por causas antrópicas, (deforestación, contaminación,
introducción de nuevas especies...)
En la regresión suelen aparecer poblaciones de r-estrategas (oportunistas)
Las principales regresiones se producen en los ecosistemas terrestres, debido a
sobrepastoreo, talas excesivas, deforestación, erosión o incendios.
Cuando el fenómeno es muy grave la comunidad puede perder su capacidad de
regeneración.
En los ecosistemas acuáticos la más importante es la regresión producida por
contaminación con abonos y fertilizantes en aguas dulces y la contaminación del
litoral y la sobreexplotación pesquera en el medio marino.
Es un proceso inverso a la sucesión ecológica:
Regresión total:
Erupción volcánica que
cubre el terreno de lava
Regresión por deforestación.
Se mantiene el suelo
Eduardo Gómez La Ecosfera 77
Cambios en una sucesión
Eduardo Gómez La Ecosfera 78
1. AUMENTO DE LA BIODIVERSIDAD: Tanto en riqueza específica como en
diversidad específica. En general las r-estrategas (iniciales) son sustituidas por
las k-estrategas (finales).
2. ALARGAMIENTO DE CADENAS TRÓFICAS. Por el aumento del nº de especies.
3. AUMENTO DE LA ESTABILIDAD: Se establecen relaciones entre las especies,
con múltiples retroalimentaciones, que contribuyen a la estabilidad.
4. AUMENTO PROGRESIVO DE LA BIOMASA: Al principio no hay limitación de los
recursos disponibles, la producción es muy alta, por lo que se produce un
aumento progresivo hasta las etapas finales. Finalmente la respiración iguala a
la producción, excepto cuando se retira la biomasa (cultivo) o se seca la
hierba. En estos casos nunca se llegará a la etapa clímax.
Cambios en una sucesión II
Eduardo Gómez La Ecosfera 79
1. DISMINUCIÓN DE LA PRODUCTIVIDAD: A más evolución, menos tasa de
renovación.
2. AUMENTO DE LOS NICHOS ECOLÓGICOS: Se produce un mayor
aprovechamiento y el ecosistema se vuelve más complejo.
3. DISMINUCIÓN DEL FLUJO ENERGÉTICO QUE RECORRE EL ECOSISTEMA:
Finalmente la energía pasa por muchos organismos por lo que se
producen más pérdidas, el reciclado se produce instantáneamente por lo
que la materia apenas tiene tiempo de estar en el medio antes de volver
a ser capturada.
Eduardo Gómez La Ecosfera 80
Regresiones provocadas por la humanidad
 Deforestación: Provocada por la tala y la quema de árboles y
por la agricultura mecanizada.
 Incendios forestales: El fuego ha sido un factor natural que
rejuvenece los bosques templados y los mediterráneos ricos
en especies pirófilas.
 Sobreexplotación de recursos y destrucción de hábitats.
 Introducción de nuevas especies:
 Conejos de Australia
 Visón americano
 Mejillón cebra
 Cangrejo americano
 Lucio
Eduardo Gómez La Ecosfera 81
Biodiversidad
La BIODIVERSIDAD es el conjunto de especies que hay sobre
el planeta. Pero es algo más:
“DIVERSIDAD BIOLÓGICA O BIODIVERSIDAD es la
variabilidad de organismos vivos de cualquier fuente, incluidos,
entre otras cosas, los ecosistemas terrestres, marinos y otros
ecosistemas acuáticos y los complejos ecológicos de los que
forman parte, comprende la diversidad dentro de cada especie,
entre las especies y de los ecosistemas”.
82
No solo podemos hablar de la variedad de las formas de vida, sino también del
acervo genético de cada especie, conseguido tras millones de años de evolución
y de los diferentes ecosistemas de los que forman parte.
Esta diversidad se puede dar a tres escalas que corresponden con diferentes
niveles de organización biológica:
DIVERSIDAD GENÉTICA
DIVERSIDAD DE ESPECIES (ESPECÍFICA)
DIVERSIDAD DE ECOSISTEMAS (ECOSISTÉMICA)
83
En la actualidad el nº de especies que existen en el planeta, se estima que
puede oscilar entre 5 y 50 millones y algunos dicen que hasta 100 millones.
Se han clasificado 1,7 millones de especies, de las cuales el 85% son
terrestres.
Hay descritos cerca de 1 millón de artrópodos de los cuales unos 950.000 son
insectos, de ellos 450.000 son coleópteros.
Los mares y océanos son los grandes desconocidos, en ellos se hace la mayor
parte de los descubrimientos de nuevas especies.
La biodiversidad no se reparte uniformemente por todo el planeta, sino
que existen zonas concretas con una riqueza espectacular, como por
ejemplo en los bosques tropicales gracias a sus factores climatológicos tan
favorables para la vida (temperatura bastante uniforme, insolación y elevada
humedad). Estas regiones ocupan solamente el 7 % de la superficie del
planeta, pero contienen cerca del 90 % del total de especies conocidas.
84
Sabemos que desde hace 600 millones de años ha ido aumentando la biodiversidad,
pero no ha sido un crecimiento uniforme ya que ha habido épocas en las que se han
producido descensos importantes.
Los paleontólogos hablan de 5 grandes “crisis biológicas” o extinciones masivas:
1.En el Ordovícico, hace 440 millones de años.
2.En el Devónico, hace 365 millones de años.
3.A finales del Pérmico, hace 250 millones de años. (Se perdió el 52% de todas las
especies existentes en esa época, un 90% de ellas marinas).
4.En el Triásico, hace 145 millones de años.
5.A finales del Cretácico, hace 65 millones de años (Extinción de los dinosaurios).
En 1999 ya se catalogaron 157
especies en peligro claro de
extinción (120 son plantas y 37
animales).
85
Valor de la biodiversidad
Desde el punto de vista de la economía ecológica, se pueden hacer tres usos de la
biodiversidad:
1.- VALOR FARMACOLÓGICO:
La mitad de los fármacos que usamos en el mundo proceden de plantas y
organismos silvestres, sin duda existen muchos otros que aún no se han investigado.
2.- VALOR AGRÍCOLA Y GANADERO:
El 90% de los alimentos que consumimos se obtienen de especies de plantas y
animales que fueron domesticadas partiendo de especies silvestres.
3.- INTERÉS CIÉNTIFICO, ÉTICO Y ECOLÓGICO:
Cada especie es el resultado de millones de años de evolución y adaptación. La
desaparición de una especie puede afectar a otras muchas y desencadenar la
extinción de otras que se alimentan de ella o les sirve de hábitat. Además, todas las
especies tienen una serie de derechos que no podemos olvidar.
86
Situación en España
España es el país europeo con mayor diversidad biológica, unas 80.000 especies
han sido catalogadas en nuestro país. Esto se debe a unas características peculiares:
1.- CONFIGURACIÓN DEL RELIEVE:
Las cordilleras al estar orientadas de este a oeste, permiten la existencia de valles y
mesetas con una altura superior a los 600 metros.
2.- CONTRASTES CLIMÁTICOS, LITOLÓGICOS Y OROGRÁFICOS:
España es un país muy heterogéneo, con diferentes tipos de climas y muy variados
ecosistemas, incluidas las peculiaridades de las Islas Canarias.
3.- RED HIDROGRÁFICA COMPLEJA:
Hay 75.000 km de ríos, que desembocan en dos vertientes: Atlántica y Mediterránea,
alrededor de 1.000 embalses y 1.500 humedales.
87
Mucha más información en la webquest “La biodiversidad amenazada en España”
Pérdida de biodiversidad
En la actualidad, aunque la diversidad ha alcanzado su máxima cota a lo largo de la
historia de la vida en el planeta, se está produciendo una “ CRISIS DE LA
BIODIVERSIDAD”.
La extinción de las especies se está produciendo desde el año 1600 a un ritmo muy
superior al que debería ser por causas naturales.
Se estima que se pierden alrededor de 30.000 especies al año. Por lo que
podríamos hablar de la “ SEXTA EXTINCIÓN”, y en esta ocasión sería por
causas no naturales, es decir, por la acción directa del SER HUMANO.
88
Las causas de la pérdida de biodiversidad más importantes por
acción antrópica son:
 Colonización de zonas vírgenes.
 Deterioro por guerras, incendios, fragmentación de
ecosistemas.
 Bioinvasiones.
 Sobreexplotación de especies piscícolas y cinegéticas.
 Contaminación del aire, suelos y aguas.
 Técnicas agrícolas agresivas.
 Reforestación con monocultivos.
89
1.- CONTAMINACIÓN, DESTRUCCIÓN Y FRAGMENTACIÓN DE ECOSISTEMAS:
• La CONTAMINACIÓN se debe principalmente al uso de pesticidas, fertilizantes,
vertidos, emisiones industriales y residuos de diversos orígenes, que son vertidos
directamente o indirectamente a través de la atmósfera o las aguas hasta el
ecosistema. Provocan una verdadera cadena desde los consumidores directos hasta los
niveles tróficos más altos, con la consiguiente bioacumulación.
• La DESTRUCCIÓN Y FRAGMENTACIÓN DE HÁBITATS, se suele producir como
consecuencia del desarrollo agrícola, industrial y urbano, que provoca deforestación,
sobrepastoreo, crecimiento de las tierras de cultivo y de las ciudades, construcción de
carreteras, etc.
Claros ejemplos de este proceso son la destrucción de las selvas tropicales,
de los humedades, de los bosques, de los arrecifes coralinos... Cuando las
especies ven reducido su espacio natural se produce el “EFECTO ISLA”.
La endogamia y la deriva genética puede arrastrar a una especie a su
desaparición.
90
2.- EXPLOTACIÓN DIRECTA DE LAS ESPECIES
Se puede producir por excesiva presión cinegética sobre determinadas especies,
por sobrepesca, por coleccionismo y uso de mascotas.
Ejemplos:
En España, el consumo de chanquetes y, en general, de peces inmaduros que se
prohibió hace años, pero aún son muchas las personas que incumplen las leyes,
tanto en su pesca, como en su venta y consumo.
La caza de búfalos, de lobos, de elefantes para conseguir sus colmillos, pieles de
animales, cuernos de rinocerontes, o también en España el “consumo de pajaritos
fritos” ( jilgueros, verderones, pardillo común, verdecillos...).
También se puede incluir la desaparición de especies por selección humana, en
favor de otras más rentables y útiles. Esto supone una pérdida importante de
diversidad genética.
91
3.- INTRODUCCIÓN DE ESPECIES ALÓCTONAS EN LOS ECOSISTEMAS
Estas especies compiten con las autóctonas, desplazándolas, alimentándose de ellas,
actuando como parásitos o contagiándoles enfermedades.
El ser humano ha acentuado el proceso natural, ya sea intencionadamente o
accidentalmente:
 Introducción de especies con finalidades médicas, ornamentales o alimentarias:
maíz, patata, tomate, calabaza, pimiento, tabaco, alubias ... procedentes de
América, o el traslado allí del caucho y el algodón.
 Lucha contra las especies invasoras mediante la introducción de su enemigo
natural, como ocurrió en Australia, introduciendo primero el conejo y después el
virus de la mixomatosis, que redujo drásticamente la población de conejos.
 También se han introducido especies como mascotas, que cuando alcanzan
grandes tamaños son abandonadas en el ecosistema, causando grandes estragos al
carecer de depredadores naturales.
92
El desarrollo de las comunicaciones es otro factor
importante, se facilita el mecanismo de transporte de
plagas y enfermedades.
Otro caso es la comunicación que el canal de Panamá ha
producido entre el océano Atlántico y el Pacífico, o el de
Suez que ha comunicado el Océano Índico, el Mar Rojo y
el Mediterráneo.
Uno de los casos más importantes ha sido la invasión del
alga Caulerpa taxifolia en el Mediterráneo, procedente
de un acuario, esta especie típica del Pacífico se ha
extendido rápidamente, desplazando a la flora y fauna
autóctona. Esta alga es tóxica para las especies herbívoras
mediterráneas, por lo que constituye un grave peligro
para el ecosistema mediterráneo.
En Sevilla, la introducción del cangrejo americano en el
Guadalquivir ha dejado al cangrejo autóctono al borde de
la extinción.
93
Causas de la pérdida de la Biodiversidad en España
 SOBREEXPLOTACIÓN AGRICOLA, SOBREPASTOREO Y SOBREPESCA.
 DEFORESTACIÓN: Especialmente, en Extremadura y en el Norte de España.
 ALTERACIÓN DE LOS CICLOS HIDROLÓGICOS REGIONALES:
 Destrucción de humedales, sobreexplotación de acuíferos, destrucción de sotos
e inundación de valles.
 CONTAMINACIÓN DE AGUAS SUBTERRÁNEAS Y SUPERFICIALES:
 Por vertidos incontrolados y el uso de plaguicidas e insecticidas.
 INTRODUCCIÓN DE ESPECIES EXÓTICAS: Importante, sobre todo en las islas.
 COMERCIO CON ESPECIES SILVESTRES:
 La manzanilla real de Sierra Nevada está prácticamente extinguida (Hay 91
especies endémicas).
 En Cazorla hay 30 endemismos
 El 25% de la flora canaria es endémica.
94
CONSERVAR LA BIODIVERSIDAD
En España contamos con 15 Parques Nacionales ( Doñana, Sierra Nevada,
Monfragüe, Teide, Garajonay, Timanfaya, Caldera de Taburiente, Islas Atlánticas,
Picos de Europa, Ordesa, Aigües Tortes, Cabrera, Cabañeros, Las Tablas de Daimiel
y Sierra de Guadarrama), algunos Parques Regionales en Comunidades
Autónomas (p. ej. en Madrid) y numerosos Parques Naturales. Mucho más
numerosas son las Reservas Naturales, los Monumentos Naturales y los Paisajes
Singulares Protegidos.
Además, hay figuras de protección a nivel europeo (Red Natura 2000) y mundial
(Reservas de la Biosfera de la UNESCO).
Para conservar la biodiversidad se actúa principalmente de dos formas:
1.“in situ”, mediante protección de espacios naturales y conservación de
especies en peligro de extinción en su propio hábitat.
2.“ex situ”, mediante la conservación del material genético de las especies fuera
de su hábitat natural: centros de investigación, zoológicos, invernaderos, bancos
de semillas, etc.
95
EVITAR LA PÉRDIDA DE BIODIVERSIDAD
 PROTECCIÓN DE LAS ESPECIES EN PELIGRO DE EXTINCIÓN.
 ADMINISTRACIÓN DE LA VIDA SILVESTRE:
Épocas de coto y veda, Leyes de caza, control del ecoturismo, ayudas al
desarrollo…
 PROTECCIÓN DE ECOSISTEMAS:
Establecer suficientes espacios naturales protegidos (ENP). El tamaño debe
ser suficiente para garantizar la sostenibilidad del espacio. Los beneficios de la
protección de estos espacios son muchos (preservación de la biodiversidad,
conservación de los recursos, impiden la erosión, generan turismo, estabilizan el
clima, depuran el aire... ) pero también sus amenazas (la presión turística genera
ruidos, desperdicios, vandalismo, deterioro de veredas…).
 BANCOS DE GENES, JARDINES BOTÁNICOS Y ZOOLÓGICOS:
Suponen un recurso en los casos en que la pervivencia natural sea imposible,
impiden la extinción y desaparición de la especie y posibilitan su
reimplantación cuando las circunstancias cambien.
96

More Related Content

What's hot (20)

Ecologia
EcologiaEcologia
Ecologia
 
El nicho
El nichoEl nicho
El nicho
 
Ecologia presentacion
Ecologia presentacionEcologia presentacion
Ecologia presentacion
 
Factores Bióticos y abióticos
Factores Bióticos y abióticosFactores Bióticos y abióticos
Factores Bióticos y abióticos
 
Conozcamos el ecosistema
Conozcamos el ecosistemaConozcamos el ecosistema
Conozcamos el ecosistema
 
Biodiversidad
BiodiversidadBiodiversidad
Biodiversidad
 
Ecosistemas
EcosistemasEcosistemas
Ecosistemas
 
Ecosistemas
Ecosistemas Ecosistemas
Ecosistemas
 
Atributos y estructura de las comunidades naturales
Atributos y estructura de las comunidades naturalesAtributos y estructura de las comunidades naturales
Atributos y estructura de las comunidades naturales
 
Dinámica de poblaciones y comunidades biológicas - Parte 3
Dinámica de poblaciones y comunidades biológicas - Parte 3Dinámica de poblaciones y comunidades biológicas - Parte 3
Dinámica de poblaciones y comunidades biológicas - Parte 3
 
Ecologia de comunidades
Ecologia de comunidadesEcologia de comunidades
Ecologia de comunidades
 
POBLACIÓN, COMUNIDAD, ECOSISTEMA Y BIOSFERA.pdf
POBLACIÓN, COMUNIDAD, ECOSISTEMA Y BIOSFERA.pdfPOBLACIÓN, COMUNIDAD, ECOSISTEMA Y BIOSFERA.pdf
POBLACIÓN, COMUNIDAD, ECOSISTEMA Y BIOSFERA.pdf
 
Comunidades biológicas
Comunidades biológicasComunidades biológicas
Comunidades biológicas
 
La estructura de los ecosistemas 2011
La estructura de los ecosistemas 2011La estructura de los ecosistemas 2011
La estructura de los ecosistemas 2011
 
Concepto de ecosistema
Concepto de ecosistemaConcepto de ecosistema
Concepto de ecosistema
 
Biosfera
BiosferaBiosfera
Biosfera
 
Productividad De Los Ecosistemas
Productividad De Los EcosistemasProductividad De Los Ecosistemas
Productividad De Los Ecosistemas
 
Flujo de energia en los ecosistemas
Flujo de energia en los ecosistemasFlujo de energia en los ecosistemas
Flujo de energia en los ecosistemas
 
Nicho Ecológico
Nicho Ecológico Nicho Ecológico
Nicho Ecológico
 
Productividad ecologica
Productividad ecologicaProductividad ecologica
Productividad ecologica
 

Viewers also liked

La Tierra y la teoría de sistemas
La Tierra y la teoría de sistemasLa Tierra y la teoría de sistemas
La Tierra y la teoría de sistemaspepe.moranco
 
La información ambiental y sus instrumentos
La información ambiental y sus instrumentosLa información ambiental y sus instrumentos
La información ambiental y sus instrumentospepe.moranco
 
La humanidad y el medio ambiente
La humanidad y el medio ambienteLa humanidad y el medio ambiente
La humanidad y el medio ambientepepe.moranco
 
Gestión ambiental
Gestión ambientalGestión ambiental
Gestión ambientalpepe.moranco
 
Fuentes info ambiental
Fuentes info ambientalFuentes info ambiental
Fuentes info ambientalpepe.moranco
 
Recursos de la biosfera 2013
Recursos de la biosfera 2013Recursos de la biosfera 2013
Recursos de la biosfera 2013Alberto Hernandez
 
Recursos de la biosfera y el suelo
Recursos de la biosfera y el sueloRecursos de la biosfera y el suelo
Recursos de la biosfera y el suelopepe.moranco
 
Atmósfera y climatología
Atmósfera y climatologíaAtmósfera y climatología
Atmósfera y climatologíapepe.moranco
 
Riesgos relacionados con los sistemas fluidos
Riesgos relacionados con los sistemas fluidosRiesgos relacionados con los sistemas fluidos
Riesgos relacionados con los sistemas fluidospepe.moranco
 
Ejercicios libro t4
Ejercicios libro t4Ejercicios libro t4
Ejercicios libro t4eider_92
 
Etiqueta alimentos
Etiqueta alimentosEtiqueta alimentos
Etiqueta alimentospepe.moranco
 
Trastornos de la conducta alimenticia (tca)
Trastornos de la conducta alimenticia (tca)Trastornos de la conducta alimenticia (tca)
Trastornos de la conducta alimenticia (tca)pepe.moranco
 
Enfermedades nutricionales
Enfermedades nutricionalesEnfermedades nutricionales
Enfermedades nutricionalespepe.moranco
 
Toxiinfecciones alimentarias
Toxiinfecciones alimentarias Toxiinfecciones alimentarias
Toxiinfecciones alimentarias aulasaludable
 
Tema 7 riesgos geologicos externos
Tema 7 riesgos geologicos externosTema 7 riesgos geologicos externos
Tema 7 riesgos geologicos externospacozamora1
 
Lo Tecnológico en Hoteles
Lo Tecnológico en HotelesLo Tecnológico en Hoteles
Lo Tecnológico en HotelesFrancis Duarte
 

Viewers also liked (20)

La Tierra y la teoría de sistemas
La Tierra y la teoría de sistemasLa Tierra y la teoría de sistemas
La Tierra y la teoría de sistemas
 
La información ambiental y sus instrumentos
La información ambiental y sus instrumentosLa información ambiental y sus instrumentos
La información ambiental y sus instrumentos
 
La humanidad y el medio ambiente
La humanidad y el medio ambienteLa humanidad y el medio ambiente
La humanidad y el medio ambiente
 
Gestión ambiental
Gestión ambientalGestión ambiental
Gestión ambiental
 
Fuentes info ambiental
Fuentes info ambientalFuentes info ambiental
Fuentes info ambiental
 
Recursos de la biosfera 2013
Recursos de la biosfera 2013Recursos de la biosfera 2013
Recursos de la biosfera 2013
 
Recursos de la biosfera y el suelo
Recursos de la biosfera y el sueloRecursos de la biosfera y el suelo
Recursos de la biosfera y el suelo
 
Atmósfera y climatología
Atmósfera y climatologíaAtmósfera y climatología
Atmósfera y climatología
 
Riesgos relacionados con los sistemas fluidos
Riesgos relacionados con los sistemas fluidosRiesgos relacionados con los sistemas fluidos
Riesgos relacionados con los sistemas fluidos
 
Tema 3
Tema 3Tema 3
Tema 3
 
Ejercicios libro t4
Ejercicios libro t4Ejercicios libro t4
Ejercicios libro t4
 
Exercicios t3 CCTMA
Exercicios t3 CCTMAExercicios t3 CCTMA
Exercicios t3 CCTMA
 
Teledeteccion
TeledeteccionTeledeteccion
Teledeteccion
 
Etiqueta alimentos
Etiqueta alimentosEtiqueta alimentos
Etiqueta alimentos
 
Exercicios t2
Exercicios t2Exercicios t2
Exercicios t2
 
Trastornos de la conducta alimenticia (tca)
Trastornos de la conducta alimenticia (tca)Trastornos de la conducta alimenticia (tca)
Trastornos de la conducta alimenticia (tca)
 
Enfermedades nutricionales
Enfermedades nutricionalesEnfermedades nutricionales
Enfermedades nutricionales
 
Toxiinfecciones alimentarias
Toxiinfecciones alimentarias Toxiinfecciones alimentarias
Toxiinfecciones alimentarias
 
Tema 7 riesgos geologicos externos
Tema 7 riesgos geologicos externosTema 7 riesgos geologicos externos
Tema 7 riesgos geologicos externos
 
Lo Tecnológico en Hoteles
Lo Tecnológico en HotelesLo Tecnológico en Hoteles
Lo Tecnológico en Hoteles
 

Similar to Circulación de materia y energía en la ecosfera

Circulación de materia y energía en la ecosfera
Circulación de materia y energía en la ecosferaCirculación de materia y energía en la ecosfera
Circulación de materia y energía en la ecosferapepe.moranco
 
Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)jotesoul
 
Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)jotesoul
 
Aporte individual noel javier-gómez_mejía
Aporte individual noel javier-gómez_mejíaAporte individual noel javier-gómez_mejía
Aporte individual noel javier-gómez_mejíajavigome
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1javigome
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1javigome
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1javigome
 
Ecología unc
Ecología uncEcología unc
Ecología uncorvy
 
Unidades basicas de la ecologia
Unidades basicas de la ecologiaUnidades basicas de la ecologia
Unidades basicas de la ecologiajodaes
 
Onceptos basicos
Onceptos basicosOnceptos basicos
Onceptos basicoselssalinas
 
Mód 2 conceptos-basicos
Mód 2 conceptos-basicosMód 2 conceptos-basicos
Mód 2 conceptos-basicosgimcam
 
Vargas claudia aporte individualcolaborativo ecología
Vargas claudia aporte individualcolaborativo ecologíaVargas claudia aporte individualcolaborativo ecología
Vargas claudia aporte individualcolaborativo ecologíaClaudia Galan
 
Mauricio ortiz actividad individual ecologia
Mauricio ortiz actividad individual ecologiaMauricio ortiz actividad individual ecologia
Mauricio ortiz actividad individual ecologiaMauricio Ortiz
 
Momento individual, leonardo cardona patiño
Momento individual, leonardo cardona patiñoMomento individual, leonardo cardona patiño
Momento individual, leonardo cardona patiñoleonardo cardona patiño
 

Similar to Circulación de materia y energía en la ecosfera (20)

Circulación de materia y energía en la ecosfera
Circulación de materia y energía en la ecosferaCirculación de materia y energía en la ecosfera
Circulación de materia y energía en la ecosfera
 
Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)
 
Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)Tema 9 la ecosfera1 (1)
Tema 9 la ecosfera1 (1)
 
Ecologia
Ecologia Ecologia
Ecologia
 
Aporte individual noel javier-gómez_mejía
Aporte individual noel javier-gómez_mejíaAporte individual noel javier-gómez_mejía
Aporte individual noel javier-gómez_mejía
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1
 
Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1Noel javier gómez_mejia_ecologia1
Noel javier gómez_mejia_ecologia1
 
Biosfera
BiosferaBiosfera
Biosfera
 
Ecología unc
Ecología uncEcología unc
Ecología unc
 
Unidades basicas de la ecologia
Unidades basicas de la ecologiaUnidades basicas de la ecologia
Unidades basicas de la ecologia
 
Onceptos basicos
Onceptos basicosOnceptos basicos
Onceptos basicos
 
Mód 2 conceptos-basicos
Mód 2 conceptos-basicosMód 2 conceptos-basicos
Mód 2 conceptos-basicos
 
El ecosistema
El ecosistemaEl ecosistema
El ecosistema
 
Vargas claudia aporte individualcolaborativo ecología
Vargas claudia aporte individualcolaborativo ecologíaVargas claudia aporte individualcolaborativo ecología
Vargas claudia aporte individualcolaborativo ecología
 
Tema 9 la ecosfera1
Tema 9 la ecosfera1Tema 9 la ecosfera1
Tema 9 la ecosfera1
 
Ecology eso4
Ecology eso4Ecology eso4
Ecology eso4
 
La ecología
La ecologíaLa ecología
La ecología
 
Mauricio ortiz actividad individual ecologia
Mauricio ortiz actividad individual ecologiaMauricio ortiz actividad individual ecologia
Mauricio ortiz actividad individual ecologia
 
Momento individual, leonardo cardona patiño
Momento individual, leonardo cardona patiñoMomento individual, leonardo cardona patiño
Momento individual, leonardo cardona patiño
 

More from pepe.moranco

Tema2 humanidadyma
Tema2 humanidadymaTema2 humanidadyma
Tema2 humanidadymapepe.moranco
 
Procesos geológicos internos
Procesos geológicos internosProcesos geológicos internos
Procesos geológicos internospepe.moranco
 
Geo_interna_Tierra
Geo_interna_TierraGeo_interna_Tierra
Geo_interna_Tierrapepe.moranco
 
Modelado azonal y estructural
Modelado azonal y estructuralModelado azonal y estructural
Modelado azonal y estructuralpepe.moranco
 
Geomorfologia eso3
Geomorfologia eso3Geomorfologia eso3
Geomorfologia eso3pepe.moranco
 
Principales modelados del relieve
Principales modelados del relievePrincipales modelados del relieve
Principales modelados del relievepepe.moranco
 
Interpretación de cortes geológicos
Interpretación de cortes geológicosInterpretación de cortes geológicos
Interpretación de cortes geológicospepe.moranco
 
Historia geologica peninsula_iberica
Historia geologica peninsula_ibericaHistoria geologica peninsula_iberica
Historia geologica peninsula_ibericapepe.moranco
 
Recursos geológicos
Recursos geológicosRecursos geológicos
Recursos geológicospepe.moranco
 
El tiempo geológico
El tiempo geológicoEl tiempo geológico
El tiempo geológicopepe.moranco
 
Riesgos geológicos
Riesgos geológicosRiesgos geológicos
Riesgos geológicospepe.moranco
 
La Piedra Pómez o Pumita
La Piedra Pómez o PumitaLa Piedra Pómez o Pumita
La Piedra Pómez o Pumitapepe.moranco
 
Efectos contaminación atmosférica
Efectos contaminación atmosféricaEfectos contaminación atmosférica
Efectos contaminación atmosféricapepe.moranco
 
Geomorfologia intro
Geomorfologia introGeomorfologia intro
Geomorfologia intropepe.moranco
 

More from pepe.moranco (20)

Tema2 humanidadyma
Tema2 humanidadymaTema2 humanidadyma
Tema2 humanidadyma
 
Riesgos internos
Riesgos internosRiesgos internos
Riesgos internos
 
Procesos geológicos internos
Procesos geológicos internosProcesos geológicos internos
Procesos geológicos internos
 
Geo_interna_Tierra
Geo_interna_TierraGeo_interna_Tierra
Geo_interna_Tierra
 
Modelado azonal y estructural
Modelado azonal y estructuralModelado azonal y estructural
Modelado azonal y estructural
 
Biodiversidad
BiodiversidadBiodiversidad
Biodiversidad
 
El relieve
El relieveEl relieve
El relieve
 
Geomorfologia eso3
Geomorfologia eso3Geomorfologia eso3
Geomorfologia eso3
 
Principales modelados del relieve
Principales modelados del relievePrincipales modelados del relieve
Principales modelados del relieve
 
Interpretación de cortes geológicos
Interpretación de cortes geológicosInterpretación de cortes geológicos
Interpretación de cortes geológicos
 
Historia geologica peninsula_iberica
Historia geologica peninsula_ibericaHistoria geologica peninsula_iberica
Historia geologica peninsula_iberica
 
Recursos geológicos
Recursos geológicosRecursos geológicos
Recursos geológicos
 
El tiempo geológico
El tiempo geológicoEl tiempo geológico
El tiempo geológico
 
Riesgos geológicos
Riesgos geológicosRiesgos geológicos
Riesgos geológicos
 
Evolución humana
Evolución humanaEvolución humana
Evolución humana
 
La Piedra Pómez o Pumita
La Piedra Pómez o PumitaLa Piedra Pómez o Pumita
La Piedra Pómez o Pumita
 
La Pizarra
La PizarraLa Pizarra
La Pizarra
 
Efectos contaminación atmosférica
Efectos contaminación atmosféricaEfectos contaminación atmosférica
Efectos contaminación atmosférica
 
Geomorfologia intro
Geomorfologia introGeomorfologia intro
Geomorfologia intro
 
Geomorfologia 1
Geomorfologia 1Geomorfologia 1
Geomorfologia 1
 

Recently uploaded

CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxroberthirigoinvasque
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuelabeltranponce75
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxMaria Jimena Leon Malharro
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOluismii249
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
Ensayo Paes competencia matematicas 2 Preuniversitario
Ensayo Paes competencia matematicas 2 PreuniversitarioEnsayo Paes competencia matematicas 2 Preuniversitario
Ensayo Paes competencia matematicas 2 Preuniversitariolucianosaldivia3
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfRosabel UA
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesMarisolMartinez707897
 
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxAEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxhenarfdez
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxEliaHernndez7
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxpaogar2178
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 

Recently uploaded (20)

CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuela
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Ensayo Paes competencia matematicas 2 Preuniversitario
Ensayo Paes competencia matematicas 2 PreuniversitarioEnsayo Paes competencia matematicas 2 Preuniversitario
Ensayo Paes competencia matematicas 2 Preuniversitario
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxAEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 

Circulación de materia y energía en la ecosfera

  • 1. Circulación de materia y energía en la Ecosfera
  • 2. A escala global la TIERRA es un único ECOSISTEMA Todos los ecosistemas de la Tierra forman el ecosistema planetario o ECOSFERA
  • 3. Ecosfera: Es el conjunto formado por todos los ecosistemas de la tierra, o sea, es el gran ecosistema planetario. Biosfera: Es el conjunto formado por todos los seres vivos que habitan la tierra. Los límites están entre los aproximadamente 6.500 m de altitud y los 2.900- 3.000 m de las profundidades oceánicas. No es uniforme en grosor ni en densidad. Es, por tanto, la biocenosis o comunidad ecológica (parte biótica) de la ecosfera. 6.500 m 3.000 m
  • 4. La biosfera es un término que también se refiere al conjunto de todos los seres vivos que habitan la tierra y se puede considerar un sistema: 1. Dinámico 2. Abierto 3. Discontinuo 4. Interactivo con los otros sistemas terrestres (hidrosfera, atmósfera, geosfera)
  • 5. COMPOSICIÓN Y ESTRUCTURA DE LA BIOSFERA o POBLACIÓN: Conjunto de seres vivos de la misma especie que viven en un ecosistema en un momento determinado. o ESTRUCTURA DE UN ECOSISTEMA : Se refiere a la forma en que disponen las poblaciones y las interrelaciones que tienen lugar entre ellos. Estas relaciones se basan básicamente en términos de FLUJO DE ENERGÍA Y CICLOS DE MATERIA o TEORIA DE SISTEMAS.  Desde el punto de vista de los modelos se considera que entre las poblaciones de seres vivos y el medio existen una serie de relaciones CAUSALES.  Desde el punto de vista termodinámico, la biosfera debe considerarse como un subsistema ABIERTO (intercambia materia y energía), mientras que la Tierra en su conjunto sería un sistema CERRADO (solamente intercambia energía).
  • 6. ECOSISTEMA Es un sistema interactivo constituido por componentes físicos, químicos y biológicos del ambiente Los organismos que viven en un área particular junto con el ambiente físico con el que interactúan constituyen un ecosistema
  • 7. Los componentes básicos de un ecosistema son... Elementos abióticos Productores consumidores Energía radiante Respiración Nutrientes CO2 O2 H 2O Consumo Descomposición Deposición CO2 O2 H 2O Nutrientes Caída de hojas Translocación
  • 8. Dinámica de la ecosfera El estudio de la ecosfera es muy complejo, se recurre a unidades más pequeñas, los ECOSISTEMAS. Los ecosistemas son unidades naturales formados por componentes vivos y no vivos que interactúan entre sí y cuyos límites son mas o menos definibles. Se compone de: Componentes vivos: BIOCENOSIS Componentes no vivos: BIOTOPO
  • 9. Biotopo Se denomina así a una zona de características ambientales uniformes ocupada por una comunidad de seres vivos. Es un conjunto de factores físico-químicos abióticos que rodean a una comunidad y que se compone de un medio físico y unos factores del medio (Factores abióticos) MEDIO FÍSICO: Es el lugar donde los seres vivos desarrollan sus funciones vitales. Básicamente hay dos tipos de medios: Líquido y gaseoso y ambos tienen un límite inferior sólido sobre el que se sustentan los organismos. FACTORES ABIÓTICOS (limitantes): Son las características fisicoquímicas del medio ambiente. Cada medio tiene unas características propias y otras más generales. Vamos a estudiar cómo influyen algunos de estos factores en los ecosistemas: Temperatura, luz, humedad, composición química, salinidad, presión, etc. Estos últimos son determinantes de la distribución y abundancia de los seres vivos, ya que éstos sólo pueden soportarlos dentro de ciertos límites: intervalo biológico o límites de tolerancia. Cada factor abiótico tiene también su punto óptimo.
  • 10. Biotopo Existen organismos que pueden vivir dentro de intervalos de valores muy amplios de determinado factor abiótico. Son los llamados organismos eurioicos o generalistas (euritermos, eurihalinos, eurihigros, etc.). Otros, por el contrario, sólo toleran intervalos muy pequeños, llamándose organismos estenoicos o especialistas (estenotermos, estenohalinos, etc.). Puede ocurrir que un organismo sea eurioico para algunos factores y estenoico para otros. Se denomina valencia ecológica al campo o intervalo de tolerancia de una determinada especie respecto a un factor cualquiera del medio (como pueden ser la luz, la temperatura, la humedad, el pH o la concentración de fósforo, nitrógeno u otro elemento químico) que actúa como factor limitante.
  • 11. Nºindividuos Valor del factor limitante Valencia ecológica Estenoica Eurioica
  • 12. Comparación entre estrategas de la r y de la k Característica Estrategas de la r Estrategas de la k Tiempo de vida Corto Largo Duración del desarrollo Corto Largo Reproducción de los individuos Pronto, sólo una vez Tarde, varias veces Descendientes Muchos Pocos, con cuidado de las crías Tamaño de la población Muy variable, suele estar por debajo de la capacidad de carga del ecosistema Bastante constante, próximo a la capacidad de carga del ecosistema Mortalidad A menudo catastrófica Dependiente de la densidad de población Clima, alimentación Inseguro, no previsible Constante o previsiblemente variable Hábitats ocupados Tierra virgen, hábitats inestables, a menudo recolonización anual Hábitats estables 12Eduardo Gómez La Ecosfera 12
  • 13. Biocenosis Está formada por los seres vivos y las relaciones que existen entre ellos. Los seres vivos no viven solos ni aislados, sino que se agrupan formando poblaciones de la misma especie y comunidades junto con otras especies. FACTORES BIÓTICOS: Son las relaciones que existen entre los diferentes seres vivos. Pueden ser de dos tipos: • Intraespecíficas, cuando se producen entre individuos de la misma especie. • Interespecíficas cuando se producen entre individuos de las diferentes especies que habitan en el ecosistema. Algunas de las relaciones que vamos a estudiar son: la depredación, el parasitismo, la simbiosis, el colonialismo, las asociaciones familiares....
  • 14.
  • 15.
  • 16. Hábitat y Nicho ecológico Cada una de las especies del ecosistema tiene su HÁBITAT: espacio físico que reúne las condiciones físico-químicas adecuadas para que esa especie pueda vivir. También, cada especie tiene su NICHO ECOLÓGICO, que supone el papel, la función que cada especie desempeña en el ecosistema. Es decir, el conjunto de circunstancias, relaciones con el ambiente, conexiones tróficas y funciones ecológicas que definen el “oficio” en el ecosistema de esa especie determinada. El concepto de nicho deriva de la competencia entre las especies, ya que si dos de ellas tienen el mismo oficio en el ecosistema, es decir, el mismo nicho ecológico, competirán entre sí y una de las dos especies quedará excluida. Puede ser útil considerar al hábitat como la dirección de un organismo (donde vive) y al nicho ecológico como su profesión (lo que hace biológicamente). El nicho ecológico no es un espacio demarcado físicamente, sino una abstracción que comprende todos los factores físicos, químicos, fisiológicos y bióticos que necesita un organismo para vivir.
  • 17. Tres especies de garzas comparten un mismo hábitat, pero tienen distinto nicho ecológico. Anidan en distinto sitio, se alimentan de presas diferentes, su actividad no es la misma….. 1 2 3
  • 18. Una sola especie puede ocupar diferentes nichos en distintas regiones, en función de factores como el alimento disponible y el número de competidores. Algunos organismos, por ejemplo, los animales con distintas fases en su ciclo vital, ocupan sucesivamente nichos diferentes. Un renacuajo es un consumidor primario, que se alimenta de plantas, pero la rana adulta es un consumidor secundario y digiere insectos y otros animales. En contraste, tortugas jóvenes de río son consumidores secundarios, comen caracoles, gusanos e insectos, mientras que las tortugas adultas son consumidores primarios y se alimentan de plantas verdes, como por ejemplo el apio acuático.
  • 19. Se pueden distinguir dos tipos de nichos: Nicho ecológico potencial (IDEAL): Es el que satisface todas las necesidades de una especie. Muy difícil de alcanzar (en laboratorio o en cautividad, pero no en la vida real) Nicho ecológico real: Es el nicho que ocupa una especie en condiciones naturales y donde influye mucho la competencia. Existen especies muy próximas que ocupan nichos ecológicos distintos (murciélagos de América central) y otras especies que ocupan nichos equivalentes en zonas geográficas alejadas para evitar la competencia (canguro, bisonte, vaca…) A estos últimos tipos de especies se les denomina VICARIAS
  • 21. Mismo nicho ecológico, distinto hábitat Mismo hábitat, distinto nicho ecológico
  • 22. Cadenas y redes tróficas La materia y la energía circulan en los ecosistemas en forma de relaciones tróficas (relaciones alimentarias), que se producen entre los organismos, vivos o muertos. Se representan mediante CADENAS TRÓFICAS, en las que cada organismo ocupa una posición llamada ESLABONES O NIVELES TRÓFICOS. Hay tres grandes grupos o niveles tróficos: a) Productores b) Consumidores c) Descomponedores Cuando varias cadenas tróficas se entrecruzan forman REDES TRÓFICAS. La representación se puede hacer mediante PIRÁMIDES TRÓFICAS.
  • 23. Productores Son los ORGANISMOS AUTÓTROFOS, constituyen el primer eslabón de la cadena alimentaria. Pueden ser: Fotoautótrofos: Son organismos FOTOSINTÉTICOS. Usan la luz del sol. Algas verdeazuladas (bacterias fotosintéticas), algas eucariotas unicelulares y pluricelulares (protistas) y el reino de las plantas o metafitos. Quimioautótrofos: Son organismos QUIMIOSINTÉTICOS. Usan energía procedente de reacciones químicas inorgánicas exotérmicas. Son las bacterias nitrificantes, sulfobacterias, etc.
  • 24. o Se caracterizan por usar la energía solar para producir moléculas orgánicas (por ejemplo hidratos de carbono) y otros compuestos que luego serán transformados en energía química. o Los productores constituyen el 99% de toda la materia orgánica del mundo vivo. o Son organismos capaces de captar y aprovechar la energía solar o lumínica (que es prácticamente toda la energía exterior que recibe el ecosistema) para transformar sustancias inorgánicas (agua, dióxido de carbono y sales minerales), pobres en energía química, en sustancias orgánicas ricas en energía química. o En los ecosistemas terrestres, los principales productores primarios son las plantas superiores: angiospermas y gimnospermas. o Los mayores productores primarios de los ecosistemas acuáticos son las algas que a menudo forman el fitoplancton en las capas superficiales de los océanos y lagos.
  • 26. Consumidores Estos organismos aprovechan la materia orgánica de los productores para convertirla en materia orgánica propia. Consumidores primarios: Se alimentan de los productores primarios y son los denominados herbívoros. • En la tierra, los herbívoros típicos incluyen insectos, reptiles, pájaros y mamíferos. • En los ecosistemas acuáticos (de agua dulce y salada) los herbívoros son típicamente pequeños crustáceos y moluscos. Estos, junto con los protozoos forman el zooplancton, el cual se alimenta del fitoplancton. Consumidores secundarios: Este nivel está constituido por animales que comen otros animales, se alimentan de los herbívoros y por lo tanto son carnívoros, por ejemplo: halcón, orca, carpa, etc. Consumidores terciarios: Se alimentan de los consumidores secundarios, y por lo tanto también son carnívoros (supercarnívoros), por ejemplo: león, cocodrilo, etc.
  • 27. Saprófagos Es un tipo de consumidores. Se alimentan de materia orgánica muerta, pueden ser: • NECRÓFAGOS O CARROÑEROS. Se alimentan de cadáveres y materia orgánica descompuesta. • COPRÓFAGOS. Se alimentan de excrementos. • DETRITÍVOROS. Se alimentan de materia orgánica muy fragmentada, como los pólipos y las lombrices. Omnívoros Otro tipo especial de consumidores. Usan más de una fuente de materia orgánica, es decir, ocupan varios niveles tróficos.
  • 28. Descomponedores Son organismos que aprovechan la materia y la energía que aún contienen los restos de seres vivos (cuerpos muertos, deyecciones, etc), descomponiendo la materia orgánica en materia inorgánica (descomponedores mineralizadores) A este grupo pertenecen los hongos, bacterias y otros microorganismos, quienes segregan enzimas digestivas sobre el material muerto o de desecho y luego absorben los productos de la digestión (descomponedores saprofitos) Los animales carroñeros (buitres, algunos córvidos, hienas, etc.) no se consideran descomponedores, ya que aprovechan los restos de animales muertos. Son fundamentales en los ecosistemas puesto que reciclan la materia, así devuelven la materia inorgánica a los productores.
  • 29. Se alimentan del cuerpo muerto de otros organismos o de sus productos de desecho Disipan energía y devuelven nutrientes al ecosistema para su reciclaje DESCOMPONEDORES macrodescomponedores microdescomponedores Colémbolos, ácaros, miriápodos, lombrices, babosas, moluscos, cangrejos... Bacterias y Hongos
  • 30. Redes tróficas Las múltiples interacciones existentes entre los individuos impide definir individualmente con claridad una cadena trófica, ya que, según las circunstancias, un depredador puede al mismo tiempo ser presa. Por ello es más propio hablar de red alimentaria o trófica. En una red alimentaria cada individuo ocupa un nudo en una intersección de relaciones tróficas. Si un nudo desaparece (extinción de una especie), el ecosistema en conjunto reajusta sus hábitos alimentarios, aunque este proceso es muy lento. ¿Qué niveles tróficos pueden ocupar los herrerillos en el robledal?
  • 31. ¿Qué nivel trófico tiene la ballena azul?
  • 32. ¿Qué especies ocupan la cúspide de la pirámide trófica y qué niveles tienen?
  • 33. Ciclo de la materia • La materia es el vehículo de la transferencia de energía, que se transforma continuamente mediante reacciones químicas de OXIDO-REDUCCIÓN. • Cuando la materia se reduce, almacena ENERGÍA QUÍMICA y cuando se oxida, la libera en también en forma de ENERGÍA QUÍMICA O CALOR. • A diferencia de la Energía, la Materia puede circular en el ecosistema. • La circulación consiste en la transferencia desde los medios inertes en donde suele estar OXIDADA, hasta los seres vivos en donde aparece REDUCIDA y de nuevo a los medios inertes. • Los procesos implicados en estas transformaciones son LA FOTOSÍNTESIS Y LA RESPIRACIÓN. • La circulación de la materia en los ecosistemas es abierta, ya que siempre hay salida y entrada de organismos, fijación de gases, pérdidas por erosión, precipitación, gasificación, lixiviados... • Sin embargo, si tenemos en cuenta el sistema TIERRA, el CICLO de la materia puede considerarse CERRADO, aunque algunos materiales pueden quedar fuera del circuito durante mucho tiempo, permaneciendo en yacimientos.
  • 35. Flujo de energía En los ecosistemas, la energía fluye de un nivel trófico a otro de forma unidireccional, no forma un ciclo cerrado como la materia. De la energía solar que llega a la superficie de un ecosistema se aprovecha sólo un 1 % aproximadamente y se almacena mediante la fotosíntesis. En el mismo ecosistema hay pérdida de energía, porque cerca de la mitad de la producción primaria es gastada por los productores en su metabolismo y se pierde como calor, y sólo la otra mitad está disponible para los consumidores como alimento (carbohidratos, celulosa, lignina, grasas, proteínas, etc.). En la cadena trófica, al pasar de un eslabón a otro, hay más pérdida de energía a través de la respiración y los procesos metabólicos de los individuos, porque el mantener vivo un organismo implica gastar, en forma de calor, parte de la energía captada; las sustancias no digeribles, que son excretadas o regurgitadas y descompuestas por los detritívoros; y la muerte de individuos, que ocasiona pérdidas, pero la energía es devuelta, en parte, por los descomponedores.
  • 36. Se estima que el índice de aprovechamiento de los recursos en los ecosistemas terrestres es como máximo del 10%, y que de un nivel trófico a otro no pasa más de un 10% de la energía del nivel anterior, por eso las cadenas tróficas no pueden tener más de 4 o 5 eslabones. En una cadena trófica, la energía que entra es igual a la acumulada en forma de materia orgánica en cada nivel más la desprendida en forma de calor, luego la energía se conserva.
  • 37. Flujo de energía en el ecosistema Productores Consumidores primarios Consumidores secundarios Consumidor final Descomponedores Calor Energía solar Calor Calor Calor Calor
  • 38. En el flujo de energía y de nutrientes inorgánicos, es posible hacer algunas generalizaciones: o La fuente primaria de energía (en la mayoría de los ecosistemas) es el Sol. o El destino final de la energía en los ecosistemas es perderse como calor. o La energía y los nutrientes pasan de un organismo a otro a través de la cadena alimenticia, a medida que un organismo se come a otro. o Los descomponedores extraen la energía que permanece en los restos de los organismos. o Los nutrientes inorgánicos son reciclados, pero la energía no.
  • 39. Parámetros tróficos Se usan para estudiar la estructura y el funcionamiento de los ecosistemas; pueden referirse a cada nivel trófico o al ecosistema completo. Los más usados son: 1. BIOMASA 2. PRODUCCIÓN BIOLÓGICA BRUTA Y NETA 3. PRODUCTIVIDAD DEL ECOSISTEMA 4. TIEMPO DE RENOVACIÓN 5. EFICIENCIA ECOLÓGICA
  • 40. Biomasa (B) Representa la cantidad de Energía (generalmente solar), fijada como materia orgánica viva o muerta en un nivel trófico, en un ecosistema o en la Biosfera. La BIOMASA se expresa de dos formas: 1. Peso seco de materia orgánica viva (fitomasa y zoomasa) y muerta (necromasa) por unidad de superficie (en zonas terrestres) o volumen (en zonas oceánicas). 2. Energía por unidad de superficie o volumen. En la Geosfera la biomasa vegetal es más abundante que la animal, aunque entre los diferentes puntos varía mucho. En la Hidrosfera la biomasa vegetal es menor que la animal.
  • 41. Se pueden considerar tres tipos de biomasa: 1.- BIOMASA PRIMARIA: La producida directamente por los productores. 2.- BIOMASA SECUNDARIA: La producida por consumidores y descomponedores. 3.- BIOMASA RESIDUAL: La producida como resultado de la acción antrópica, tanto de origen primario (serrín, paja, alpechín) o secundario ( estiércol, residuos alimenticios...).
  • 42. Producción (P) Es una medida del flujo de Energía que circula por un ecosistema o por cada nivel trófico. Es la cantidad de energía acumulada como materia orgánica por unidad de superficie o volumen y por unidad de tiempo, en el ecosistema o en determinado nivel trófico. Se expresa en unidades de biomasa o energía por unidad de superficie y tiempo: g de C/m2/día ; Kcal/ha/año ....
  • 43. Se puede diferenciar entre: PRODUCCIÓN PRIMARIA (Pp) • Energía capturada por los productores por unidad de superficie o volumen en una unidad de tiempo. • Depende de la Energía solar recibida y de una serie de factores que pueden actuar como limitantes. PRODUCCIÓN SECUNDARIA (Ps) • Energía capturada por el resto de los niveles tróficos por unidad de superficie o volumen en una unidad de tiempo.
  • 44. PRODUCCIÓN BRUTA (Pb) • Cantidad total de energía capturada por unidad de superficie o volumen por unidad de tiempo, generalmente en un año. • Hay Ppb (Producción primaria bruta) y Psb (Producción secundaria bruta). • Se corresponde con el porcentaje de alimento asimilado del total consumido. • En los carnívoros es un 40-60 % y en los herbívoros del 10-30 %.
  • 45. PRODUCCIÓN NETA (Pn) Cantidad de Energía almacenada por unidad de superficie o volumen en una unidad de tiempo y que puede ser potencialmente transferida al siguiente nivel trófico. Representa el aumento de la biomasa por unidad de tiempo y se calcula restando de la producción bruta la energía consumida en el proceso de respiración y automantenimiento (no asimilado): Pn = Pb – (R + NA)
  • 46. Los ecosistemas naturales de mayor producción son los arrecifes de coral, los estuarios, las zonas costeras, los bosques ecuatoriales y las zonas húmedas de los continentes. Los menos productivos son los desiertos y las zonas centrales de los océanos.
  • 47. Productividad (p) Es la relación entre la producción y la biomasa. p = P / B La productividad bruta será : pb = Pb / B La productividad neta (o tasa de renovación): pn (r) = Pn / B La tasa de renovación varía entre 0 (mínima) y 1 (máxima) e indica la producción de nueva biomasa en cada nivel trófico en relación con la existente. Representa, por tanto, la velocidad con que se renueva la biomasa.
  • 48. Productividad y tasa de renovación La tasa de renovación es en muchos casos un parámetro mucho mejor que la producción neta para valorar el flujo de energía de un ecosistema. Por ejemplo: El plancton tiene una producción menor que los vegetales terrestres, sin embargo tienen una mayor productividad porque su tasa de reproducción es muy alta y se renuevan muy rápidamente. Por este motivo la biomasa, que habitualmente es menor a medida que subimos en los escalones de la pirámide trófica, en este caso es al revés y la biomasa es mayor en los herbívoros que en los productores.
  • 49. Cuando se empieza a colonizar un territorio la productividad es muy alta, a medida que el territorio se va colonizando y se alcanza la estabilidad la biomasa alcanza un valor máximo y la productividad es mínima. • En un cultivo agrícola la tasa de renovación sería próxima a 1. • En un pastizal sería entre 0 y 1. • En un bosque maduro sería cercana al 0. Un ecosistema estable y muy organizado tiene una gran cantidad de biomasa y una elevada biodiversidad, pero su productividad es baja y disminuye el flujo de energía: entra mucha energía pero se gasta manteniendo una gran cantidad de biomasa. • La selva tropical tiene una producción muy alta pero una productividad cercana al 0. • En las explotaciones agrícolas, el ser humano extrae del ecosistema una gran parte o la totalidad de la biomasa al final de la temporada. Esto disminuye los gastos por respiración y un aumento de la productividad. Sin embargo debe reponerse al suelo la materia extraída.
  • 50. Tiempo de renovación Es el tiempo que tarda un nivel trófico, o un ecosistema completo, en renovar su biomasa. tr = B / Pn Mide el tiempo de permanencia de los elementos químicos dentro de las estructuras biológicas del ecosistema. Los productores pueden presentar dos estrategias en relación a su tr: 1. Especies rápidas. Son pequeños, de estructura y morfología simple, y con una tasa de reproducción alta. Fitoplancton 2. Especies lentas. Son de gran tamaño, estructura y morfología compleja, y una tasa de reproducción muy baja. Bosques de encinas. En los ecosistemas suelen estar presentes ambos tipos para asegurar un aporte energético suficiente al ecosistema. En un lago suele haber fitoplancton y algas más lentas. En un encinar hay también un estrato herbáceo.
  • 51. Eficiencia biológica Mide el rendimiento energético de un nivel trófico o de un ecosistema completo, es decir, la capacidad de incorporar materia orgánica a sus tejidos. Indica cuanta energía entra, se pierde o se acumula en cada nivel trófico o en un ecosistema completo. Se calcula mediante entradas y salidas: PRODUCTORES: Se puede medir mediante la relación: energía asimilada / energía solar incidente Los valores son muy bajos, entre el 1 y 3%. También se puede medir la relación Pn / Pb. Así se calculan las pérdidas por respiración, excreción,... En el fitoplancton supone del 10 al 40 %. En vegetales terrestres el 50% CONSUMIDORES: Se suele usar la relación: Pn / alimento ingerido o, para los ganaderos, Engorde / alimento ingerido.
  • 52. La eficiencia ecológica es la fracción de la producción neta de un determinado nivel trófico que se convierte en producción neta del nivel siguiente, es decir: Ef = (Pn / Pn del nivel anterior) × 100 Las medidas de eficiencia son interesantes para valorar los ecosistemas explotados por el ser humano, siempre que se contabilicen correctamente las entradas y salidas del sistema, especialmente los costes ocultos o INSUMOS: combustibles de las máquinas, gastos en semillas especiales, administración, vacunación de los animales, etc. Una manera de mejorar la eficiencia en la producción de alimentos es acortar las cadenas tróficas, obtenerlos de los primeros niveles tróficos. Así, se aprovecha mejor la energía que entra en el ecosistema y se puede alimentar a un mayor número de personas, aunque, según las recomendaciones de la FAO, para una alimentación completa es necesario añadir a la dieta vegetariana unos 60 g de proteínas al día.
  • 53. Pirámides ecológicas Son esquemas que se utilizan para representar cuantitativamente las relaciones tróficas entre los distintos niveles de un ecosistema. Se utilizan barras superpuestas que suelen tener una altura constante y una longitud proporcional al parámetro elegido, de manera que el área representada es proporcional al valor del parámetro que se mide. El nivel de los DESCOMPONEDORES no se suele representar, ya que es difícil de cuantificar. Se suelen usar tres tipos de pirámides: 1. Pirámides de energía 2. Pirámides de biomasa 3. Pirámides de números.
  • 54. PIRÁMIDES DE ENERGÍA Expresa el contenido energético que cada nivel trófico pone a disposición del nivel superior, es decir la producción neta de cada nivel. También se llaman PIRÁMIDES DE PRODUCCIÓN. Las unidades se suelen expresar en: Energía (Kcal o Kjul) / unidad de superficie y unidad de tiempo Siempre tendrán forma decreciente hacia arriba por la Ley del 10%. Proporciona información sobre el FLUJO ENERGÉTICO en el ecosistema.
  • 55. PIRÁMIDES DE BIOMASA Indican la biomasa acumulada en cada nivel trófico, expresada en: peso seco de materia orgánica / unidad de superficie o volumen o su equivalente en: energía / unidad de superficie o volumen. Estas pirámides se refieren a periodos de tiempo corto por lo que no informan sobre la cantidad de materia producida a lo largo del tiempo o de su velocidad de producción.
  • 56. Esto puede inducir a que en algunos momentos se observen PIRÁMIDES INVERTIDAS debido a que los datos se toman en un momento determinado, por ejemplo cuando los datos se toman en el momento de mayor consumo por parte de los herbívoros, como en algunos ecosistemas marinos. Esta situación sólo es posible temporalmente, ya que si se mantuviera mucho tiempo el ecosistema desaparecería. Proporciona información sobre LA CANTIDAD DE MATERIA ORGÁNICA PRESENTE EN CADA NIVEL TRÓFICO y sobre LA COMPOSICIÓN Y FUNCIONAMIENTO DEL ECOSISTEMA.
  • 57. PIRÁMIDES DE NÚMEROS Expresan el nº concreto de individuos de cada nivel trófico por unidad de superficie (medio terrestre) o volumen (medio acuático). La información que proporcionan NO ES ÚTIL SI SE QUIEREN COMPARAR DOS ECOSISTEMAS ya que considera igual a organismos muy diferentes (por ejemplo, saltamontes y vacas). En el caso de que incluyan parásitos pueden tener una forma INVERTIDA.
  • 58. Factores limitantes de la producción primaria Los factores limitantes de un proceso son los que, en determinadas condiciones, influyen limitando o impidiendo dicho proceso. Cualquier factor que influye en un proceso puede llegar a ser limitante si se cumple la ley del mínimo: “Cualquier proceso que depende de varios factores está controlado por el factor que más se aproxima al valor para el cual el proceso se detiene”. Los principales factores limitantes de la fotosíntesis son: • Temperatura y humedad • Falta de nutrientes • Luz, disposición y estructura de los fotosistemas
  • 59. 1. Temperatura y humedad Con respecto a la temperatura, un aumento excesivo provoca un descenso brusco en la fotosíntesis. Pero sin llegar a esos extremos, un clima cálido, tropical o desértico provoca también un descenso de la producción primaria debido al incremento de la fotorrespiración. Las plantas de climas húmedos, las llamadas C3, cuando se encuentran en condiciones secas y/o calurosas, reaccionan cerrando sus estomas para evitar la pérdida de agua. Entonces disminuye la concentración de CO2 y aumenta la de O2 porque la fotosíntesis continúa, hasta que la relación [CO2]/[O2] toma un valor tal que la eficacia fotosintética disminuye mucho debido al incremento de la fotorrespiración. En cambio, otras plantas, las llamadas C4, como el maíz o la caña de azúcar, están adaptadas al clima seco y cálido. Estas plantas tienen una vía alternativa para fijar el CO2 atmosférico, aunque esté en cantidades muy bajas y, posteriormente, pasa a las células fotosintéticas donde continúa la fotosíntesis. Así, se eleva notablemente la eficacia fotosintética. Otras plantas desérticas, como los cactus y las plantas crasas, además de tener adaptaciones morfológicas (hojas reducidas y tallos carnosos, entre otras) y ser plantas C4, son también plantas CAM (Crassulaceam Acid Metabolism), que consiste, básicamente, en que fijan el CO2 por la noche sobre ácidos orgánicos y luego, de día, lo incorporan a la fotosíntesis ya con los estomas cerrados. Por el contrario, si la temperatura desciende mucho durante el invierno, las adaptaciones más frecuentes consisten en ciclos biológicos cortos (herbáceas anuales), desarrollo de estructuras hibernantes subterráneas (bulbos, tubérculos, rizomas), y la aparición de un fotoperiodo o época de máximo desarrollo de hojas y flores, alternando con una época de mínima actividad metabólica o período latente.
  • 60. Plantas CAM Estructura de las hojas en plantas C3 y C4 Comparación de los tres tipos de metabolismo Fs.
  • 61. 2. Falta de nutrientes El CO2 y los nitratos no actúan como factores limitantes, ya que el CO2 es un gas abundante en la atmósfera y está disuelto en el agua en cantidad suficiente; el nitrógeno es muy abundante en la atmósfera y la existencia de microorganismos fijadores de nitrógeno asegura la presencia de sus sales en los suelos y en el agua. Las sales de fósforo sí son un factor limitante de la producción primaria porque, aunque el fósforo es abundante, la mayor parte está inmovilizada en la litosfera. Así, en muchos ecosistemas marinos la reutilización de las sales minerales por los productores se ve dificultada por la distancia entre el lugar que se realiza la fotosíntesis (fótica o superficial) y la zona donde se encuentran los organismos mineralizadores (el fondo). En estos casos, el problema se soluciona gracias a la energía exosomática (viento, oleaje, corrientes marinas) que transporta los nutrientes desde los fondos marinos hacia la superficie (donde está el fitoplancton) por las llamadas zonas de afloramiento. Estas áreas son extraordinariamente productivas y en ellas se localizan los principales caladeros de pesca. Otras zonas marinas muy productivas son las plataformas continentales, pero aquí el oleaje es el causante de la llegada de nutrientes hasta la superficie. Además, también hay que considerar los nutrientes aportados por los ríos a estas zonas. En los ecosistemas terrestres no suele darse este problema, ya que la distancia entre productores y mineralizadores es pequeña. Sin embargo, a veces se necesita energía exosomática en forma de trabajo humano para facilitar la llegada de nutrientes hasta los productores.
  • 62. 3. Luz, disposición y estructura de los fotosistemas Al aumentar la intensidad luminosa incidente la actividad fotosintética se incrementa, pero llega un momento en el que deja de aumentar aunque siga creciendo dicha intensidad. Esto ocurre por dos motivos: • La disposición de las unidades fotosintéticas en los cloroplastos, que hace que se den sombra unas a otras respecto a la luz incidente. • La estructura de dichas unidades o fotosistemas, ya que el número de moléculas de los pigmentos que captan los fotones (energía solar) es muy superior (unas 300 veces) al de las moléculas encargadas de transformarla en energía química. Esto hace que a partir de una determinada intensidad luminosa, los fotosistemas se saturan y la actividad fotosintética no aumenta aunque siga incrementándose aquélla. Es el típico efecto de “cuello de botella”. Por estos motivos, el rendimiento fotosintético alcanza su valor máximo con intensidades luminosas bajas, en las primeras y últimas horas del día, y no en las horas de mayor intensidad. En consecuencia, la estructura de las unidades fotosintéticas hace imposible elevar la producción de los cultivos más allá de un máximo, aunque se añadan abonos, agua, plaguicidas, etc., y se mantengan los cultivos en condiciones ambientales óptimas mediante invernaderos.
  • 63. Ciclos biogeoquímicos Los elementos químicos más importantes que forman parte de la materia viva están presentes en la atmósfera, hidrosfera y geosfera y son incorporados por los seres vivos a sus tejidos. De esta manera, siguen un ciclo biogeoquímico que tiene una zona abiótica y una zona biótica.  La primera suele contener grandes cantidades de elementos biogeoquímicos pero el flujo de los mismos es lento, tienen largos tiempos de residencia.  En la parte biótica del ciclo, el flujo es rápido pero hay poca cantidad de tales sustancias formando parte de los seres vivos.
  • 64. Fases y tipos de ciclos biogeoquímicos En estos ciclos se suelen dar dos fases bien diferenciadas: 1.- Fase de depósito: Circulación muy lenta del elemento. 2.- Fase de intercambio: El elemento está en un proceso activo de entrada y salida en los organismos, hasta que vuelva a acumularse en algún depósito o sedimento. Se distinguen dos grandes tipos de ciclos, según donde ocurre la fase de depósito y la existencia o no de pérdidas laterales importantes del elemento en el ciclo: • Ciclos cerrados o atmosféricos: La fase de depósito se da en la atmósfera y es más o menos rápida, no existiendo apenas pérdidas laterales del elemento. Ejemplos son los ciclos del carbono y del nitrógeno. • Ciclos abiertos o litosféricos: La fase de depósito se da en la litosfera, en forma de sedimentos profundos. Esta fase es muy lenta y con pérdidas laterales del elemento, de tal forma que si no hay levantamientos orogénicos el elemento perdido no se pone de nuevo en circulación. Ejemplos son los ciclos del fósforo y del azufre.
  • 65. CICLOS BIOGEOQUÍMICOS Los diferentes elementos químicos pasan del suelo, el agua o el aire a los organismos y de unos seres vivos a otros, hasta que vuelven, cerrándose el ciclo, al suelo o al agua o al aire. GASEOSOS SEDIMENTARIOS atmósfera – océanos suelo-rocas-minerales
  • 66. Ciclo del Carbono Detritos/materia orgánica del suelo Biomasa vegetal y animal Atmósfera El ciclo del carbono resulta de la superposición de dos ciclos: uno en el mar y otro en los continentes accionados por la difusión del CO2 a la atmósfera. La gran reserva de carbono en la biosfera son los sedimentos marinos y los combustibles fósiles. Al ser el fondo del mar un medio reductor, se acumulan allí muchos sedimentos carbonosos que no se destruyen por oxidación.
  • 67. Ciclo del fósforo Completamente sedimentario Reservorios en rocas y depósitos naturales de fosfatos Desconocido en la atmósfera El fósforo tiende a circular a través de la descomposición de los productos orgánicos fosfatados quedando después a disposición de las plantas, mientras que el depósito de fósforo son las rocas fosfatadas, como el guano. Estas rocas y los seres vivos son las únicas fuentes de fósforo de los ecosistemas. Gran parte del fósforo es lavado y erosionado, acumulándose posteriormente en los fondos marinos, muchas veces de forma irrecuperable.
  • 69. Ciclo del Nitrógeno Nitrógeno Componente esencial de las proteínas y de la atmósfera Estado gaseoso (N2) Debe fijarse para su utilización Acción química de alta energía Biológico Bacterias fijadoras de nitrógeno Radiación cósmica Relámpagos y rayos Por la muerte de seres vivos se obtiene nitrógeno orgánico, que después se va oxidando hasta formar nitritos y nitratos. Estos últimos son los compuestos nitrogenados más utilizados por las plantas y por ciertos microorganismos (bacterias desnitrificantes), que reducirán los nitratos para volver a formar el nitrógeno molecular atmosférico.
  • 70. Ciclo del azufre El azufre disuelto proviene del desgaste de las rocas, de la erosión y de la descomposición de la materia orgánica El azufre gaseoso tiene como fuentes la descomposición de la materia orgánica, la emisión de DMS (dimetil sulfuro) por algas de los océanos y las erupciones volcánicas El Dióxido de azufre (SO2) es un contaminante atmosférico, ya que puede reaccionar con agua para producir ácido sulfúrico (lluvia ácida)
  • 71. Sucesión ecológica Eduardo Gómez La Ecosfera 71 Los ecosistemas cambian a lo largo del tiempo. Además son capaces de mantener y aumentar su organización, reajustándose, adaptándose a cualquier tipo de variación, usando continuamente materia y energía. Si no hay perturbaciones tienen a ser más complejos. El proceso de cambio se llama sucesión ecológica en él, unas comunidades sustituyen a otras LA SUCESIÓN ECOLÓGICA se define como: Un proceso dinámico resultante de la interacción de los factores bióticos y abióticos en el tiempo, que da lugar a la formación de un ecosistema complejo y estable.
  • 72. Eduardo Gómez La Ecosfera 72
  • 73. Eduardo Gómez La Ecosfera 73 Es un proceso lento y gradual, en el que las poblaciones que son inestables sufren modificaciones, tanto en su composición como en su tamaño, buscando el equilibrio. Cuando se consigue este equilibrio, el CLÍMAX, la comunidad tenderá a mantenerse estable y no será sustituida por otra, mientras no cambien las condiciones físico químicas y climáticas.
  • 74. Tipos de sucesiones Eduardo Gómez La Ecosfera 74 SUCESIONES PRIMARIAS Se producen en territorios vírgenes que aún no han sido colonizados. Es el caso de las lavas volcánicas, los aluviones, las dunas. Los primeros organismos en colonizar son los líquenes y musgos, que van formando el suelo, posteriormente bacterias y hongos y las primeras hierbas.
  • 75. SUCESIONES SECUNDARIAS Ocurren en ecosistemas que han sufrido una regresión que ha interrumpido su camino hacia el clímax o lo ha roto. Todavía se conserva el suelo y parte de la vegetación. Al cabo de un cierto tiempo, si las condiciones ambientales no han variado, el ecosistema se recupera y continúa con su sucesión o se estabiliza. Eduardo Gómez La Ecosfera 75
  • 76. Regresiones Eduardo Gómez La Ecosfera 76 La REGRESIÓN puede ocurrir por causas naturales (incendios, inundaciones, cambio climático, volcanes,...) o por causas antrópicas, (deforestación, contaminación, introducción de nuevas especies...) En la regresión suelen aparecer poblaciones de r-estrategas (oportunistas) Las principales regresiones se producen en los ecosistemas terrestres, debido a sobrepastoreo, talas excesivas, deforestación, erosión o incendios. Cuando el fenómeno es muy grave la comunidad puede perder su capacidad de regeneración. En los ecosistemas acuáticos la más importante es la regresión producida por contaminación con abonos y fertilizantes en aguas dulces y la contaminación del litoral y la sobreexplotación pesquera en el medio marino. Es un proceso inverso a la sucesión ecológica:
  • 77. Regresión total: Erupción volcánica que cubre el terreno de lava Regresión por deforestación. Se mantiene el suelo Eduardo Gómez La Ecosfera 77
  • 78. Cambios en una sucesión Eduardo Gómez La Ecosfera 78 1. AUMENTO DE LA BIODIVERSIDAD: Tanto en riqueza específica como en diversidad específica. En general las r-estrategas (iniciales) son sustituidas por las k-estrategas (finales). 2. ALARGAMIENTO DE CADENAS TRÓFICAS. Por el aumento del nº de especies. 3. AUMENTO DE LA ESTABILIDAD: Se establecen relaciones entre las especies, con múltiples retroalimentaciones, que contribuyen a la estabilidad. 4. AUMENTO PROGRESIVO DE LA BIOMASA: Al principio no hay limitación de los recursos disponibles, la producción es muy alta, por lo que se produce un aumento progresivo hasta las etapas finales. Finalmente la respiración iguala a la producción, excepto cuando se retira la biomasa (cultivo) o se seca la hierba. En estos casos nunca se llegará a la etapa clímax.
  • 79. Cambios en una sucesión II Eduardo Gómez La Ecosfera 79 1. DISMINUCIÓN DE LA PRODUCTIVIDAD: A más evolución, menos tasa de renovación. 2. AUMENTO DE LOS NICHOS ECOLÓGICOS: Se produce un mayor aprovechamiento y el ecosistema se vuelve más complejo. 3. DISMINUCIÓN DEL FLUJO ENERGÉTICO QUE RECORRE EL ECOSISTEMA: Finalmente la energía pasa por muchos organismos por lo que se producen más pérdidas, el reciclado se produce instantáneamente por lo que la materia apenas tiene tiempo de estar en el medio antes de volver a ser capturada.
  • 80. Eduardo Gómez La Ecosfera 80 Regresiones provocadas por la humanidad  Deforestación: Provocada por la tala y la quema de árboles y por la agricultura mecanizada.  Incendios forestales: El fuego ha sido un factor natural que rejuvenece los bosques templados y los mediterráneos ricos en especies pirófilas.  Sobreexplotación de recursos y destrucción de hábitats.  Introducción de nuevas especies:  Conejos de Australia  Visón americano  Mejillón cebra  Cangrejo americano  Lucio
  • 81. Eduardo Gómez La Ecosfera 81
  • 82. Biodiversidad La BIODIVERSIDAD es el conjunto de especies que hay sobre el planeta. Pero es algo más: “DIVERSIDAD BIOLÓGICA O BIODIVERSIDAD es la variabilidad de organismos vivos de cualquier fuente, incluidos, entre otras cosas, los ecosistemas terrestres, marinos y otros ecosistemas acuáticos y los complejos ecológicos de los que forman parte, comprende la diversidad dentro de cada especie, entre las especies y de los ecosistemas”. 82
  • 83. No solo podemos hablar de la variedad de las formas de vida, sino también del acervo genético de cada especie, conseguido tras millones de años de evolución y de los diferentes ecosistemas de los que forman parte. Esta diversidad se puede dar a tres escalas que corresponden con diferentes niveles de organización biológica: DIVERSIDAD GENÉTICA DIVERSIDAD DE ESPECIES (ESPECÍFICA) DIVERSIDAD DE ECOSISTEMAS (ECOSISTÉMICA) 83
  • 84. En la actualidad el nº de especies que existen en el planeta, se estima que puede oscilar entre 5 y 50 millones y algunos dicen que hasta 100 millones. Se han clasificado 1,7 millones de especies, de las cuales el 85% son terrestres. Hay descritos cerca de 1 millón de artrópodos de los cuales unos 950.000 son insectos, de ellos 450.000 son coleópteros. Los mares y océanos son los grandes desconocidos, en ellos se hace la mayor parte de los descubrimientos de nuevas especies. La biodiversidad no se reparte uniformemente por todo el planeta, sino que existen zonas concretas con una riqueza espectacular, como por ejemplo en los bosques tropicales gracias a sus factores climatológicos tan favorables para la vida (temperatura bastante uniforme, insolación y elevada humedad). Estas regiones ocupan solamente el 7 % de la superficie del planeta, pero contienen cerca del 90 % del total de especies conocidas. 84
  • 85. Sabemos que desde hace 600 millones de años ha ido aumentando la biodiversidad, pero no ha sido un crecimiento uniforme ya que ha habido épocas en las que se han producido descensos importantes. Los paleontólogos hablan de 5 grandes “crisis biológicas” o extinciones masivas: 1.En el Ordovícico, hace 440 millones de años. 2.En el Devónico, hace 365 millones de años. 3.A finales del Pérmico, hace 250 millones de años. (Se perdió el 52% de todas las especies existentes en esa época, un 90% de ellas marinas). 4.En el Triásico, hace 145 millones de años. 5.A finales del Cretácico, hace 65 millones de años (Extinción de los dinosaurios). En 1999 ya se catalogaron 157 especies en peligro claro de extinción (120 son plantas y 37 animales). 85
  • 86. Valor de la biodiversidad Desde el punto de vista de la economía ecológica, se pueden hacer tres usos de la biodiversidad: 1.- VALOR FARMACOLÓGICO: La mitad de los fármacos que usamos en el mundo proceden de plantas y organismos silvestres, sin duda existen muchos otros que aún no se han investigado. 2.- VALOR AGRÍCOLA Y GANADERO: El 90% de los alimentos que consumimos se obtienen de especies de plantas y animales que fueron domesticadas partiendo de especies silvestres. 3.- INTERÉS CIÉNTIFICO, ÉTICO Y ECOLÓGICO: Cada especie es el resultado de millones de años de evolución y adaptación. La desaparición de una especie puede afectar a otras muchas y desencadenar la extinción de otras que se alimentan de ella o les sirve de hábitat. Además, todas las especies tienen una serie de derechos que no podemos olvidar. 86
  • 87. Situación en España España es el país europeo con mayor diversidad biológica, unas 80.000 especies han sido catalogadas en nuestro país. Esto se debe a unas características peculiares: 1.- CONFIGURACIÓN DEL RELIEVE: Las cordilleras al estar orientadas de este a oeste, permiten la existencia de valles y mesetas con una altura superior a los 600 metros. 2.- CONTRASTES CLIMÁTICOS, LITOLÓGICOS Y OROGRÁFICOS: España es un país muy heterogéneo, con diferentes tipos de climas y muy variados ecosistemas, incluidas las peculiaridades de las Islas Canarias. 3.- RED HIDROGRÁFICA COMPLEJA: Hay 75.000 km de ríos, que desembocan en dos vertientes: Atlántica y Mediterránea, alrededor de 1.000 embalses y 1.500 humedales. 87 Mucha más información en la webquest “La biodiversidad amenazada en España”
  • 88. Pérdida de biodiversidad En la actualidad, aunque la diversidad ha alcanzado su máxima cota a lo largo de la historia de la vida en el planeta, se está produciendo una “ CRISIS DE LA BIODIVERSIDAD”. La extinción de las especies se está produciendo desde el año 1600 a un ritmo muy superior al que debería ser por causas naturales. Se estima que se pierden alrededor de 30.000 especies al año. Por lo que podríamos hablar de la “ SEXTA EXTINCIÓN”, y en esta ocasión sería por causas no naturales, es decir, por la acción directa del SER HUMANO. 88
  • 89. Las causas de la pérdida de biodiversidad más importantes por acción antrópica son:  Colonización de zonas vírgenes.  Deterioro por guerras, incendios, fragmentación de ecosistemas.  Bioinvasiones.  Sobreexplotación de especies piscícolas y cinegéticas.  Contaminación del aire, suelos y aguas.  Técnicas agrícolas agresivas.  Reforestación con monocultivos. 89
  • 90. 1.- CONTAMINACIÓN, DESTRUCCIÓN Y FRAGMENTACIÓN DE ECOSISTEMAS: • La CONTAMINACIÓN se debe principalmente al uso de pesticidas, fertilizantes, vertidos, emisiones industriales y residuos de diversos orígenes, que son vertidos directamente o indirectamente a través de la atmósfera o las aguas hasta el ecosistema. Provocan una verdadera cadena desde los consumidores directos hasta los niveles tróficos más altos, con la consiguiente bioacumulación. • La DESTRUCCIÓN Y FRAGMENTACIÓN DE HÁBITATS, se suele producir como consecuencia del desarrollo agrícola, industrial y urbano, que provoca deforestación, sobrepastoreo, crecimiento de las tierras de cultivo y de las ciudades, construcción de carreteras, etc. Claros ejemplos de este proceso son la destrucción de las selvas tropicales, de los humedades, de los bosques, de los arrecifes coralinos... Cuando las especies ven reducido su espacio natural se produce el “EFECTO ISLA”. La endogamia y la deriva genética puede arrastrar a una especie a su desaparición. 90
  • 91. 2.- EXPLOTACIÓN DIRECTA DE LAS ESPECIES Se puede producir por excesiva presión cinegética sobre determinadas especies, por sobrepesca, por coleccionismo y uso de mascotas. Ejemplos: En España, el consumo de chanquetes y, en general, de peces inmaduros que se prohibió hace años, pero aún son muchas las personas que incumplen las leyes, tanto en su pesca, como en su venta y consumo. La caza de búfalos, de lobos, de elefantes para conseguir sus colmillos, pieles de animales, cuernos de rinocerontes, o también en España el “consumo de pajaritos fritos” ( jilgueros, verderones, pardillo común, verdecillos...). También se puede incluir la desaparición de especies por selección humana, en favor de otras más rentables y útiles. Esto supone una pérdida importante de diversidad genética. 91
  • 92. 3.- INTRODUCCIÓN DE ESPECIES ALÓCTONAS EN LOS ECOSISTEMAS Estas especies compiten con las autóctonas, desplazándolas, alimentándose de ellas, actuando como parásitos o contagiándoles enfermedades. El ser humano ha acentuado el proceso natural, ya sea intencionadamente o accidentalmente:  Introducción de especies con finalidades médicas, ornamentales o alimentarias: maíz, patata, tomate, calabaza, pimiento, tabaco, alubias ... procedentes de América, o el traslado allí del caucho y el algodón.  Lucha contra las especies invasoras mediante la introducción de su enemigo natural, como ocurrió en Australia, introduciendo primero el conejo y después el virus de la mixomatosis, que redujo drásticamente la población de conejos.  También se han introducido especies como mascotas, que cuando alcanzan grandes tamaños son abandonadas en el ecosistema, causando grandes estragos al carecer de depredadores naturales. 92
  • 93. El desarrollo de las comunicaciones es otro factor importante, se facilita el mecanismo de transporte de plagas y enfermedades. Otro caso es la comunicación que el canal de Panamá ha producido entre el océano Atlántico y el Pacífico, o el de Suez que ha comunicado el Océano Índico, el Mar Rojo y el Mediterráneo. Uno de los casos más importantes ha sido la invasión del alga Caulerpa taxifolia en el Mediterráneo, procedente de un acuario, esta especie típica del Pacífico se ha extendido rápidamente, desplazando a la flora y fauna autóctona. Esta alga es tóxica para las especies herbívoras mediterráneas, por lo que constituye un grave peligro para el ecosistema mediterráneo. En Sevilla, la introducción del cangrejo americano en el Guadalquivir ha dejado al cangrejo autóctono al borde de la extinción. 93
  • 94. Causas de la pérdida de la Biodiversidad en España  SOBREEXPLOTACIÓN AGRICOLA, SOBREPASTOREO Y SOBREPESCA.  DEFORESTACIÓN: Especialmente, en Extremadura y en el Norte de España.  ALTERACIÓN DE LOS CICLOS HIDROLÓGICOS REGIONALES:  Destrucción de humedales, sobreexplotación de acuíferos, destrucción de sotos e inundación de valles.  CONTAMINACIÓN DE AGUAS SUBTERRÁNEAS Y SUPERFICIALES:  Por vertidos incontrolados y el uso de plaguicidas e insecticidas.  INTRODUCCIÓN DE ESPECIES EXÓTICAS: Importante, sobre todo en las islas.  COMERCIO CON ESPECIES SILVESTRES:  La manzanilla real de Sierra Nevada está prácticamente extinguida (Hay 91 especies endémicas).  En Cazorla hay 30 endemismos  El 25% de la flora canaria es endémica. 94
  • 95. CONSERVAR LA BIODIVERSIDAD En España contamos con 15 Parques Nacionales ( Doñana, Sierra Nevada, Monfragüe, Teide, Garajonay, Timanfaya, Caldera de Taburiente, Islas Atlánticas, Picos de Europa, Ordesa, Aigües Tortes, Cabrera, Cabañeros, Las Tablas de Daimiel y Sierra de Guadarrama), algunos Parques Regionales en Comunidades Autónomas (p. ej. en Madrid) y numerosos Parques Naturales. Mucho más numerosas son las Reservas Naturales, los Monumentos Naturales y los Paisajes Singulares Protegidos. Además, hay figuras de protección a nivel europeo (Red Natura 2000) y mundial (Reservas de la Biosfera de la UNESCO). Para conservar la biodiversidad se actúa principalmente de dos formas: 1.“in situ”, mediante protección de espacios naturales y conservación de especies en peligro de extinción en su propio hábitat. 2.“ex situ”, mediante la conservación del material genético de las especies fuera de su hábitat natural: centros de investigación, zoológicos, invernaderos, bancos de semillas, etc. 95
  • 96. EVITAR LA PÉRDIDA DE BIODIVERSIDAD  PROTECCIÓN DE LAS ESPECIES EN PELIGRO DE EXTINCIÓN.  ADMINISTRACIÓN DE LA VIDA SILVESTRE: Épocas de coto y veda, Leyes de caza, control del ecoturismo, ayudas al desarrollo…  PROTECCIÓN DE ECOSISTEMAS: Establecer suficientes espacios naturales protegidos (ENP). El tamaño debe ser suficiente para garantizar la sostenibilidad del espacio. Los beneficios de la protección de estos espacios son muchos (preservación de la biodiversidad, conservación de los recursos, impiden la erosión, generan turismo, estabilizan el clima, depuran el aire... ) pero también sus amenazas (la presión turística genera ruidos, desperdicios, vandalismo, deterioro de veredas…).  BANCOS DE GENES, JARDINES BOTÁNICOS Y ZOOLÓGICOS: Suponen un recurso en los casos en que la pervivencia natural sea imposible, impiden la extinción y desaparición de la especie y posibilitan su reimplantación cuando las circunstancias cambien. 96