SlideShare a Scribd company logo
1 of 59
Download to read offline
JEE Mains 2015 10th April (online)
Physics
Single Correct Answer Type:
1. In an ideal at temperature T, the average force that a molecule applies on the walls of a closed
container depends on ๐‘‡ ๐‘Ž๐‘  ๐‘‡ ๐‘ž
. A good estimate for q is:
(A) 2 (B)
1
2
(C) 1 (D)
1
4
Answer: (C)
Solution:
Average linear for collision to occur
๐‘ก =
2๐‘‘
๐‘ข
Change in momentum in 1 collision
ฮ”๐‘ = 2 ๐‘š๐‘ข
โˆด average force in collision
=
ฮ”๐‘
๐‘ก
๐‘ข = root mean square speed
=
2 ๐‘š๐‘ข
2๐‘‘
ร— ๐‘ข
โ‡’ ๐‘“ โˆ ๐‘ข2
โˆด ๐‘ข2
โˆ ๐‘‡
โ‡’ ๐‘“ ร— ๐‘‡
โ‡’ ๐‘ž = 1
2. In an unbiased n โ€“ p junction electrons diffuse from n-region to p-region because:
(A) Electrons travel across the junction due to potential difference
(B) Only electrons move from n to p region and not the vice โ€“ versa
(C) Electron concentration in n โ€“ region is more as compared to that in p โ€“ region
(D) Holes in p โ€“ region attract them
Answer: (C)
Solution:
In a ๐‘ โˆ’ ๐‘› junction diffusion occurs due to spontaneous movement of majority charge carrier from
the region of high concentration to low concentration so option 3 in correct.
3. A 10V battery with internal resistance 1ฮฉ ๐‘Ž๐‘›๐‘‘ ๐‘Ž 15๐‘‰ battery with internal resistance 0.6ฮฉ are
connected in parallel to a voltmeter (see figure). The reading in the voltmeter will be close to:
(A) 11.9 ๐‘‰ (B) 13.1 ๐‘‰ (C) 12.5 ๐‘‰ (D) 24.5 ๐‘‰
Answer: (B)
Solution:
The equivalent ems of the battery combination in given as
Equation =
๐ธ1
๐‘Ÿ1
+
๐ธ1
๐‘Ÿ2
1
๐‘Ÿ1
+
1
๐‘Ÿ2
=
10
1
+
15
0.6
1
1
+
1
0.6
=
10+
150
6
1+
10
6
=
105
8
= 13.1 ๐‘ฃ๐‘œ๐‘™๐‘ก
โˆด The reading measured by voltmeter = 13.1 ๐‘ฃ๐‘œ๐‘™๐‘ก
4. A proton (mass m) accelerate by a potential difference V flies through a uniform transverse
magnetic field B. The field occupies a region of space by width โ€ฒ๐‘‘โ€ฒ
. ๐ผ๐‘“ โ€ฒ๐›ผโ€ฒ be the angle of
deviation of proton from initial direction of motion (see figure), the value of sin ๐›ผ will be:
(A)
๐ต
2
โˆš
๐‘ž๐‘‘
๐‘š๐‘‰
(B) ๐ต๐‘‘โˆš
๐‘ž
2๐‘š๐‘‰
(C)
๐ต
๐‘‘
โˆš
๐‘ž
2๐‘š๐‘‰
(D) ๐‘ž ๐‘‰ โˆš
๐ต๐‘‘
2๐‘š
Answer: (B)
Solution:
Due to potential difference V speed acquired by proton in ๐‘ฃ0
โ‡’ ๐‘Š = ๐‘ž ฮ” ๐‘‰ = ฮ”๐‘˜
โ‡’ ๐‘ž๐‘ฃ =
1
2
๐‘š ๐‘ฃ0
2
โ‡’ ๐‘ฃ0 = โˆš
2๐‘ž๐‘ฃ
๐‘š
Radius of circular path acquired is ๐‘… =
๐‘š๐‘ฃ0
๐‘ž๐ต
โ‡’ ๐‘… =
๐‘š
๐‘ž๐ต
โˆš
2๐‘ž๐‘ฃ
๐‘š
= โˆš
2๐‘ฃ๐‘š
๐‘ž
ร—
1
๐ต
In โˆ†๐ถ๐‘ƒ๐ท,sin ๐›ผ =
๐‘‘
๐‘…
= ๐‘‘โˆš
๐‘ž
2 ๐‘ฃ๐‘š
๐ต = ๐ต๐‘‘โˆš
๐‘ž
2 ๐‘š๐‘ฃ
5. de โ€“ Broglie wavelength of an electron accelerated by a voltage of 50 V is close to
(|๐‘’| = 1.6 ร— 10โˆ’19
๐ถ, ๐‘š ๐‘’ = 9.1 ร— 10โˆ’31
๐‘˜๐‘”, โ„Ž = 6.6 ร— 10โˆ’34
๐ฝ๐‘ ):
(A) 0.5 โ„ซ (B) 1.2 โ„ซ (C) 1.7 โ„ซ (D) 2.4 โ„ซ
Answer: (B)
Solution:
De broglie wavelength ๐œ† in given by
๐œ† =
โ„Ž
๐‘
=
โ„Ž
โˆš2 ๐‘š๐‘˜
โˆด ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ = ๐‘˜ = ๐‘ž ฮ”๐‘ฃ
โ‡’ ๐œ† =
โ„Ž
โˆš2๐‘š๐‘žโˆ†๐‘ฃ
=
6.6 ร—10โˆ’34
โˆš2 ร—9.1 ร— 10โˆ’3 ร— 1.6 ร—10โˆ’19 ร— 50
=
6.6 ร—10โˆ’34
โˆš3.2 ร—9.1 ร— 10โˆ’31โˆ’19 + 2
=
6.6 ร—10โˆ’34
โˆš3.2 ร—9.1 ร— 10โˆ’48
=
6.6 ร—10โˆ’34
โˆš5.396 ร— 10โˆ’24
= 1.22 ร— 10โˆ’10
= 1.2 ๐ดยฐ
6. Suppose the drift velocity ๐‘ฃ ๐‘‘ in a material varied with the applied electric field E as ๐‘ฃ ๐‘‘ โˆ โˆš๐ธ.
Then ๐‘‰ โˆ’ ๐ผ graph for a wire made of such a material is best given by:
(A)
(B)
(C)
(D)
Answer: (C)
Solution:
โˆด ๐‘ฃ ๐‘‘ = ๐‘˜โˆš๐ธ and ๐ผ = ๐‘› ๐‘’ ๐ด ๐‘ฃ ๐‘‘
โ‡’ ๐ผ = ๐‘› ๐‘’๐ด ๐‘˜โˆš๐ธ
โˆด ๐ธ =
๐‘ฃ
๐‘‘
โ‡’ ๐ผ = ๐‘›๐‘’๐ด๐‘˜ โˆš
๐‘ฃ
๐‘‘
โ‡’ ๐ผ โˆ โˆš ๐‘ฃ โ‡’ ๐‘ฃ โˆ ๐ผ2
So
7. A parallel beam of electrons travelling in x โ€“ direction falls on a slit of width d (see figure). If
after passing the slit, an electron acquires momentum ๐‘ƒ๐‘ฆ in the y โ€“ direction then for a majority
of electrons passing through the slit (h is Planckโ€™s constant):
(A) |๐‘ƒ๐‘ฆ|๐‘‘ < โ„Ž (B) |๐‘ƒ๐‘ฆ|๐‘‘ > โ„Ž (C) |๐‘ƒ๐‘ฆ|๐‘‘ โ‰ƒ โ„Ž (D) |๐‘ƒ๐‘ฆ|๐‘‘ > > โ„Ž
Answer: (D)
Solution:
The electron beam will be diffractive at an angle ฮธ
For central maxima
๐‘‘ sin ๐œƒ = ๐œ†
๐‘‘ sin ๐œƒ =
๐‘Ÿ
๐‘
Also ๐‘ sin ๐œƒ = ๐‘ ๐‘ฆ
โ‡’ ๐‘‘ ๐‘ ๐‘ฆ = โ„Ž
โˆด For majority of ๐‘’ ๐œƒ
โ€ฒ๐‘  passing through the shit lyeing in the central maxima ๐‘‘ ๐‘ ๐‘ฆ โ‰ˆ โ„Ž
8. A block of mass ๐‘š = 10 ๐‘˜๐‘” rests on a horizontal table. The coefficient of friction between the
block and the table is 0.05. When hit by a bullet of mass 50 g moving with speed v, that gets
embedded in it, the block moves and comes to stop after moving a distance of 2 m on the table.
If a freely falling object were to acquire speed
๐‘ฃ
10
after being dropped from height H, then
neglecting energy losses and taking ๐‘” = 10 ๐‘š๐‘ โˆ’2
, the value of H is close to:
(A) 0.2 km (B) 0.5 km (C) 0.3 km (D) 0.4 km
Answer: ()
Solution:
9. When current in a coil changes from 5 A to 2 A in 0.1 s, an average voltage of 50 V is
produced. The self โ€“ inductance of the coil is:
(A) 1.67 H (B) 6 H (C) 3 H (D) 0.67 H
Answer: (A)
Solution:
Area of coil
๐‘‘ = ๐ฟ๐ผ โ‡’
โˆ†๐‘‘
โˆ†๐‘ก
= ๐ฟ
โˆ†๐ผ
โˆ†๐‘ก
โˆด (๐œ€๐‘–๐‘›๐‘‘) ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ = |
โˆ†๐‘‘
โˆ†๐‘ก
| = ๐ฟ |
โˆ†๐ผ
โˆ†๐‘ก
|
โ‡’ 50 = ๐ฟ ร—
5โˆ’2
0.1
โ‡’
5
3
= ๐ฟ
โ‡’ ๐ฟ = 1.674
10. ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ displacements of a particle are given as ๐‘ฅ(๐‘ก) = ๐‘Ž sin ๐œ”๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ฆ(๐‘ก) = ๐‘Ž sin 2๐œ”๐‘ก. Its
trajectory will look like:
(A)
(B)
(C)
(D)
Answer: (C)
Solution:
โˆต ๐‘ฅ = ๐ด sin ๐œ”๐‘ก โ‡’ ๐‘ ๐‘–๐‘› ๐œ”๐‘ก =
๐‘ฅ
๐ด
Also, ๐‘๐‘œ๐‘  ๐œ”๐‘ก = โˆš1 โˆ’ sin2 ๐œ”๐‘ก = โˆš1 โˆ’
๐‘ฅ2
๐ด2
โ‡’ cos ๐œ”๐‘ก =
โˆš๐ด2โˆ’๐‘ฅ2
๐ด
As, ๐‘ฆ = 2๐ด sin ๐œ”๐‘ก cos ๐œ”๐‘ก
โ‡’ ๐‘ฆ = 2 ๐ด
๐‘ฅ
๐ด
โˆš๐ด2 โˆ’ ๐‘ฅ2
๐ด
โ‡’ ๐‘ฆ =
2
๐ด
๐‘ฅ โˆš ๐ด2 โˆ’ ๐‘ฅ2
โ‡’ ๐‘ฆ = 0 ๐‘Ž๐‘ก ๐‘ฅ = 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ = ยฑ ๐ด
Which in possible only in option (3)
11. Consider a thin uniform square sheet made of a rigid material. If its side is โ€˜aโ€™, mass m and
moment of inertia I about one of its diagonals, then:
(A) ๐ผ =
๐‘š๐‘Ž2
24
(B)
๐‘š๐‘Ž2
24
< ๐ผ <
๐‘š๐‘Ž2
12
(C) ๐ผ >
๐‘š๐‘Ž2
12
(D) ๐ผ =
๐‘š๐‘Ž2
12
Answer: (D)
Solution:
In a uniform square plate due to symmetry moment of Inertia about all the axis passing through
centre and lying in the blank of the plate is same.
โˆด ๐ผ ๐‘‘๐‘–๐‘Ž๐‘”๐‘œ๐‘›๐‘Ž๐‘™ = ๐ผ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ก๐‘œ ๐‘ ๐‘–๐‘‘๐‘’
=
๐‘š๐‘Ž2
12
12. Diameter of a steel ball is measured using a Vernier calipers which has divisions of 0.1 cm on
its main scale (MS) and 10 divisions of its vernier scale (VS) match 9 divisions on the main
scale. Three such measurements for a ball are given as:
S.No. MS (cm) VS divisions
1. 0.5 8
2. 0.5 4
3. 0.5 6
If the zero error is โ€“ 0.03 cm, then mean corrected diameter is:
(A) 0.53 cm
(B) 0.56 cm
(C) 0.59 cm
(D) 0.52 cm
Answer: (C)
Solution:
L.C. of Vernier calipers
=
1 ๐‘š๐‘Ž๐‘–๐‘› ๐‘ ๐‘๐‘Ž๐‘™๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘‘๐‘–๐‘ฃ๐‘–๐‘ ๐‘œ๐‘›๐‘  vernier ๐‘ ๐‘๐‘Ž๐‘™๐‘’
=
0.1
10
= 0.01 ๐‘๐‘š
Required of Vernier calipers
= ๐‘€. ๐‘†. ๐‘…. +(๐ฟ. ๐ถ) ร— ๐‘ฃ๐‘  ๐‘‘๐‘–๐‘ฃ๐‘–๐‘ ๐‘–๐‘œ๐‘›๐‘ .
โˆด Measured diameter are respecting
0.52 ๐‘๐‘š 0.54 ๐‘๐‘š, 0.56 ๐‘๐‘š
โˆด ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ =
0.58 + 0.54 + 0.56
3
=
1.68
3
= 0.56
โˆด ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ = 0.56 โˆ’ (โˆ’0.03)
= 0.56 + 0.03 = 0.59 ๐‘๐‘š
13. A very long (length L) cylindrical galaxy is made of uniformly distributed mass and has radius
R (R < < L). A star outside the galaxy is orbiting the galaxy in a plane perpendicular to the
galaxy and passing through its centre. If the time period of star is T and its distance from the
galaxyโ€™s axis is r, then:
(A) ๐‘‡ โˆ โˆš ๐‘Ÿ
(B) ๐‘‡ โˆ ๐‘Ÿ
(C) ๐‘‡ โˆ ๐‘Ÿ2
(D) ๐‘‡2
โˆ ๐‘Ÿ3
Answer: (B)
Solution:
Due to a long solid cylinder gravitational field strong can be given as:
๐‘”โ€ฒ =
2 ๐บ ๐œ†
๐‘ฅ
Where
๐œ† = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘”๐‘Ž๐‘™๐‘Ž๐‘ฅ๐‘ฆ.
๐น๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘๐‘–๐‘ก๐‘Ž๐‘™ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘”๐‘Ž๐‘™๐‘Ž๐‘ฅ๐‘ฆ.
๐‘“๐‘” = ๐‘“๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘๐‘’๐‘ก๐‘Ž๐‘™
โ‡’ ๐‘š๐‘” = ๐‘š ๐œ”2
๐‘ฅ
โ‡’
2๐บ๐œ†
๐‘ฅ
= ๐œ”2
๐‘ฅ
โ‡’ ๐œ”2
โˆ
1
๐‘ฅ2
โ‡’ ๐œ” โˆ
1
๐‘ฅ
โ‡’
2๐œ‹
๐‘‡
โˆ
1
๐‘ฅ
โ‡’ ๐‘‡ โˆ ๐‘ฅ
So option 2 is correct
14. An electromagnetic wave travelling in the x โ€“ direction has frequency of 2 ร— 1014
๐ป๐‘ง and
electric field amplitude of 27 ๐‘‰๐‘šโˆ’1
. From the options given below, which one describes the
magnetic field for this wave?
(A) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8
๐‘‡)๐‘—ฬ‚ sin[1.5 ร— 10โˆ’6
๐‘ฅ โˆ’ 2 ร— 1014
๐‘ก]
(B) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8
๐‘‡)๐‘–ฬ‚ sin[2๐œ‹(1.5 ร— 10โˆ’8
๐‘ฅ โˆ’ 2 ร— 1014
๐‘ก)]
(C) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (3 ร— 10โˆ’8
๐‘‡)๐‘—ฬ‚ sin[2๐œ‹(1.5 ร— 10โˆ’8
๐‘ฅ โˆ’ 2 ร— 1014
๐‘ก)]
(D) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8
๐‘‡)๐‘˜ฬ‚ sin[2๐œ‹ (1.5 ร— 10โˆ’6
๐‘ฅ โˆ’ 2 ร— 1014
๐‘ก)]
Answer: (D)
Solution:
๐‘Šโ„Ž๐‘’๐‘› ๐ธ = ๐ธ0 ๐‘ ๐‘–๐‘› ๐ถ ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก
๐‘‡โ„Ž๐‘’๐‘› ๐ต = ๐ต0 ๐‘ ๐‘–๐‘› ๐ถ ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก
Of light in travelling along ๐‘–ฬ‚ then ๐ตโƒ— in either along ๐‘— or๐‘˜โƒ— .
โˆด ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ถ =
๐ธ0
๐ต0
โ‡’ ๐ต0 =
๐ธ0
๐ถ
โ‡’ ๐ต0 =
27
3ร—108 = 9 ร— 10โˆ’8
๐‘‡
also, ๐œ” = 2๐œ‹ f = 2ฯ€ ร— 2 ร— 1014
= 4 ๐œ‹ ร— 1014
Looking into the option the correct
Answer is ๐ตโƒ— = 9 ร— 10โˆ’8
sin2๐œ‹ (1.5 ร— 10โˆ’6
๐‘ฅ โˆ’ 2 ร— 1014
๐‘ก) ๐‘˜ฬ‚
15. A telescope has an objective lens of focal length 150 cm and an eyepiece of focal length 5 cm. If
a 50 m tall tower at a distance of 1 km is observed through this telescope in normal setting, the
angle formed by the image of the tower is ๐œƒ, then ๐œƒ is close to:
(A) 30ยฐ
(B) 15ยฐ
(C) 1ยฐ
(D) 60ยฐ
Answer: (D)
Solution:
16. A block of mass ๐‘š = 0.1 ๐‘˜๐‘” is connected to a spring of unknown spring constant k. It is
compressed to a distance x from its equilibrium position and released from rest. After
approaching half the distance (
๐‘ฅ
2
) from equilibrium position, it hits another block and comes
to rest momentarily, while the other block moves with a velocity 3 ๐‘š๐‘ โˆ’1
. The total initial
energy of the spring is:
(A) 0.6 ๐ฝ
(B) 0.8 ๐ฝ
(C) 1.5 ๐ฝ
(D) 0.3 ๐ฝ
Answer: (A)
Solution: By energy conservation between compression positions ๐‘ฅ and
๐‘ฅ
2
1
2
๐‘˜๐‘ฅ2
=
1
2
๐‘˜ (
๐‘ฅ
2
)
2
+
1
2
๐‘š๐‘ฃ2
1
2
๐‘˜๐‘ฅ2
โˆ’
1
2
๐‘˜
๐‘ฅ2
4
=
1
2
๐‘š๐‘ฃ2
1
2
๐‘˜๐‘ฅ2
(
3
4
) =
1
2
๐‘š๐‘ฃ2
๐‘ฃ = โˆš
3๐‘˜๐‘ฅ2
4๐‘š
= โˆš
3๐‘˜
๐‘š
๐‘ฅ
2
On collision with a block at rest
โˆต Velocities are exchanged โ‡’ elastic collision between identical masses.
โˆด ๐‘ฃ = 3 = โˆš
3๐‘˜
๐‘š
๐‘ฅ
2
โ‡’ 6 = โˆš
3๐‘˜
๐‘š
๐‘ฅ
โ‡’ ๐‘ฅ = 6โˆš
๐‘š
3๐‘˜
โˆด The initial energy of the spring is
๐‘ˆ =
1
2
๐‘˜ ๐‘ฅ2
=
1
2
๐‘˜ ร— 36
๐‘š
3๐‘˜
= 6๐‘š
๐‘ˆ = 6 ร— 0.1 = 0.6 ๐ฝ
17. Shown in the figure are two point charges + Q and โ€“ Q inside the cavity of a spherical shell. The
charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If ๐œŽ1is
the surface charge on the inner surface and ๐‘„1net charge on it and ๐œŽ2 the surface charge on the
other surface and ๐‘„2 net charge on it then:
(A) ๐œŽ1 = 0, ๐‘„1 = 0, ๐œŽ2 = 0, ๐‘„2 = 0
(B) ๐œŽ1 โ‰  0, ๐‘„1 = 0, ๐œŽ2 โ‰  0, ๐‘„2 = 0
(C) ๐œŽ1 โ‰  0, ๐‘„1 โ‰  0, ๐œŽ2 โ‰  0, ๐‘„2 โ‰  0
(D) ๐œŽ1 โ‰  0, ๐‘„1 = 0, ๐œŽ2 = 0, ๐‘„2 = 0
Answer: (D)
Solution: By the property of electrostatic shielding in the conductors ๐œ– = 0 in the conductor.
So electric flux = 0 through a dotted Gaussian surface as shown
The net enclosed charge through Gaussian surface = 0
โ‡’ Net charge ๐‘„1 on the inner surface = 0 but the equal and opposite induced charge on the surface
will be distributed non uniformly on the inner surface
So, ๐œŽ1 โ‰  0
โˆต ๐‘„1 = 0 on the inner surface
So, net charge ๐‘„2 = 0 on the outer surface as conductor is neutral but โˆต outer surface is free from
any electric field so no charge density exists on the outer surface. So, ๐œŽ2 = 0.
18. You are asked to design a shaving mirror assuming that a person keeps it 10 cm from his face
and views the magnified image of the face at the closest comfortable distance of 25 cm. The
radius of curvature of the mirror would then be:
(A) 24 ๐‘๐‘š
(B) 30 ๐‘๐‘š
(C) 60 ๐‘๐‘š
(D) โˆ’24 ๐‘๐‘š
Answer: (C)
Solution:
If AB is the position of face of man then A โ€˜Bโ€™ is the position of image of face.
As image is formed at 25cm form the object.
โˆด From concave mirror image is 15cm behind the mirror.
So, ๐‘ข = โˆ’10 ๐‘๐‘š, ๐‘ฃ = +15 ๐‘๐‘š
โ‡’
1
๐‘“
=
1
๐‘ข
+
1
๐‘ฃ
โ‡’
1
๐‘“
=
1
โˆ’10
+
1
15
=
โˆ’3 + 2
30
โ‡’ ๐‘“ = โˆ’300 ๐‘๐‘š
So, radius of curvature = 60 ๐‘๐‘š
19. A thin disc of radius ๐‘ = 2๐‘Ž has a concentric hole of radius โ€˜aโ€™ in it (see figure). It carries
uniform surface charge โ€ฒ๐œŽโ€ฒ on it. If the electric field on its axis at height โ€ฒโ„Žโ€ฒ
(โ„Ž < < ๐‘Ž) from its
centre is given as โ€˜Chโ€™ then value of โ€˜Cโ€™ is:
(A)
๐œŽ
4 ๐›ผ๐œ–0
(B)
๐œŽ
๐›ผ๐œ–0
(C)
๐œŽ
๐‘†๐›ผ๐œ–0
(D)
๐œŽ
2๐›ผ๐œ–0
Answer: (A)
Solution: โˆต at the axial point of a uniformly charged disc electric field is given by
๐ธ =
๐œŽ
2๐œ–0
(1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ)
By superposition principle when inner disc is removed then electric field due to remaining disc is
๐ธ =
๐œŽ
2๐œ–0
[(1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ2) โˆ’ (1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ1)]
=
๐œŽ
2๐œ–0
[๐‘๐‘œ๐‘ ๐œƒ1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ2]
=
๐œŽ
2๐œ–0
[
โ„Ž
โˆšโ„Ž2 + ๐‘Ž2
โˆ’
โ„Ž
โˆšโ„Ž2 + ๐‘2
]
=
๐œŽ
2๐œ–0
[
โ„Ž
๐‘Žโˆš1 +
โ„Ž2
๐‘Ž2
โˆ’
โ„Ž
โˆš1 +
โ„Ž2
๐‘2 ]
โˆต โ„Ž โ‰ช ๐‘Ž and b
โˆด ๐ธ =
๐œŽ
2๐œ–0
[
โ„Ž
๐‘Ž
โˆ’
โ„Ž
๐‘
]
=
๐œŽ
2๐œ–0
[
โ„Ž
๐‘Ž
โˆ’
โ„Ž
2๐‘Ž
] =
๐œŽโ„Ž
4๐œ–0 ๐‘Ž
โ‡’ ๐ถ =
๐œŽ
4๐‘Ž๐œ–0
20. An ideal gas goes through a reversible cycle ๐‘Ž โ†’ ๐‘ โ†’ ๐‘ โ†’ ๐‘‘ has the V โ€“ T diagram shown below.
Process ๐‘‘ โ†’ ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘ โ†’ ๐‘ are adiabatic.
The corresponding P โ€“ V diagram for the process is (all figures are schematic and not drawn to
scale) :
(A)
(B)
(C)
(D)
Answer: (A)
Solution: Is an adiabatic process
๐‘‡๐‘‰ ๐›พโˆ’1
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก โ‡’ ๐‘‰๐‘‡
1
๐›พโˆ’1 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก
โ‡’ as T increase V decreases at non-uniform rate
In process ๐‘Ž โ†’ ๐‘ P = constant as ๐‘‰ โˆ ๐‘‡
In process ๐‘ โ†’ ๐‘‘ ๐‘ƒโ€ฒ
= constant s ๐‘‰ โˆ ๐‘‡
But since slope of V โ€“ T graph โˆ
1
๐‘ƒ
since slope of ab < slope of cd
โ‡’ ๐‘ƒ๐‘Ž๐‘ > ๐‘ƒ๐‘๐‘‘
Also in adiabatic process ๐‘‘ โ†’ ๐‘Ž as T is increasing V in decreasing
โ‡’ P is increasing, so P โ€“ V diagram is as below
21. A uniform solid cylindrical roller of mass โ€˜mโ€™ is being pulled on a horizontal surface with force F
parallel to the surface and applied at its centre. If the acceleration of the cylinder is โ€˜aโ€™ and it is
rolling without slipping then the value of โ€˜Fโ€™ is:
(A)
3
2
๐‘š๐‘Ž
(B) 2 ๐‘š๐‘Ž
(C)
5
3
๐‘š๐‘Ž
(D) ๐‘š๐‘Ž
Answer: (A)
Solution:
From free body diagram of cylinder
๐น โˆ’ ๐‘“๐‘  = ๐‘š๐‘Ž โ€ฆ..(1)
โˆต โˆ‘ ๐‘“๐‘’๐‘ฅ๐‘ก = ๐‘š๐‘Ž ๐‘๐‘š
๐‘Ž๐‘™๐‘ ๐‘œ โˆ‘ ๐œ ๐‘’๐‘ฅ๐‘ก = ๐ผ๐‘๐‘š โˆ
โŸน ๐‘“๐‘  ๐‘… = ๐ผ๐‘๐‘š โˆ
โŸน ๐‘“๐‘  ๐‘… =
1
2
๐‘š๐‘…2
โˆ โ€ฆ.. (2)
For rolling without slipping
๐‘Ž = ๐‘… โˆ โ€ฆโ€ฆ (3)
โŸน โˆ=
๐‘ž
๐‘…
โˆด ๐‘“๐‘  ๐‘… =
1
2
๐‘š๐‘…2 ๐‘ž
๐‘…
โŸน ๐‘“๐‘  =
1
2
๐‘š๐‘Ž
Put in (1)
๐‘“ โˆ’
1
2
๐‘š๐‘Ž = ๐‘š๐‘Ž
โŸน ๐‘“ =
3
2
๐‘š๐‘Ž
22. A 25 cm long solenoid has radius 2 cm and 500 total number of turns. It carries a current of 15
A. If it is equivalent to a magnet of the same size and magnetization
๐‘€โƒ—โƒ— (๐‘€๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘š๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’โ„ ), ๐‘กโ„Ž๐‘’๐‘› |๐‘€โƒ—โƒ— | is:
(A) 3๐œ‹ ๐ด๐‘šโˆ’1
(B) 30000 ๐ด๐‘šโˆ’1
(C) 30000๐œ‹ ๐ด๐‘šโˆ’1
(D) 300 ๐ด๐‘šโˆ’1
Answer: (B)
Solution:
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐ด๐‘™
๐‘€๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘€โƒ—โƒ— =
๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘š๐‘œ๐‘›๐‘’๐‘›๐‘ก
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’
=
(๐‘๐‘œ.๐‘œ๐‘“ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ )ร—(๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก)ร—๐ด๐‘Ÿ๐‘’๐‘Ž
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’
=
๐‘ ๐ผ ๐ด
๐ด โ„“
=
๐‘๐ผ
โ„“
=
500ร—15ร—100
25
= 60 ร— 500
= 30 ร— 103
= 30000 ๐ด๐‘šโˆ’1
23. In the circuits (a) and (b) switches ๐‘†1 ๐‘Ž๐‘›๐‘‘ ๐‘†2 are closed at t = 0 and are kept closed for a long
time. The variation of currents in the two circuits for ๐‘ก โ‰ฅ 0 are roughly shown by (figures are
schematic and not drawn to scale):
(A)
(B)
(C)
(D)
Answer: (B)
Solution:
In CR series circuit
๐‘ž = ๐‘ž0 (1 โˆ’ ๐‘’
โˆ’๐‘ก
๐œ )
โŸน ๐‘ž = ๐ถ๐ธ (1 โˆ’ ๐‘’
โˆ’๐‘ก
๐‘…๐ถ)
โˆด ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ =
๐‘‘๐‘ž
๐‘‘๐‘ก
=
๐ถ๐ธ
๐‘…๐ถ
(+๐‘’
โˆ’๐‘ก
๐‘…๐ถ)
๐ผ =
๐ธ
๐‘…
๐‘’
โˆ’๐‘ก
๐‘…๐ถ
โŸน ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘‘๐‘’๐‘๐‘Ž๐‘ฆ๐‘  ๐‘’๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘Ž๐‘‘ ๐‘–๐‘› ๐ฟ๐‘… ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก
๐ผ = ๐ผ0 (1 โˆ’ ๐‘’
โˆ’๐‘ก
๐œ )
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ผ0 =
๐ธ
๐‘…
๐‘Ž๐‘›๐‘‘ ๐œ =
๐ฟ
๐‘…
๐ผ =
๐ธ
๐‘…
(1 โˆ’ ๐‘’
โˆ’๐‘…๐‘ก
๐ฟ ) โŸน ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘”๐‘Ÿ๐‘œ๐‘ค๐‘  ๐‘’๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘ 
โˆด ๐‘“๐‘œ๐‘Ÿ ๐ถ โˆ’ ๐‘… ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก
For L โ€“ R circuit
24. If two glass plates have water between them and are separated by very small distance (see
figure), it is very difficult to pull them apart. It is because the water in between forms
cylindrical surface on the side that gives rise to lower pressure in the water in comparison to
atmosphere. If the radius of the cylindrical surface is R and surface tension of water is T then
the pressure in water between the plates is lower by:
(A)
2๐‘‡
๐‘…
(B)
๐‘‡
4๐‘…
(C)
4๐‘‡
๐‘…
(D)
๐‘‡
2๐‘…
Answer: (A)
Solution:
๐‘‘ = 2๐‘… ๐‘๐‘œ๐‘ ๐œƒ
โˆด ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘‘๐‘œ๐‘ข๐‘๐‘™๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘ฃ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘–๐‘™๐‘š
โˆ†๐‘ƒ = 2๐‘‡ (
1
๐‘…1
+
1
๐‘…2
)
โˆต ๐‘…1 = ๐‘… ๐‘Ž๐‘›๐‘‘ ๐‘…2 = โˆž
โˆ†๐‘ƒ = 2๐‘‡ (
1
๐‘…
+
1
โˆž
)
โˆ†๐‘ƒ =
2๐ผ
๐‘…
โˆด Pressure is more in the concave side hence pressure in water between the plates is lower by
2๐‘‡
๐‘…
25. A simple harmonic oscillator of angular frequency 2 rad ๐‘ โˆ’1
is acted upon by an external force
๐น = sin ๐‘ก ๐‘. If the oscillator is at rest in its equilibrium position at ๐‘ก = ๐‘œ, its position at later
times is proportional to:
(A) sin ๐‘ก +
1
2
cos 2๐‘ก
(B) ๐‘๐‘œ๐‘ ๐‘ก โˆ’
1
2
sin2๐‘ก
(C) sin ๐‘ก โˆ’
1
2
sin2๐‘ก
(D) sin ๐‘ก +
1
2
sin2๐‘ก
Answer: (C)
Solution:
It is given that oscillator at rest at t = 0 i.e. at t = 0, v = 0
So, in option we can check by putting ๐‘ฃ =
๐‘‘๐‘ฅ
๐‘‘๐‘ก
= 0
(1) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก +
1
2
cos2๐‘ก
โŸน ๐‘ฃ โˆ cos ๐‘ก +
1
2
ร— 2 (โˆ’ sin 2๐‘ก)
โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 โˆ’ 0 โ‰  0
(2) ๐ผ๐‘“ ๐‘ฅ โˆ cos ๐‘ก โˆ’
1
2
sin ๐‘ก
โŸน ๐‘ฃ โˆ โˆ’ sin ๐‘ก โˆ’
1
2
cos ๐‘ก
โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ โˆ’
1
2
โ‰  0
(3) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก โˆ’
1
2
๐‘ ๐‘–๐‘›๐œƒ 2๐‘ก
๐‘กโ„Ž๐‘’๐‘› ๐œ โˆ cos ๐‘ก โˆ’
1
2
ร— 2 cos 2๐‘ก
โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 โˆ’ 1 = 0
(4) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก +
1
2
sin2๐‘ก
โŸน ๐‘ฃ โˆ cos ๐‘ก +
1
2
ร— 2 cos2๐‘ก
โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 + 1
โŸน ๐‘ฃ โˆ 2 โ‰  0
โˆด ๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘œ๐‘› (3) ๐‘ฃ = 0 ๐‘Ž๐‘ก ๐‘ก = 0
26. If a body moving in a circular path maintains constant speed of 10 ๐‘š๐‘ โˆ’1
, then which of the
following correctly describes relation between acceleration and radius?
(A)
(B)
(C)
(D)
Answer: (D)
Solution:
V = constant
โŸน No tangential acceleration
โŸน Only centripetal acceleration
๐‘Ž =
๐‘ฃ2
๐‘…
โŸน ๐‘Ž๐‘… = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
โŸน ๐‘Ž โˆ
1
๐‘…
27. If it takes 5 minutes to fill a 15 litre bucket from a water tap of diameter
2
โˆš ๐œ‹
๐‘๐‘š then the
Reynolds number for the flow is (density of water =103 ๐‘˜๐‘” ๐‘š3โ„
๐‘Ž๐‘›๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ =
10โˆ’3
๐‘ƒ๐‘Ž. ๐‘ ) close to:
(A) 5500 (B) 550 (C) 1100 (D) 11,000
Answer: (A)
Solution:
Reynolds number
๐‘… =
๐‘†๐‘‰๐ท
๐œ‚
๐ท = Diameter of litre
Also rate of flow =
๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’
๐‘ก๐‘–๐‘š๐‘’
= ๐ด ๐‘‰
๐‘‰
๐‘ก
=
๐œ‹ ๐ท2
4
ร— ๐‘‰ โ‡’ ๐‘‰ =
4๐‘‰
๐œ‹๐ท2 ๐‘ก
โˆด ๐‘… =
๐‘† ๐ท
๐œ‚
ร—
4 ๐‘‰
๐œ‹ ๐ท2 ๐‘ก
=
4 ๐‘† ๐‘‰
๐œ‹ ๐œ‚ ๐ท ๐‘ก
=
4 ร— 103
ร— 15 ร— 10โˆ’3
๐œ‹ ร— 10โˆ’3 ร— 2 ร— 5 ร— 60
โˆš ๐œ‹ ร— 102
=
10000
โˆš ๐œ‹
โ‰ˆ 5500
28. If one were to apply Bohr model to a particle of mass โ€˜mโ€™ and charge โ€˜qโ€™ moving in a plane
under the influence of a magnetic field โ€˜Bโ€™, the energy of the charged particle in the ๐‘› ๐‘กโ„Ž
level
will be:
(A) ๐‘› (
โ„Ž๐‘ž๐ต
๐œ‹๐‘š
) (B) ๐‘› (
โ„Ž๐‘ž๐ต
4๐œ‹๐‘š
) (C) ๐‘› (
โ„Ž๐‘ž๐ต
2๐œ‹๐‘š
) (D) ๐‘› (
โ„Ž๐‘ž๐ต
8๐œ‹๐‘š
)
Answer: (B)
Solution:
For a charge q moving in a +r uniform magnetic field B
๐‘“๐‘š =
๐‘š๐‘ฃ2
๐‘…
๐‘ž๐‘‰๐ต =
๐‘š๐‘ฃ2
๐‘…
โ‡’ ๐‘š๐‘ฃ2
= ๐‘ž๐‘‰๐ต๐‘…
โ‡’
1
2
๐‘š๐‘ฃ2
=
๐‘ž๐‘‰๐ต๐‘…
2
โ‡’ ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ =
๐‘ž๐‘‰๐ต๐‘…
2
(1)
By Bohrโ€™s quantisation condition
Angular momentum ๐ฟ = ๐‘›
โ„Ž
2๐œ‹
โ‡’ ๐‘š๐‘ฃ๐‘… =
๐‘›โ„Ž
2๐œ‹
โ‡’ ๐‘ฃ๐‘… =
๐‘›โ„Ž
2๐œ‹ ๐‘š
(2)
Put (2) in (2)
โ‡’ ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ =
๐‘ž๐ต
2
(
โ„Ž
2 ๐œ‹ ๐‘š
)
=
๐‘ž๐ต ๐‘›โ„Ž
4 ๐œ‹ ๐‘š
29. If the capacitance of a nanocapacitor is measured in terms of a unit โ€˜uโ€™ made by combining the
electronic charge โ€˜eโ€™, Bohr radius โ€ฒ๐‘Ž0
โ€ฒ
, Planckโ€™s constant โ€˜hโ€™ and speed of light โ€˜cโ€™ then:
(A) ๐‘ข =
๐‘’2 ๐‘Ž0
โ„Ž๐‘
(B) ๐‘ข =
โ„Ž๐‘
๐‘’2 ๐‘Ž0
(C) ๐‘ข =
๐‘’2 ๐‘
โ„Ž๐‘Ž0
(D) ๐‘ข =
๐‘’2โ„Ž
๐‘๐‘Ž0
Answer: (A)
Solution:
โˆต ๐ถ๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐ถ =
๐‘„
โˆ†๐‘ฃ
๐ด๐‘™๐‘ ๐‘œ [
โ„Ž๐‘
๐œ†
] = [
โ„Ž๐‘
๐‘Ž0
] = [๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ]
โˆด [๐ถ] =
[๐‘„]
[โˆ†๐‘ฃ]
=
[๐‘„] [๐‘„]
[โˆ†๐‘ฃ] [๐‘„]
โˆต ๐‘Š = ๐‘žโˆ†๐‘ฃ โ‡’ [๐‘„] [โˆ†๐‘ฃ] = [๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ]
โˆด [๐ถ] =
[๐‘„2]
[๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ]
=
[๐‘„2] [๐‘Ž0]
[โ„Ž๐‘]
โˆด [๐ถ๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ] =
[๐‘„2] [๐‘Ž0]
[โ„Ž๐‘]
โ‡’ ๐‘ข =
๐‘’2 ๐‘Ž0
โ„Ž๐‘
30. A bat moving at 10 ๐‘š๐‘ โˆ’1
towards a wall sends a sound signal of 8000 Hz towards it. On
reflection it hears a sound of frequency๐‘“. The value of ๐‘“ in Hz is close to
(๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ = 320 ๐‘š๐‘ โˆ’1)
(A) 8258
(B) 8424
(C) 8000
(D) 8516
Answer: (D)
Solution:
We can assume that reflected wave is due to image of B coming with same speed in opposite
direction
Observer
๐‘“ =
๐‘ฃ + 10
๐‘ฃ โˆ’ 10
ร— ๐‘“0
=
320 + 10
320 โˆ’ 10
ร— 8000
=
330
310
ร— 8000
=
33
31
ร— 8000
= 8516 ๐ป๐‘ง
JEE Mains 2015 10th April (online)
Chemistry
Single correct answer type
1. 1.4 g of an organic compound was digested according to Kjeldahlโ€™s method and the ammonia
evolved was absorbed in 60 mL of M/10 ๐ป2 ๐‘†๐‘‚4 solution. The excess sulphuric acid required 20
mL of M/10 NaOH solution for neutralization. The percentage of nitrogen in the compound is:
(A) 24 (B)3 (C)5 (D)10
Solution: (D) 60 ร—
1
10
= 6 ๐‘š๐‘€ ๐ป2 ๐‘†๐‘‚4 used
Excess ๐ป2 ๐‘†๐‘‚4 โ‰ก 20 ร—
1
10
ร—
1
2
= 1 ๐‘š๐‘€ ๐ป2 ๐‘†๐‘‚4
๐ป2 ๐‘†๐‘‚4 used = 6 โˆ’ 1 = 5 ๐‘š๐‘€
2๐‘๐ป3 + ๐ป2 ๐‘†๐‘‚4 โŸถ (๐‘๐ป4)2 ๐‘†๐‘‚4
mM of ๐‘๐ป3 = 10 ๐‘š๐‘€
Mass of ๐‘ = 10 ร— 10โˆ’3
ร— 14 (
๐‘”
๐‘š๐‘œ๐‘™๐‘’
) = 0.140๐‘”
% ๐‘2 =
0.140
1.4
ร— 100 = 10%
2. The optically inactive compound from the following is:
(A) 2-chloropropanal
(B) 2-chloro-2-methylbutane
(C) 2-chlorobutane
(D) 2-chloropentane
Solution: (B)
(Optically active)
(Optically inactive because of 2 โˆ’ ๐ถ๐ป3 groups present on same C atom)
(Optically active)
3. The least number of oxyacids are formed by:
(A) Chlorine
(B) Fluorine
(C) Sulphur
(D) Nitrogen
Solution: (B) Fluorine does not form oxyacids as it is more electronegative than oxygen.
4. Gaseous ๐‘2 ๐‘‚4 dissociates into gaseous ๐‘๐‘‚2according to the reaction๐‘2 ๐‘‚4(๐‘”) โ‡Œ 2๐‘๐‘‚2(๐‘”)
At 300 K and 1 atm pressure, the degree of dissociation of ๐‘2 ๐‘‚4 is 0.2. If one mole of ๐‘2 ๐‘‚4 gas is
contained in a vessel, then the density of the equilibrium mixture is:
(A) 3.11 g/L
(B) 1.56 g/L
(C) 4.56 g/L
(D) 6.22 g/L
Solution: (A)
๐‘2 ๐‘‚4 โ‡Œ 2๐‘๐‘‚2
(1 โˆ’ ๐›ผ) 2๐›ผ
Total moles at equilibrium = 1 โˆ’ ๐›ผ + 2๐›ผ = 1 + ๐›ผ = 1.2
M avg for equilibrium mixture =
92
๐‘”
๐‘š๐‘œ๐‘™๐‘’
(๐‘2 ๐‘‚4)
1.2
๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ =
๐‘ƒ๐‘€ ๐‘Ž๐‘ฃ๐‘”
๐‘…๐‘‡
=
1 ร— 76.67
0.082 ร— 300
=
76.67
24.6
= 3.11 ๐‘”๐ฟโˆ’1
5. Arrange the following amines in the order of increasing basicity.
(A)
(B)
(C)
(D)
Solution: (C)
Most basic due to +I effect of methyl group. Methoxy group provides electron density at -
๐‘๐ป2
-๐‘๐‘‚2 group with draws electron density from N of -๐‘๐ป2
6.
A is;
(A)
(B)
(C)
(D)
Solution: (A)
7. A solution at 20 ๐‘œ
๐ถ is composed of 1.5 mol of benzene and 3.5 mol of toluene. If the vapour
pressure of pure benzene and pure toluene at this temperature are 74.7 torr and 22.3 torr,
respectively, then the total vapour pressure of the solution and the benzene mole fraction in
equilibrium with it will be, respectively:
(A) 30.5 torr and 0.389
(B) 35.0 torr and 0.480
(C) 38.0 torr and 0.589
(D) 35.8 torr and 0.280
Solution: (C) ๐‘‹ ๐ต๐‘’๐‘›๐‘ง๐‘’๐‘›๐‘’ =
1.5
5
= 0.3
๐‘‹ ๐‘‡๐‘œ๐‘™๐‘ข๐‘’๐‘›๐‘’ =
3.5
5
= 0.7
๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = 0.3 ร— 74.7 + 0.7 ร— 22.3
= 22.41 + 15.61 = 38.02
โ‰ˆ 38 ๐‘‡๐‘œ๐‘Ÿ๐‘Ÿ
By Daltonโ€™s law to vapour phase
๐‘‹ ๐ต๐‘’๐‘›๐‘ง๐‘’๐‘›๐‘’
โ€ฒ (๐‘ฃ๐‘Ž๐‘ ๐‘โ„Ž๐‘Ž๐‘ ๐‘’) =
0.3 ร— 74.7
38
=
22.41
38
= 0.589
8. Which molecule/ion among the following cannot act as a ligand in complex compounds?
(A) ๐ถ๐‘โˆ’
(B) ๐ถ๐ป4
(C) ๐ถ๐‘‚
(D) ๐ต๐‘Ÿโˆ’
Solution: (B) ๐ถ๐ป4 does not have either a lone pair or ๐œ‹-electron pair it cannot act as ligand.
9. A compound A with molecular formula ๐ถ10 ๐ป13 ๐ถ๐‘™ gives a white precipitate on adding silver
nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on
ozonolysis gives C and D. C gives Cannizaro reaction but not aldol condensation. D gives aldol
condensation but not Cannizaro reaction. A is:
(A)
(B)
(C)
(D)
Solution: (B) Chlorine attached to tertiary carbon will give a white precipitate on adding ๐ด๐‘”๐‘๐‘‚3
(Saytzeff Rule)
10.
is used as:
(A) Antacid
(B) Insecticide
(C) Antihistamine
(D) Analgesic
Solution: (D) Acetyl salicylic acid is analgesic.
11. An aqueous solution of a salt X turns blood red on treatment with ๐‘†๐ถ๐‘โˆ’
and blue on
treatment with ๐พ4[๐น๐‘’(๐ถ๐‘)6], X also gives a positive chromyl chloride test. The salt X is:
(A) ๐น๐‘’๐ถ๐‘™3
(B) ๐น๐‘’(๐‘๐‘‚3)3
(C) ๐ถ๐‘ข๐ถ๐‘™2
(D) ๐ถ๐‘ข(๐‘๐‘‚3)2
Solution: (A)
๐น๐‘’๐ถ๐ฟ3 + 3 ๐‘†๐ถ๐‘๐‘Ž๐‘ž
โˆ’
โ‡Œ ๐น๐‘’(๐‘†๐ถ๐‘)3 + 3 ๐ถ๐‘™โˆ’
(๐ต๐‘™๐‘œ๐‘œ๐‘‘ ๐‘Ÿ๐‘’๐‘‘)
4 ๐น๐‘’๐ถ๐‘™3 + 3๐พ4[๐น๐‘’(๐ถ๐‘)6] โŸถ 12 ๐พ๐ถ๐‘™ + ๐น๐‘’4[๐น๐‘’(๐ถ๐‘)6]3
๐‘ƒ๐‘Ÿ๐‘ข๐‘ ๐‘ ๐‘–๐‘œ๐‘› ๐‘๐‘™๐‘ข๐‘’
2๐น๐‘’๐ถ๐‘™3 + 3๐ป2 ๐‘†๐‘‚4 โŸถ ๐น๐‘’2(๐‘†๐‘‚4)3 + 6๐ป๐ถ๐‘™
๐พ2 ๐ถ๐‘Ÿ2 ๐‘‚7 + 2๐ป2 ๐‘†๐‘‚4 โŸถ 2๐พ๐ป๐‘†๐‘‚4 + 2๐ถ๐‘Ÿ๐‘‚3 + ๐ป2 ๐‘‚
๐ถ๐‘Ÿ๐‘‚3 + 2๐ป๐ถ๐‘™ โŸถ ๐ถ๐‘Ÿ๐‘‚2 ๐ถ๐‘™2 + ๐ป2 ๐‘‚
(๐ถโ„Ž๐‘Ÿ๐‘œ๐‘š๐‘ฆ๐‘™๐‘โ„Ž๐‘™๐‘œ๐‘Ÿ๐‘–๐‘‘๐‘’)
๐ถ๐‘’๐‘‚2 ๐ถ๐‘™2 + 4 ๐‘ ๐‘Ž๐‘‚๐ป โŸถ ๐‘๐‘Ž2 ๐ถ๐‘Ÿ๐‘‚4 + 2๐‘๐‘Ž๐ถ๐‘™ + 2๐ป2 ๐‘‚
(๐‘ฆ๐‘’๐‘™๐‘™๐‘œ๐‘ค)
๐‘๐‘Ž2 ๐ถ๐‘Ÿ๐‘‚4 + ๐‘ƒ๐‘(๐ถ๐ป3 ๐ถ๐‘‚๐‘‚)2 โŸถ ๐‘ƒ๐‘๐ถ๐‘Ÿ๐‘‚4 + 2๐ถ๐ป3 ๐ถ๐‘‚๐‘‚๐‘๐‘Ž
(๐‘ฆ๐‘’๐‘™๐‘™๐‘œ๐‘ค ๐‘๐‘๐‘ก)
12. The correct statement on the isomerism associated with the following complex ions,
(A) [๐‘๐‘–(๐ป2 ๐‘‚)5 ๐‘๐ป3]2+
(B) [๐‘๐‘–(๐ป2 ๐‘‚)4(๐‘๐ป3)2]2+
and
(C) [๐‘๐‘–(๐ป2 ๐‘‚)3(๐‘๐ป3)3]2+
is
(D) (A) and (B) show only geometrical isomerism
Solution: (D) [๐‘๐‘– (๐ป2 ๐‘‚)4(๐‘๐ป3)2]2+
Show c is & trans geometrical isomerism [๐‘๐‘– (๐ป2 ๐‘‚)3(๐‘๐ป3)3]2+
Show facial & meridional geometrical isomerism.
13. In the presence of a small amount of phosphorous, aliphatic carboxylic acids react with ๐›ผ-
hydrogen has been replaced by halogen. This reaction is known as:
(A) Etard reaction
(B) Wolff-Kischner reaction
(C) Rosenmund reaction
(D) Hell-volhard-zelinsky reaction
Solution: (D) This reaction is known as HVZ reaction.
14. The reaction 2N2O5(g) โ†’ 4NO2(g) + O2(g) follows first order kinetics. The pressure of a
vessel containing only N2O5 was found to increase from 50 mm Hg to 87.5 mm Hg in 30 min.
The pressure exerted by the gases after 60 min. Will be (Assume temperature remains
constant) :
(A) 106.25 mm Hg
(B) 125 mm Hg
(C) 116.25 mm Hg
(D) 150 mm Hg
Solution: (A)
2๐‘2 ๐‘‚5(๐‘”) โŸถ 4 ๐‘๐‘‚2(๐‘”)
(๐‘0 โˆ’ ๐‘ฅ) 2๐‘ฅ
+ ๐‘‚2(๐‘”)
๐‘ฅ
2
โˆ‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘0 โˆ’ ๐‘ฅ + 2๐‘ฅ +
๐‘ฅ
2
= ๐‘0 +
3๐‘ฅ
2
= ๐‘๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™
87.5 = 50 +
3๐‘ฅ
2
3๐‘ฅ
2
= 37.5
โˆด ๐‘ฅ = 37.5 ร—
2
3
= 25
For first order kinetics
๐‘˜๐‘ก = ln
๐‘0
๐‘0 โˆ’ ๐‘ฅ
= ๐‘™๐‘›
50
25
= ln 2
๐‘˜ =
1
๐‘ก
ln 2 =
1
30
ln 2
After 60 min
๐‘˜ =
1
๐‘กโ€ฒ
ln
๐‘0
๐‘0 โˆ’ ๐‘ฅโ€ฒ
โ‡’
1
30
ln 2 =
1
60
ln
๐‘0
๐‘0 โˆ’ ๐‘ฅโ€ฒ
2 ln 2 = ln
๐‘0
๐‘0 โˆ’ ๐‘ฅโ€ฒ
โˆ’ ln 4
๐‘0
๐‘0 โˆ’ ๐‘ฅโ€ฒ
= 4 โ‡’ ๐‘0
= 4 ๐‘0
โˆ’ 4๐‘ฅโ€ฒ
๐‘ฅโ€ฒ
=
4๐‘0 โˆ’ ๐‘0
4
=
3๐‘0
4
=
3 ร— 50
4
= 37.5
ฮฃ60 ๐‘š๐‘–๐‘› ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘0 +
3๐‘ฅโ€ฒ
2
= 50 + 3 ร—
37.5
2
= 50 + 56.25 = 106.25 ๐‘š๐‘š
15. If the principal quantum number n = 6, the correct sequence of filling of electrons will be:
(A) ns โ†’ (n โˆ’ 1) d โ†’ (n โˆ’ 2) f โ†’ np
(B) ns โ†’ np โ†’ (n โˆ’ 1)d โ†’ (n โˆ’ 2)f
(C) ns โ†’ (n โˆ’ 2)f โ†’ np โ†’ (n โˆ’ 1)d
(D) ns โ†’ (n โˆ’ 2)f โ†’ (n โˆ’ 1)d โ†’ np
Solution: (D) As per (n + โ„“) rule when n = 6
ns subshell โ‡’ 6 + 0 = 6
(n โ€“ 1) d subshell โ‡’ 5 + 2 = 7
(n โ€“ 2) f subshell โ‡’ 4 + 3 = 7
np subshell โ‡’ 6 + 1 = 7
When n + โ„“ values are same, the one have lowest n value filled first.
ns , (n โˆ’ 2)f, (n โˆ’ 1)d, np
(n + โ„“) values โ‡’ 7 , 7 , 7
n value โ‡’ 4 , 5 , 6
16. The cation that will not be precipitated by H2S in the presence of dil HCl is:
(A) Co2+
(B) As3+
(C) Pb2+
(D) Cu2+
Solution: (A) Co2+
precipitated by H2S in presence of NH4OH in group IV as CoS (Black ppt.)
Other are precipitated as sulphide in presence of dil HCl in group II.
17. The geometry of XeOF4 by VSEPR theory is:
(A) Trigonal bipyramidal
(B) Square pyramidal
(C) Pentagonal planar
(D) Octahedral
Solution: (B) H =
1
2
(V + M โˆ’ C + A)
=
1
2
(8 + 4) = 6
sp3
d2
Hybridization
4 B.P + 1 B.P (Double bonded) + 1 L.P,
Square pyramidal
Oxygen atom doubly bonded to Xe lone pair of electrons on apical position.
18. The correct order of thermal stability of hydroxides is:
(A) Mg(OH)2 < Sr(OH)2 < Ca(OH)2 < Ba(OH)2
(B) Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2
(C) Ba(OH)2 < Sr(OH)2 < Ca(OH)2 < Mg(OH)2
(D) Ba(OH)2 < Ca(OH)2 < Sr(OH)2 < Mg(OH)2
Solution: (B) Thermal stabilities of hydroxides of group II A elements increase from
Be(OH)2 to Ba(OH)2 because going down the group the cation size increases & covalent
character decreases & ionic character increases i.e. Mg(OH)2 < Ca(OH)2 < Sr(OH)2 <
Ba(OH)2
19. Photochemical smog consists of excessive amount of X, in addition to aldehydes, ketones,
peroxy acetyl nitrile (PAN), and so forth. X is:
(A) CH4
(B) CO2
(C) O3
(D) CO
Solution: (C) Photochemical smog is the chemical reaction of sunlight, nitrogen oxides and VOCs in
the atmosphere.
NO2
hv
โ†’ NO + O
O + O2 โ†’ O3
So, it consists of excessive amount of ozone molecules as atomic oxygen reacts with one of the
abundant oxygen molecules producing ozone.
20. A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of
hydration is removed. The dried sample weighed 52 g. The formula of the hydrated salt is:
(atomic mass, Ba = 137 amu, Cl = 35.5 amu)
(A) BaCl2 โˆ™ H2O
(B) BaCl2 โˆ™ 3H2O
(C) BaCl2 โˆ™ 4H2O
(D) BaCl2 โˆ™ 2H2O
Solution: (D) BaCl2 โˆ™ xH2O โ†’ BaCl2 + x H2O
(137 + 2 ร— 35.5 + 18x)
= (208 + 18x) g/mole
208 + 18 x
208
=
61
52
10816 + 936 x = 12688
936 x = 1872
x = 2
Formula is BaCl2 โˆ™ 2H2O
21. The following statements relate to the adsorption of gases on a solid surface. Identify the
incorrect statement among them:
(A) Entropy of adsorption is negative
(B) Enthalpy of adsorption is negative
(C) On adsorption decrease in surface energy appears as heat
(D) On adsorption, the residual forces on the surface are increased
Solution: (D) Adsorption is spontaneous process โˆ†G is โ€“ve
During adsorption randomness of adsorbate molecules reduced โˆ†S is โ€“ve
โˆ†G = โˆ†H โˆ’ Tโˆ†S
โˆ†H = โˆ†G + Tโˆ†S
โˆ†H is highly โ€“ve and residual forces on surface are satisfied.
22. In the isolation of metals, calcination process usually results in:
(A) Metal oxide
(B) Metal carbonate
(C) Metal sulphide
(D) Metal hydroxide
Solution: (A) Calcination used for decomposition of metal carbonates
M CO3
โˆ†
โ†’ MO + CO2 โ†‘
23. A variable, opposite external potential (Eext) is applied to the cell Zn | Zn2+ (1M) โˆฅ
Cu2+ (1 M)| Cu , of potential 1.1 V. When Eext < 1.1 V and Eext > 1.1 V, respectively electrons
flow from:
(A) Anode to cathode in both cases
(B) Anode to cathode and cathode to anode
(C) Cathode to anode and anode to cathode
(D) Cathode to anode in both cases
Solution: (B) For the Daniel cell
Ecell = 0.34 โˆ’ (โˆ’0.76) = 1.10 V
When Eext < 1.10 V electron flow from anode to cathode in external circuit
When Eext > 1.10 V electrons flow from cathode to anode in external circuit (Reverse
Reaction)
24. Complete hydrolysis of starch gives:
(A) Galactose and fructose in equimolar amounts
(B) Glucose and galactose in equimolar amouunts
(C) Glucose and fructose in equimolar amounts
(D) Glucose only
Solution: (D) On complete hydrolysis of starch, glucose is formed. Amylase is an enzyme that
catalyses the hydrolysis of starch into sugars.
25. Match the polymers in column-A with their main uses in column-B and choose the correct
answer:
Column - A Column - B
A. Polystyrene i. Paints and lacquers
B. Glyptal ii. Rain coats
C. Polyvinyl chloride
chloride
iii. Manufacture of toys
D. Bakelite iv. Computer discs
(A) A โ€“ iii , B โ€“ i , C โ€“ ii , D โ€“ iv
(B) A โ€“ ii , B โ€“ i , C โ€“ iii , D โ€“ iv
(C) A โ€“ ii , B โ€“ iv , C โ€“ iii , D โ€“ i
(D) A โ€“ iii , B โ€“ iv , C โ€“ ii , D โ€“ i
Solution: (A) A โ€“ iii , B โ€“ i , C โ€“ ii , D โ€“ iv
26. Permanent hardness in water cannot be cured by:
(A) Treatment with washing soda
(B) Ion exchange method
(C) Calgonโ€™s methos
(D) Boiling
Solution: (D) Permanent hardness due to SO4
2โˆ’
, Clโˆ’
of Ca2+
and Mg2+
cannot be removed by boiling.
27. In the long form of periodic table, the valence shell electronic configuration of 5s2
5p4
corresponds to the element present in:
(A) Group 16 and period 5
(B) Group 17 and period 5
(C) Group 16 and period 6
(D) Group 17 and period 6
Solution: (A) 5s2
, 5p4
configuration is actually 36[Kr]5s2
, 4d10
, 5p4
i.e. 5th period and group 16 and
element Tellurium.
28. The heat of atomization of methane and ethane are 360 kJ/mol and 620 kJ/mol, respectively.
The longest wavelength of light capable of breaking the C โˆ’ C bond is (Avogadro number =
6.023 ร— 1023
, h = 6.62 ร— 10โˆ’34
J s):
(A) 2.48 ร— 104
nm
(B) 1.49 ร— 104
nm
(C) 2.48 ร— 103
nm
(D) 1.49 ร— 103
nm
Solution: (D) 4 B.E (C โˆ’ H) bond = 360 kJ
B.E (C โˆ’ H) bond = 90 kJ/mole
In C2H6 โ‡’ B. E(Cโˆ’C) + 6B. E(Cโˆ’H) = 620 kJ
B. E(Cโˆ’C) bond = 620 โˆ’ 6 ร— 90 = 80 kJ moleโ„
B. E(Cโˆ’C) bond =
80
96.48
= 0.83 eV bondโ„
ฮป(Photon in โ„ซ) for rupture of
C โˆ’ C bond =
12408
0.83
= 14950โ„ซ
= 1495 nm
โ‰ˆ 1.49 ร— 103
nm
29. Which of the following is not an assumption of the kinetic theory of gases?
(A) Collisions of gas particles are perfectly elastic.
(B) A gas consists of many identical particles which are in continual motion.
(C) At high pressure, gas particles are difficult to compress.
(D) Gas particles have negligible volume.
Solution: (C) At high pressures gas particles difficult to compress rather they are not compressible at
all.
30. After understanding the assertion and reason, choose the correct option.
Assertion: In the bonding molecular orbital (MO) of H2 , electron density is increases between
the nuclei.
Reason: The bonding MO is ฯˆA + ฯˆB , which shows destructive interference of the combining
electron waves.
(A) Assertion and Reason are correct, but Reason is not the correct explanation for the Assertion.
(B) Assertion and Reason are correct and Reason is the correct explanation for the Assertion.
(C) Assertion is incorrect, Reason is correct.
(D) Assertion is correct, Reason is incorrect.
Solution: (D) Electron density between nuclei increased during formation of BMO in H2.
BMO is ฯˆA + ฯˆB (Linear combination of Atomic orbitals) provides constructive interference.
JEE Mains 2015 10th April (online)
Mathematics
1. If the coefficient of the three successive terms in the binomial expansion of (1 + ๐‘ฅ) ๐‘›
are in the
ratio 1 : 7 : 42, then the first of these terms in the expansion is :
1. 9 ๐‘กโ„Ž
2. 6 ๐‘กโ„Ž
3. 8 ๐‘กโ„Ž
4. 7 ๐‘กโ„Ž
Answer: (4)
Solution: Let ๐‘›
๐ถ๐‘Ÿ be the first term, then
๐‘› ๐ถ ๐‘Ÿ
๐‘› ๐ถ ๐‘Ÿ+1
=
1
7
โ‡’
๐‘Ÿ + 1
๐‘› โˆ’ ๐‘Ÿ
=
1
7
โ‡’ 7๐‘Ÿ + 7 = ๐‘› โˆ’ ๐‘Ÿ
๐‘› โˆ’ 8๐‘Ÿ = 7 โ€ฆ..(i)
Also
๐‘› ๐ถ ๐‘Ÿ+1
๐‘› ๐ถ ๐‘Ÿ+2
=
7
42
=
1
6
โ‡’
๐‘Ÿ + 2
๐‘› โˆ’ ๐‘Ÿ โˆ’ 1
=
1
6
โ‡’ 6๐‘Ÿ + 12 = ๐‘› โˆ’ ๐‘Ÿ โˆ’ 1
๐‘› โˆ’ 7๐‘Ÿ = 13 โ€ฆโ€ฆ(ii)
Solving
๐‘› โˆ’ 8๐‘Ÿ = 7 โ€ฆ.(i)
๐‘› โˆ’ 7๐‘Ÿ = 13 โ€ฆ..(ii)
____________
โˆ’๐‘Ÿ = โˆ’6
๐‘Ÿ = 6
Hence 7 ๐‘กโ„Ž
term is the answer.
2. The least value of the product ๐‘ฅ๐‘ฆ๐‘ง for which the determinant |
๐‘ฅ
1
1
1
๐‘ฆ
1
1
1
๐‘ง
| is non โ€“ negative, is:
1. โˆ’1
2. โˆ’16โˆš2
3. โˆ’8
4. โˆ’2โˆš2
Answer: (3)
Solution: |
๐‘ฅ
1
1
1
๐‘ฆ
1
1
1
๐‘ง
| = ๐‘ฅ๐‘ฆ๐‘ง โˆ’ (๐‘ฅ + ๐‘ฆ + ๐‘ง) + 2
Since ๐ด. ๐‘€ โ‰ฅ ๐บ. ๐‘€
๐‘ฅ + ๐‘ฆ + ๐‘ง
3
โ‰ฅ (๐‘ฅ๐‘ฆ๐‘ง)
1
3
๐‘ฅ + ๐‘ฆ + ๐‘ง โ‰ฅ 3(๐‘ฅ๐‘ฆ๐‘ง)
1
3
โˆด Least value of xyz will have from (when determinant non- negative terms)
๐‘ฅ๐‘ฆ๐‘ง โˆ’ (3)(๐‘ฅ๐‘ฆ๐‘ง)
1
3 + 2 โ‰ฅ 0
๐‘ก3
โˆ’ 3๐‘ก + 2 โ‰ฅ 0
(๐‘ก + 2)(๐‘ก2
โˆ’ 2๐‘ก + 1)
๐‘ก = โˆ’2 ๐‘Ž๐‘›๐‘‘ ๐‘ก = +1
Least value of ๐‘ก3
= โˆ’8.
3. The contrapositive of the statement โ€œIf it is raining, then I will not comeโ€, is:
1. If I will come, then it is not raining
2. If I will come, then it is raining
3. If I will not come, then it is raining
4. If I will not come, then it is not raining
Answer: (1)
Solution: Contrapositive of ๐‘ƒ โ‡’ ๐‘ž is
~๐‘ž โ‡’ ~ ๐‘ƒ So contra positive of the statement โ€œIf it is raining, then I will not comeโ€, would be
If I will come, then it is not raining.
4. lim
๐‘ฅโ†’0
๐‘’ ๐‘ฅ2
โˆ’cos ๐‘ฅ
sin2 ๐‘ฅ
is equal to:
1. 2
2.
3
2
3.
5
4
4. 3
Answer: (2)
Solution:
๐‘’ ๐‘ฅ2
โˆ’cos ๐‘ฅ
sin2 ๐‘ฅ
=
(1 +
๐‘ฅ2
โˆŸ1 +
๐‘ฅ4
โˆŸ2 โ€ฆ โ€ฆ ) โˆ’ (1 โˆ’
๐‘ฅ2
โˆŸ2 +
๐‘ฅ4
โˆŸ4 โ€ฆ โ€ฆ ๐‘›)
sin2 ๐‘ฅ
๐‘ฅ2 โˆ’ ๐‘ฅ2
(
+3๐‘ฅ2
2
+
11 ๐‘ฅ4
24
sin2 ๐‘ฅ
๐‘ฅ2 โˆ™๐‘ฅ2
) take ๐‘ฅ2
common
[lim
๐‘ฅโ†’0
+
3
2 +
11
24 ๐‘ฅ2
sin2 ๐‘ฅ
๐‘ฅ2
] =
3
2
.
5. If Rolleโ€™s theorem holds for the function ๐‘“(๐‘ฅ) = 2๐‘ฅ3
+ ๐‘๐‘ฅ2
+ ๐‘๐‘ฅ, ๐‘ฅ โˆˆ [โˆ’1, 1], at the point ๐‘ฅ =
1
2
,
then 2b + c equals:
1. 2
2. 1
3. -1
4. -3
Answer: (3)
Solution: If Rolleโ€™s theorem is satisfied in the interval [-1, 1], then
๐‘“(โˆ’1) = ๐‘“(1)
โˆ’2 + ๐‘ โˆ’ ๐‘ = 2 + ๐‘ + ๐‘
๐‘ = โˆ’2 also ๐‘“โ€ฒ(๐‘ฅ) = 6๐‘ฅ2
+ 2๐‘๐‘ฅ + ๐‘
Also if ๐‘“โ€ฒ
(
1
2
) = 0 them
6
1
4
+ 2๐‘
1
2
+ ๐‘ = 0
3
2
+ ๐‘ + ๐‘ = 0
โˆต ๐‘ = โˆ’2,
๐‘ =
1
2
โˆด 2๐‘ + ๐‘ = 2 (
1
2
) + (โˆ’2)
= 1 โˆ’ 2
= โˆ’1.
6. If the points (1, 1, ๐œ†) ๐‘Ž๐‘›๐‘‘ (โˆ’3, 0, 1) are equidistant from the plane, 3๐‘ฅ + 4๐‘ฆ โˆ’ 12๐‘ง + 13 = 0,
then ๐œ† satisfies the equation:
1. 3๐‘ฅ2
+ 10๐‘ฅ + 7 = 0
2. 3๐‘ฅ2
+ 10๐‘ฅ โˆ’ 13 = 0
3. 3๐‘ฅ2
โˆ’ 10๐‘ฅ + 7 = 0
4. 3๐‘ฅ2
โˆ’ 10๐‘ฅ + 21 = 0
Answer: (3)
Solution: (1, 1, ๐œ†) ๐‘Ž๐‘›๐‘‘ (โˆ’3, 0, 1) in equidistant from 3๐‘ฅ + 4๐‘ฆ โˆ’ 12๐‘ง + 13 = 0 then
|
3 + 4 โˆ’ 12๐œ† + 13
โˆš32 + 42 + 122
| = |
โˆ’9 + 0 โˆ’ 12 + 13
โˆš32 + 42 + 122
|
|20 โˆ’ 12๐œ†| = |โˆ’8|
|5 โˆ’ 3๐œ† | = |โˆ’2|
25 โˆ’ 30๐œ† + 9๐œ†2
= 4
9๐œ†2
โˆ’ 30๐œ† + 21 = 0
3๐œ†2
โˆ’ 10๐œ† + 7 = 0
โˆด Option 3๐‘ฅ2
โˆ’ 10๐‘ฅ + 7 = 0 Is correct
7. In a ฮ”๐ด๐ต๐ถ,
๐‘Ž
๐‘
= 2 + โˆš3 ๐‘Ž๐‘›๐‘‘ โˆ ๐ถ = 60 ๐‘œ
. Then the ordered pair (โˆ ๐ด, โˆ ๐ต) is equal to:
1. (105 ๐‘œ
, 15 ๐‘œ)
2. (15 ๐‘œ
, 105 ๐‘œ)
3. (45 ๐‘œ
, 75 ๐‘œ)
4. (75 ๐‘œ
, 45 ๐‘œ
)
Answer: (1)
Solution: Since
๐‘Ž
๐‘
=
2+ โˆš3
1
โˆ ๐ด > โˆ ๐ต.
Hence only option 1 & 4 could be correct checking for option (1)
๐‘Ž
๐‘
=
sin105 ๐‘œ
sin 15 ๐‘œ
=
๐‘ ๐‘–๐‘› (60 ๐‘œ
+ 45 ๐‘œ
)
sin(60 ๐‘œ โˆ’ 45 ๐‘œ)
=
โˆš3 + 1
โˆš3 โˆ’ 1
๐‘Ž
๐‘
=
2 + โˆš3
1
Hence option (105 ๐‘œ
, 15 ๐‘œ) is correct.
8. A factory is operating in two shifts, day and night, with 70 and 30 workers respectively. If per
day mean wage of the day shift workers is Rs. 54 and per day mean wage of all the workers is
Rs. 60, then per day mean wage of the night shift workers (in Rs.) is :
1. 75
2. 74
3. 69
4. 66
Answer: (2)
Solution:
๐‘›1 ๐‘ฅ1 +๐‘›2 ๐‘ฅ2
๐‘›1+๐‘›2
= ๐‘ฅ
70 โˆ™ (54) + 30 (๐‘ฅ2)
70 + 30
= 60
= 3780 + 30 ๐‘ฅ2 = 6000
โˆด ๐‘ฅ2 =
6000 โˆ’ 3780
30
=
2220
30
= 74.
9. The integral โˆซ
๐‘‘๐‘ฅ
(๐‘ฅ+1)
3
4 (๐‘ฅโˆ’2)
5
4
is equal to:
1. 4 (
๐‘ฅโˆ’2
๐‘ฅ+1
)
1
4
+ ๐ถ
2. โˆ’
4
3
(
๐‘ฅ+1
๐‘ฅโˆ’2
)
1
4
+ ๐ถ
3. 4 (
๐‘ฅ+1
๐‘ฅโˆ’2
)
1
4
+ ๐ถ
4. โˆ’
4
3
(
๐‘ฅโˆ’2
๐‘ฅ+1
)
1
4
+ ๐ถ
Answer: (2)
Solution: โˆซ
๐‘‘๐‘ฅ
(๐‘ฅ+1)
3
4 (๐‘ฅโˆ’2)
5
4
Divide & Multiply the denominator by (๐‘ฅ + 1)
5
4.
โˆซ
๐‘‘๐‘ฅ
(๐‘ฅ + 1)2 (
๐‘ฅ โˆ’ 2
๐‘ฅ + 1)
5
4
Put
๐‘ฅโˆ’2
๐‘ฅ+1
= ๐‘ก
(
1 (๐‘ฅ + 1) โˆ’ (๐‘ฅ โˆ’ 2)(1)
(๐‘ฅ + 1)2 ) ๐‘‘๐‘ฅ = ๐‘‘๐‘ก
3
(๐‘ฅ + 1)2
๐‘‘๐‘ฅ = ๐‘‘๐‘ก
1
๐‘‘๐‘ฅ
(๐‘ฅ + 1)2
= 1
๐‘‘๐‘ก
3
โ‡’ 1/3 โˆซ ๐‘ก
5
4 ๐‘‘๐‘ก =
1 ๐‘ก
1
4
3 (
โˆ’1
4
)
=
โˆ’4
3
1
๐‘ก
1
4
+ ๐ถ
โˆ’4
3
(
๐‘ฅ+1
๐‘ฅโˆ’2
)
1
4
+ ๐ถ.
10. Let ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— be two unit vectors such that |๐‘Ž + ๐‘โƒ— | = โˆš3 .
If ๐‘ = ๐‘Ž + 2๐‘โƒ— (๐‘Ž ร— ๐‘โƒ— ), then 2|๐‘| is equal to:
1. โˆš51
2. โˆš37
3. โˆš43
4. โˆš55
Answer: (4)
Solution: As |๐‘Ž ร— ๐‘โƒ— | = โˆš3
Squaring both the sides
|๐‘Ž|2
+ |๐‘โƒ— |
2
+ 2๐‘Ž โˆ™ ๐‘โƒ— = 3
1 + 1 + 2 โˆ™ 1 โˆ™ 1 โˆ™ cos ๐œƒ = 3
2๐‘๐‘œ๐‘ ๐œƒ = 1
๐‘๐‘œ๐‘ ๐œƒ =
1
2
๐œƒ = 60
โˆด Angle between ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— ๐‘–๐‘  60 ๐‘œ
Now,
|๐‘| = |๐‘Ž + 2๐‘ + 3(๐‘Ž ร— ๐‘)|
Squaring both the sides
|๐‘|2
= ||๐‘Ž|2
+ 4|๐‘โƒ— |
2
+ 9 (๐‘Ž ร— ๐‘)2
+ 4 ๐‘Ž โˆ™ (๐‘) + 3๐‘Ž โˆ™ (๐‘Ž ร— ๐‘) + 6๐‘ โˆ™ (๐‘Ž ร— ๐‘)|
|๐‘|2
= |1 + 4 + 9 sin2
๐œƒ + 4 ๐‘๐‘œ๐‘ ๐œƒ + 0 + 0 |
|๐‘|2
= |5 + 9.
3
4
+ 4.
1
2
| =
55
4
โˆด 2|๐‘| = โˆš55.
11. The area (in square units) of the region bounded by the curves ๐‘ฆ + 2๐‘ฅ2
= 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ + 3๐‘ฅ2
= 1,
is equal to:
1.
3
4
2.
1
3
3.
3
5
4.
4
3
Answer: (4)
Solution:
Point of intersection
Put ๐‘ฆ = โˆ’2๐‘ฅ2
๐‘–๐‘› ๐‘ฆ + 3๐‘ฅ2
= 1
๐‘ฅ2
= 1
๐‘ฅ = ยฑ 1
The desired area would be
โˆซ (๐‘ฆ1 โˆ’ ๐‘ฆ2) ๐‘‘๐‘ฅ = โˆซ ((1 โˆ’ 3๐‘ฅ2) โˆ’ (โˆ’2๐‘ฅ2)) ๐‘‘๐‘ฅ
1
โˆ’1
1
โˆ’1
โˆซ (1 โˆ’ ๐‘ฅ2)๐‘‘๐‘ฅ
1
โˆ’1
(๐‘ฅ โˆ’
๐‘ฅ3
3
)
โˆ’1
1
= ((1 โˆ’
1
3
) โˆ’ (โˆ’1 +
1
3
))
2
3
โˆ’ (
โˆ’2
3
)
=
4
3
.
12. If ๐‘ฆ + 3๐‘ฅ = 0 is the equation of a chord of the circle, ๐‘ฅ2
+ ๐‘ฆ2
โˆ’ 30๐‘ฅ = 0, then the equation of
the circle with this chord as diameter is :
1. ๐‘ฅ2
+ ๐‘ฆ2
+ 3๐‘ฅ โˆ’ 9๐‘ฆ = 0
2. ๐‘ฅ2
+ ๐‘ฆ2
โˆ’ 3๐‘ฅ + 9๐‘ฆ = 0
3. ๐‘ฅ2
+ ๐‘ฆ2
+ 3๐‘ฅ + 9๐‘ฆ = 0
4. ๐‘ฅ2
+ ๐‘ฆ2
โˆ’ 3๐‘ฅ โˆ’ 9๐‘ฆ = 0
Answer: (2)
Solution:
๐‘ฆ = โˆ’3๐‘ฅ
4๐‘ฅ2
+ ๐‘ฆ2
โˆ’ 30๐‘ฅ = 0
Point of intersection
๐‘ฅ2
+ 9๐‘ฅ2
โˆ’ 30๐‘ฅ = 0
10๐‘ฅ2
โˆ’ 30๐‘ฅ = 0
10๐‘ฅ (๐‘ฅ โˆ’ 3) = 0
๐‘ฅ = 0 or ๐‘ฅ = 3
Therefore y = 0 if x = 0, and y =-9 if x = 3.
Point of intersection (0, 0) (3, -9)
Diametric form of circle,
๐‘ฅ (๐‘ฅ โˆ’ 3) + ๐‘ฆ(๐‘ฆ + 9) = 0
๐‘ฅ2
+ ๐‘ฆ2
โˆ’ 3๐‘ฅ + 9๐‘ฆ = 0.
13. The value of โˆ‘ (๐‘Ÿ + 2) (๐‘Ÿ โˆ’ 3)30
๐‘Ÿ=16 is equal to:
1. 7775
2. 7785
3. 7780
4. 7770
Answer: (3)
Solution: โˆ‘ (๐‘Ÿ + 2) (๐‘Ÿ โˆ’ 3)30
๐‘Ÿ=16
= โˆ‘ (๐‘Ÿ2
โˆ’ ๐‘Ÿ โˆ’ 6) โˆ’ โˆ‘ (๐‘Ÿ2
โˆ’ ๐‘Ÿ โˆ’ 6)15
1
30
1
Put r = 30
in (
๐‘Ÿ(๐‘Ÿ+1) (2๐‘Ÿ+1)
6
โˆ’
๐‘Ÿ(๐‘Ÿ+1)
2
โˆ’ 6๐‘Ÿ)
30 โˆ™ (31)(61)
6
โˆ’ 15(31) โˆ’ 6(30)
9455 โˆ’ 465 โˆ’ 180
8810
And on putting ๐‘Ÿ = 15
We get
15โˆ™(16) (31)
6
โˆ’
15โˆ™16
2
โˆ’ 6 โˆ™ (15)
= (7) โˆ™ (8) โˆ™ (31) โˆ’
15 โˆ™16
2
โˆ’ 6 โˆ™ (15)
= 1240 โˆ’ 120 โˆ’ 90
= 1030
Therefore โˆ‘ (๐‘Ÿ2
โˆ’ ๐‘Ÿ โˆ’ 6) โˆ’ โˆ‘ (๐‘Ÿ2
โˆ’ ๐‘Ÿ โˆ’ 6)15
1
30
1 = 8810 โˆ’ 1030
= 7780.
14. Let L be the line passing through the point P(1, 2) such that its intercepted segment between
the co-ordinate axes is bisected at P. If ๐ฟ1 is the line perpendicular to L and passing through the
point (-2, 1), then the point of intersection of L and ๐ฟ1 is:
1. (
3
5
,
23
10
)
2. (
4
5
,
12
5
)
3. (
11
20
,
29
10
)
4. (
3
10
,
17
5
)
Answer: (2)
Solution:
If P is the midpoint of the segment between the axes, them point A would be (2, 0) and B would be (0,
4). The equation of the line would be
๐‘ฅ
2
+
๐‘ฆ
4
= 1
That is 2๐‘ฅ + ๐‘ฆ = 4 โ€ฆ..(i)
The line perpendicular to it would be ๐‘ฅ โˆ’ 2๐‘ฆ = ๐‘˜
Since it passes through (-2, 1) โˆ’2 โˆ’ 2 = ๐‘˜
โˆ’4 = ๐‘˜
โˆด Line will become ๐‘ฅ โˆ’ 2๐‘ฆ = โˆ’4 โ€ฆ..(ii)
Solving (i) and (ii) we get (
4
5
,
12
5
).
15. The largest value of r for which the region represented by the set {
๐œ” โˆˆ๐ถ
|๐œ”โˆ’4โˆ’๐‘–| โ‰ค ๐‘Ÿ
} is contained in
the region represented by the set {
๐‘ง โˆˆ๐ถ
|๐‘งโˆ’1| โ‰ค |๐‘ง+๐‘–|
}, is equal to :
1. 2โˆš2
2.
3
2
โˆš2
3. โˆš17
4.
5
2
โˆš2
Answer: (4)
Solution:
|๐‘ง โˆ’ 1| โ‰ค |๐‘ง + ๐‘–|
The region in show shaded right side of the line ๐‘ฅ + ๐‘ฆ = 0
The largest value of r would be the length of perpendicular from A (4, 1) on the line ๐‘ฅ + ๐‘ฆ = 0
|
4 + 1
โˆš2
| =
5
โˆš2
=
5
2
โˆš2 .
16. Let the sum of the first three terms of an A.P. be 39 and the sum of its last four terms be 178. If
the first term of this A.P. is 10, then the median of the A.P. is :
1. 26.5
2. 29.5
3. 28
4. 31
Answer: (2)
Solution: Let the A.P. be a; a + d a + 2d โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ„“ โˆ’ 3๐‘‘, โ„“ โˆ’ 2๐‘‘, โ„“ โˆ’ ๐‘‘, โ„“
Where a is the first term and โ„“ is the last term
Sum of 1 ๐‘ ๐‘ก
3 terms is 39.
3๐‘Ž + 3๐‘‘ = 39
30 + 3๐‘‘ = 30 as ๐‘Ž = 10 (Given)
๐‘‘ =
9
3
= 3
Sum of last 4 terms is 178.
4โ„“ โˆ’ 6๐‘‘ = 178
4โ„“ โˆ’ 18 = 178
4โ„“ = 196
โ„“ = 49
10, 13, 16, 19โ€ฆโ€ฆ.46, 49
Total number of the 10 + (n โ€“ 1) 3 - 49
n โ€“ 1 = 13
n = 14
So the median of the series would be mean of 7 ๐‘กโ„Ž
๐‘Ž๐‘›๐‘‘ 8 ๐‘กโ„Ž
term
10+6โˆ™(3)+10+7โˆ™3
2
28 + 31
2
=
59
2
= 29.5
Alternate way
The median would be mean of 10 and 49, That is 29.5.
17. For ๐‘ฅ > 0, let ๐‘“(๐‘ฅ) = โˆซ
log ๐‘ก
1+๐‘ก
๐‘‘๐‘ก.
๐‘ฅ
1
Then ๐‘“(๐‘ฅ) + ๐‘“ (
1
๐‘ฅ
) is equal to :
1.
1
2
(log ๐‘ฅ)2
2. log ๐‘ฅ
3.
1
4
log ๐‘ฅ2
4.
1
4
(log ๐‘ฅ)2
Answer: (1)
Solution:
๐‘“(๐‘ฅ) = โˆซ
log ๐‘ก
1 + ๐‘ก
๐‘ฅ
1
โˆ™ ๐‘‘๐‘ก
And ๐‘“ (
1
๐‘ฅ
) = โˆซ
log ๐‘ก
1+๐‘ก
โˆ™ ๐‘‘๐‘ก
1
๐‘ฅ
1
Put ๐‘ก =
1
๐‘ง
๐‘‘๐‘ก = โˆ’
1
๐‘ง2
๐‘‘๐‘ก
โˆ’
1
๐‘ฅ2
๐‘‘๐‘ฅ = ๐‘‘๐‘ก
๐‘“(๐‘ฅ) = โˆซ
log ๐‘ง
๐‘ง2 (1 +
1
๐‘ง)
๐‘ง
1
โˆ™ ๐‘‘๐‘ง
๐‘“(๐‘ฅ) = โˆซ
log ๐‘ง
๐‘ง(1 + ๐‘ง)
๐‘‘๐‘ง
๐‘ง
1
๐‘“(๐‘ฅ) + ๐‘“ (
1
๐‘ฅ
) = โˆซ log ๐‘ง [
1
1 + ๐‘ง
+
1
2(1 + ๐‘ง)
] ๐‘‘๐‘ง
๐‘ฅ
1
= โˆซ
1
๐‘ง
log ๐‘ง ๐‘‘๐‘ง
๐‘ฅ
1
Put log ๐‘ง = ๐‘ƒ
1
๐‘ง
๐‘‘๐‘ง = ๐‘‘๐‘
โˆซ ๐‘ƒ โˆ™ ๐‘‘๐‘
๐‘ฅ
1
(
๐‘ƒ2
2
)
1
๐‘ฅ
=
1
2
(log ๐‘ง)1
๐‘ฅ
=
(log ๐‘ฅ)2
2
18. In a certain town, 25% of the families own a phone and 15% own a car; 65% families own
neither a phone nor a car and 2,000 families own both a car and a phone. Consider the
following three statements:
(a) 5% families own both a car and a phone.
(b) 35% families own either a car or a phone.
(c) 40, 000 families live in the town.
Then,
1. Only (b) and (c) are correct
2. Only (a) and (b) are correct
3. All (a), (b) and (c) are correct
4. Only (a) and (c) are correct
Answer: (3)
Solution: Let set A contains families which own a phone and set B contain families which own a car.
If 65% families own neither a phone nor a car, then 35% will own either a phone or a car
โˆด (๐ดโ‹ƒ๐ต) = 35%
Also we know that
๐‘›(๐ด โˆช ๐ต) = ๐‘›(๐ด) + ๐‘›(๐ต) โˆ’ ๐‘›(๐ด โˆฉ ๐ต)
35 = 25 + 15 - ๐‘›(๐ด โˆฉ ๐ต)
๐‘›(๐ด โˆฉ ๐ต) = 5%
5% families own both phone and car and it is given to be 2000.
โˆด 5% ๐‘œ๐‘“ ๐‘ฅ = 2000
5
100
๐‘ฅ = 2000
X = 40,000
Hence correct option is (a) (b) and (c) are correct.
19. IF ๐ด = [
0
1
โˆ’1
0
], then which one of the following statements is not correct?
1. ๐ด3
+ ๐ผ = ๐ด(๐ด3
โˆ’ ๐ผ)
2. ๐ด4
โˆ’ ๐ผ = ๐ด2
+ ๐ผ
3. ๐ด2
+ ๐ผ = ๐ด(๐ด2
โˆ’ ๐ผ)
4. ๐ด3
โˆ’ ๐ผ = ๐ด(๐ด โˆ’ ๐ผ)
Answer: (3)
Solution: A = [
0 โˆ’1
1 0
]
๐ด2
= [
0 โˆ’1
1 0
] [
0 โˆ’1
1 0
] = [
โˆ’1 0
0 โˆ’1
]
๐ด3
= [
โˆ’1 0
0 โˆ’1
] [
0 โˆ’1
1 0
] = [
0 1
โˆ’1 0
]
๐ด4
= [
0 1
โˆ’1 0
] [
0 โˆ’1
1 0
] [
1 0
0 1
]
Option (1) ๐ด3
+ ๐ผ = ๐ด (๐ด3
โˆ’ ๐ผ)
[
0
1
โˆ’1
0
] [
โˆ’1
โˆ’1
1
โˆ’1
] = [
1
โˆ’1
1
1
]
[
1
โˆ’1
1
1
] = [
1
โˆ’1
1
1
] โ€ฆ..Correct
Option (2) ๐ด4
โˆ’ ๐ผ = ๐ด2
+ ๐ผ
[
0 0
0 0
] = [
0 0
0 0
] โ€ฆ.Correct
Option (3) [
0 0
0 0
] = [
0 โˆ’1
1 0
] [
โˆ’2 0
0 โˆ’2
] = [
0 2
โˆ’2 0
] โ€ฆ..Incorrect
Option 4
๐ด3
โˆ’ ๐ผ = ๐ด(๐ด โˆ’ ๐ผ)
[
โˆ’1 โˆ’1
โˆ’1 โˆ’1
] = [
0 โˆ’1
1 0
] [
โˆ’1 โˆ’1
1 โˆ’1
] [
โˆ’1 1
โˆ’1 1
]
๐ด3
โˆ’ ๐ผ = ๐ด4
โˆ’ ๐ด
[
1 1
โˆ’1 1
] = [
1 0
0 1
] โˆ’ [
0 โˆ’1
1 0
]
= [
1 1
โˆ’1 1
] โ€ฆโ€ฆCorrect.
20. Let X be a set containing 10 elements and P(X) be its power set. If A and B are picked up at
random from P(X), with replacement, then the probability that A and B have equal number of
elements, is:
1.
(210โˆ’1)
220
2.
20 ๐ถ10
220
3.
20 ๐ถ10
210
4.
(210โˆ’1)
210
Answer: (2)
Solution: The power set of x will contain 210
sets of which
10
๐ถ0 will contain 0 element
10
๐ถ1 will contain 1 element
10
๐ถ2 will contain 2 element
โ‹ฎ
โ‹ฎ
10
๐ถ10 will contain 10 element.
So total numbers of ways in which we can select two sets with replacement is 210
ร— 210
= 220
And favorable cases would be 10
๐ถ0 โˆ™ 10
๐ถ0 + 10
๐ถ1
10
๐ถ1 + โ€ฆ โ€ฆ 10
๐ถ10
10
๐ถ10 = 20
๐ถ10.
Hence Probability would be =
20 ๐ถ10
220
Hence
20 ๐ถ10
220 in the correct option
21. If 2 + 3๐‘– is one of the roots of the equation 2๐‘ฅ3
โˆ’ 9๐‘ฅ2
+ ๐‘˜๐‘ฅ โˆ’ 13 = 0, ๐‘˜ โˆˆ ๐‘…, then the real
root of this equation:
1. Exists and is equal to
1
2
2. Does not exist
3. Exists and is equal to 1
4. Exists and is equal to โˆ’
1
2
Answer: (1)
Solution: If 2 + 3๐‘– in one of the roots, then 2 โˆ’ 3๐‘– would be other
Since coefficients of the equation are real.
Let ๐›พ be the third root, then product of roots โ†’ ๐›ผ ๐›ฝ ๐›พ =
13
2
(2 + 3๐‘–) (2 โˆ’ 3๐‘–) โˆ™ ๐›พ =
13
2
(4 + 9) โˆ™ ๐›พ =
13
2
๐›พ =
1
2
.
The value of k will come if we
Put ๐‘ฅ =
1
2
in the equation
2 โˆ™
1
8
โˆ’
9
4
+ ๐‘˜ โˆ™
1
2
โˆ’ 13 = 0
๐‘˜
2
= 15
๐‘˜ = 30.
โˆด Equation will become
2๐‘ฅ3
โˆ’ 9๐‘ฅ2
+ 30๐‘ฅ โˆ’ 13 = 0
๐›ผ๐›ฝ + ๐›ฝ๐›พ + ๐›พ๐›ผ =
30
2
= 15
(2 + 3๐‘–)
1
2
+ (2 โˆ’ 3๐‘–)
1
2
+ (2 + 3๐‘–) (2 โˆ’ 3๐‘–) = 15
1 +
๐‘–
2
+ 1 โˆ’
๐‘–
2
+ 13 = 15
15 = 15
Hence option (1) is correct. โ€˜Exists and is equal to
1
2
โ€˜
22. If the tangent to the conic, ๐‘ฆ โˆ’ 6 = ๐‘ฅ2
at (2, 10) touches the circle, ๐‘ฅ2
+ ๐‘ฆ2
+ 8๐‘ฅ โˆ’ 2๐‘ฆ = ๐‘˜ (for
some fixed k) at a point (๐›ผ, ๐›ฝ); then (๐›ผ, ๐›ฝ) is :
1. (โˆ’
7
17
,
6
17
)
2. (โˆ’
8
17
,
2
17
)
3. (โˆ’
6
17
,
10
17
)
4. (โˆ’
4
17
,
1
17
)
Answer: (2)
Solution: The equation of tangent (T = 0) would be
1
2
(๐‘ฆ + 10) โˆ’ 6 = 2๐‘ฅ
4๐‘ฅ โˆ’ ๐‘ฆ + 2 = 0
The centre of the circle is (โˆ’4, 1) and the point of touch would be the foot of perpendicular from
(โˆ’4, 1) on 4๐‘ฅ โˆ’ ๐‘ฆ + 2 = 0
๐‘ฅ + 4
4
=
๐‘ฆ โˆ’ 1
โˆ’1
= โˆ’ (
โˆ’16 โˆ’ 1 + 2
42 + 12
)
๐‘ฅ+4
4
=
15
17
and
๐‘ฆโˆ’1
โˆ’1
=
15
17
๐‘ฅ = โˆ’
8
17
๐‘ฆ =
โˆ’15
17
+ 1 =
2
17
Hence option (โˆ’
8
17
,
2
17
) is correct.
23. The number of ways of selecting 15 teams from 15 men and 15 women, such that each team
consists of a man and a woman, is:
1. 1960
2. 1240
3. 1880
4. 1120
Answer: (2)
Solution: No. of ways of selecting 1 ๐‘ ๐‘ก
team from 15 men and 15 women
15
๐ถ1
15
๐ถ1 = 152
2 ๐‘›๐‘‘
team- 14
๐ถ1
14
๐ถ1 142
and so on.
So total number of way
12
+ 22
โ€ฆ โ€ฆ โ€ฆ 152
=
15 (16) (31)
6
= (5) โˆ™ (8) โˆ™ (31)
1240
Hence option 1240 is correct.
24. If the shortest distance between the line
๐‘ฅโˆ’1
๐›ผ
=
๐‘ฆ+1
โˆ’1
=
๐‘ง
1
, (๐›ผ โ‰  โˆ’1) and ๐‘ฅ + ๐‘ฆ + ๐‘ง + 1 = 0 =
2๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง + 3 ๐‘–๐‘ 
1
โˆš3
, then a value of ๐›ผ is :
1. โˆ’
19
16
2.
32
19
3. โˆ’
16
19
4.
19
32
Answer: (2)
Solution: Let us change the line into symmetric form.
๐‘ฅ + ๐‘ฆ + ๐‘ง + 1 = 0 = 2๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง + 3
Put ๐‘ง = 1, so we get ๐‘ฅ + ๐‘ฆ + 2 = 0 and 2๐‘ฅ โˆ’ ๐‘ฆ + 4 = 0
We will get ๐‘ฅ = โˆ’2
๐‘ฆ = 0
โˆด The point (โˆ’2, 0, 1) lies on the line and perpendicular vector will come from
|
๐‘– ๐‘— ๐‘˜
1 1 1
2 โˆ’1 1
| = 2๐‘– + ๐‘— โˆ’ 3๐‘˜
So the equation line would be
๐‘ฅ + 2
2
=
๐‘ฆ
1
=
๐‘ง โˆ’ 1
โˆ’3
And the other line
๐‘ฅ โˆ’ 1
๐›ผ
=
๐‘ฆ + 1
โˆ’1
=
๐‘ง
1
Shortest distance would be
๐ท =
[(๐‘Ž2 โˆ’ ๐‘Ž1), ๐‘1 ๐‘2]
|๐‘1 ร— ๐‘2|
When ๐‘Ž1 = (โˆ’2๐‘– + ๐‘œ๐‘— + 1๐‘˜)
๐‘Ž2 = (๐‘– โˆ’ ๐‘— + 0๐‘˜)
๐‘1 = 2๐‘– + ๐‘— โˆ’ 3๐‘˜
๐‘2 = ๐›ผ๐‘– โˆ’ ๐‘— + ๐‘˜
|
3 โˆ’1 โˆ’1
2 1 โˆ’3
๐›ผ 1 โˆ’3
|
|
๐‘– ๐‘— ๐‘˜
2 1 โˆ’3
๐›ผ โˆ’1 1
|
=
3(1 โˆ’ 3) + 1 (2 + 3๐›ผ) + 1 (2 + ๐›ผ)
|โˆ’2๐‘– โˆ’ ๐‘— (2 โˆ’ 3๐›ผ) + ๐‘˜ (โˆ’2 โˆ’ ๐›ผ)|
|
โˆ’6 + 2 + 3๐›ผ + 2 + ๐›ผ
โˆš4 + (2 + 3๐›ผ)2 + (2 + ๐›ผ)2
| =
1
โˆš3
|4๐›ผ โˆ’ 2|
โˆš4 + 4 + 12๐›ผ + 9๐›ผ2 + 4 + 4๐›ผ + ๐›ผ2
=
1
โˆš3
|
4๐›ผ โˆ’ 2
โˆš10๐›ผ2 + 16๐›ผ + 12
| =
1
โˆš3
(16๐›ผ2
โˆ’ 16๐›ผ + 4)3 = 10๐›ผ2
+ 16๐›ผ + 12
48๐›ผ2
โˆ’ 48๐›ผ + 12 =
10๐›ผ2
+ 16๐›ผ + 12
38๐›ผ2
โˆ’ 64๐›ผ = 0
๐›ผ(19๐›ผ โˆ’ 32) = 0
๐›ผ =
32
19
25. The distance from the origin, of the normal to the curve, ๐‘ฅ = 2 cos ๐‘ก + 2๐‘ก sin ๐‘ก, ๐‘ฆ =
2 sin ๐‘ก โˆ’ 2๐‘ก cos ๐‘ก ๐‘Ž๐‘ก ๐‘ก =
๐œ‹
4
, is :
1. โˆš2
2. 2โˆš2
3. 4
4. 2
Answer: (4)
Solution: at ๐‘ก =
๐œ‹
4
๐‘ฅ = 2
1
โˆš2
+ 2
๐œ‹
4
= (โˆš2 +
๐œ‹
2โˆš2
) = (
8 + ๐œ‹
2โˆš2
)
๐‘ฆ = 2
1
โˆš2
โˆ’ 2
๐œ‹
4
โˆ™
1
โˆš2
= (โˆš2 โˆ’
๐œ‹
2โˆš2
) โˆ’ (
8 โˆ’ ๐œ‹
2โˆš2
)
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 2 cos ๐‘ก โˆ’ 2 [cos ๐‘ก + ๐‘ก (โˆ’ sin ๐‘ก)] = 2๐‘ก sin ๐‘ก
๐‘‘๐‘ฅ
๐‘‘๐‘ก
= โˆ’2 sin ๐‘ก + 2 [sin ๐‘ก + ๐‘ก โˆ™ cos ๐‘ก] = 2๐‘ก cos ๐‘ก
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= tan ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ก =
๐œ‹
4
๐‘Ž๐‘›๐‘‘ tan
๐œ‹
4
= 1
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 1 Slope of tangent is 1 & therefore slope of normal would be -1.
Equation of normal ๐‘ฆ โˆ’ (
8โˆ’๐œ‹
2โˆš 2
) = โˆ’1 (๐‘ฅ โˆ’ (
8+๐œ‹
2โˆš2
))
๐‘ฅ + ๐‘ฆ = ๐‘ก
(8 + ๐œ‹)
2โˆš2
+ (
8 โˆ’ ๐œ‹
2โˆš2
)
๐‘ฅ + ๐‘ฆ =
16
2โˆš2
and distance from origin
16
2โˆš2
โˆš2 = 4
26. An ellipse passes through the foci of the hyperbola, 9๐‘ฅ2
โˆ’ 4๐‘ฆ2
= 36 and its major and minor
axes lie along the transverse and conjugate axes of the hyperbola respectively. If the product of
eccentricities of the two conics is
1
2
, then which of the following points does not lie on the
ellipse?
1. (
โˆš39
2
, โˆš3)
2. (
1
2
โˆš13,
โˆš3
2
)
3. (โˆš
13
2
, โˆš6)
4. (โˆš13, 0)
Answer: (2)
Solution: Equation of the hyperbola
๐‘ฅ2
4
โˆ’
๐‘ฆ2
9
= 1
Focus of hyperbola (ae, 0) and (-ae, 0)
a = 2 ๐‘’ = โˆš1 +
9
4
=
โˆš13
2
โˆด Focus would be (+
โˆš13
2
, 0) ๐‘Ž๐‘›๐‘‘ (โˆ’
โˆš13
2
, 0)
Product of eccentricity would be
โˆš13
2
โˆ™ ๐‘’1 =
1
2
โˆด ๐‘’1 =
1
โˆš13
.
As the major & minor axis of the ellipse coin side with focus of the hyperbola then the value of a for
ellipse would be โˆš13,
๐‘’ = โˆš1 โˆ’
๐‘2
๐‘Ž2
๐‘2
13
=
12
13
1
โˆš3
= โˆš1 โˆ’
๐‘2
13
๐‘2
= 12
1
13
= 1 โˆ’
๐‘2
13
โˆด Equation of the ellipse would be
๐‘ฅ2
13
+
๐‘ฆ2
12
= 1.
Option (i)
39
4 โˆ™(13)
+
3
12
= 1
Satisfies the equation hence it lies on the ellipse.
Option (ii)
13
4 (13)
+
3
4.12
= 1
does not lie on the ellipse.
Option (iii)
13
2(13)
+
6
12
= 1 satisfy
Option (iv)
13
13
+ 0 = 1 satisfy
So option (
1
2
โˆš13,
โˆš3
2
) is the answer.
27. The points (0,
8
3
) , (1, 3) ๐‘Ž๐‘›๐‘‘ (82, 30) :
1. Form an obtuse angled triangle
2. Form an acute angled triangle
3. Lie on a straight line
4. Form a right angled triangle
Answer: (3)
Solution: The options
A B C
(0
8
2
) (1, 3) (82, 30)
Are collinear as slope f AB is equal to slope of BC
3 โˆ’
8
3
1 โˆ’ 0
=
30 โˆ’ 3
82 โˆ’ 1
1
3
=
27
81
=
1
3
Hence option (Lie on a straight line) is correct.
28. If ๐‘“(๐‘ฅ) โˆ’ 2 tanโˆ’1
๐‘ฅ + sinโˆ’1
(
2๐‘ฅ
1+๐‘ฅ2) , ๐‘ฅ > 1, then ๐‘“(5) is equal to :
1.
๐œ‹
2
2. tanโˆ’1
(
65
156
)
3. ๐œ‹
4. 4 tanโˆ’1 (5)
Answer: (3)
Solution:
2 tanโˆ’1
๐‘ฅ + sinโˆ’1
(
2๐‘ฅ
1 + ๐‘ฅ2
) , ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ > 1.
= 2 tanโˆ’1
๐‘ฅ + ๐œ‹ โˆ’ 2 tanโˆ’1
๐‘ฅ ๐‘Ž๐‘  ๐‘ฅ > 1
โˆด ๐‘“(5) = ๐œ‹
โˆด Answer is ๐œ‹
Or ๐‘“(5) = 2 tanโˆ’1 (5) + sinโˆ’1
(
10
26
)
= ๐œ‹ โˆ’ tanโˆ’1
(
10
24
) + tanโˆ’1
(
10
24
)
๐œ‹ sinโˆ’1
(
10
26
)
29. Let the tangents drawn to the circle, ๐‘ฅ2
+ ๐‘ฆ2
= 16 from the point P(0, h) meet the ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  at
points A and B. If the area of ฮ”๐ด๐‘ƒ๐ต is minimum, then h is equal to :
1. 4โˆš2
2. 3โˆš2
3. 4โˆš3
4. 3โˆš3
Answer: (1)
Solution:
Let the equation of the tangent be (๐‘ฆ โˆ’ โ„Ž) = ๐‘š (๐‘ฅ โˆ’ 0)
๐‘š๐‘ฅ โˆ’ ๐‘ฆ + โ„Ž = 0
|
โ„“๐‘›
โˆš๐‘š2 + 1
| = 4
โ„Ž2
= 16๐‘š2
+ 16
๐‘š2
=
โ„Ž2
โˆ’ 16
16
๐‘š =
โˆšโ„Ž2 โˆ’ 16
4
So co-ordinate of B would be
โˆš
โ„Ž2 โˆ’ 16
4
๐‘ฅ โˆ’ ๐‘ฆ + โ„Ž = 0
๐‘ฅ =
4โ„Ž
โˆšโ„Ž2 โˆ’ 16
Also of triangle
=
1
2
๐ต๐‘Ž๐‘ ๐‘’ ๐‘ฅ ๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก
ฮ” =
1
2
8โ„Ž
โˆšโ„Ž2 โˆ’ 16
โˆ™ โ„Ž
ฮ” = 4
โ„Ž2
โˆšโ„Ž2 โˆ’ 16
๐‘‘ฮ”
๐‘‘โ„Ž
= 4
[
2โ„Žโˆšโ„Ž2 โˆ’ 16 โˆ’
2โ„Ž โˆ™ โ„Ž2
2โˆšโ„Ž2 โˆ’ 16
(โ„Ž2 โˆ’ 16)
]
= 4โ„Ž [
4(โ„Ž2
โˆ’ 16) โˆ’ 2โ„Ž2
2โˆšโ„Ž2 โˆ’ 16 (โ„Ž2 โˆ’ 16)
]
=
4โ„Ž[2โ„Ž2
โˆ’ 64]
2โˆšโ„Ž2 โˆ’ 16 (โ„Ž2 โˆ’ 16)
For are to be minima โ„Ž = โˆš32
โ„Ž2
= 32
โ„Ž = 4โˆš2
30. If ๐‘ฆ (๐‘ฅ) is the solution of the differential equation (๐‘ฅ + 2)
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฅ2
+ 4๐‘ฅ โˆ’ 9, ๐‘ฅ โ‰  โˆ’2 and
๐‘ฆ(0) = 0, then ๐‘ฆ(โˆ’4) is equal to :
1. -1
2. 1
3. 0
4. 2
Answer: (3)
Solution:
(๐‘ฅ + 2) โˆ™
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฅ2
+ 4๐‘ฅ + 4 โˆ’ 13
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
(๐‘ฅ + 2)2
(๐‘ฅ + 2)
โˆ’
13
(๐‘ฅ + 2)
๐‘‘๐‘ฆ = ((๐‘ฅ + 2) โˆ’
13
๐‘ฅ๐‘š
)
๐‘‘๐‘ฅ
๐‘ฆ =
๐‘ฅ2
2
+ 2๐‘ฅ โˆ’ 13 log ๐‘’|(๐‘ฅ + 2)| + ๐ถ
If ๐‘ฅ = 0 then ๐‘ฆ = 0
0 = 0 + 0 โˆ’ 13 ๐‘™๐‘œ๐‘”|2| + ๐ถ
๐‘ โˆถ 13 log(2)
If ๐‘ฅ = โˆ’4, then ๐‘ฆ
๐‘ฆ =
16
2
โˆ’ 8 โˆ’ 13 log|โˆ’2| + 13 log |2|
๐‘ฆ = 0
Hence as is option 0

More Related Content

What's hot

Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Mehmet Bariskan
ย 
Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2askiitians
ย 
Capitulo 4, 7ma ediciรณn
Capitulo 4, 7ma ediciรณnCapitulo 4, 7ma ediciรณn
Capitulo 4, 7ma ediciรณnSohar Carr
ย 
Capitulo 6, 7ma ediciรณn
Capitulo 6, 7ma ediciรณnCapitulo 6, 7ma ediciรณn
Capitulo 6, 7ma ediciรณnSohar Carr
ย 
Capitulo 9, 7ma ediciรณn
Capitulo 9, 7ma ediciรณnCapitulo 9, 7ma ediciรณn
Capitulo 9, 7ma ediciรณnSohar Carr
ย 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelertable3252
ย 
Jee advanced 2015 paper 1 code 1 final
Jee advanced 2015 paper 1 code 1 final Jee advanced 2015 paper 1 code 1 final
Jee advanced 2015 paper 1 code 1 final Pradeep Kumar
ย 
Jee advanced 2015 paper 2 code 3 answer key v1
Jee advanced 2015 paper 2 code 3 answer key v1Jee advanced 2015 paper 2 code 3 answer key v1
Jee advanced 2015 paper 2 code 3 answer key v1Pradeep Kumar
ย 
conceptual-problems-in-physics-for-iit-jee (1)
conceptual-problems-in-physics-for-iit-jee (1)conceptual-problems-in-physics-for-iit-jee (1)
conceptual-problems-in-physics-for-iit-jee (1)APEX INSTITUTE
ย 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Crimsonpublishers-Mechanicalengineering
ย 
IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3APEX INSTITUTE
ย 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33Carlo Magno
ย 

What's hot (14)

Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
ย 
Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2
ย 
Capitulo 4, 7ma ediciรณn
Capitulo 4, 7ma ediciรณnCapitulo 4, 7ma ediciรณn
Capitulo 4, 7ma ediciรณn
ย 
Solution a ph o 1
Solution a ph o 1Solution a ph o 1
Solution a ph o 1
ย 
Capitulo 6, 7ma ediciรณn
Capitulo 6, 7ma ediciรณnCapitulo 6, 7ma ediciรณn
Capitulo 6, 7ma ediciรณn
ย 
Capitulo 9, 7ma ediciรณn
Capitulo 9, 7ma ediciรณnCapitulo 9, 7ma ediciรณn
Capitulo 9, 7ma ediciรณn
ย 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
ย 
Jee advanced 2015 paper 1 code 1 final
Jee advanced 2015 paper 1 code 1 final Jee advanced 2015 paper 1 code 1 final
Jee advanced 2015 paper 1 code 1 final
ย 
Jee advanced 2015 paper 2 code 3 answer key v1
Jee advanced 2015 paper 2 code 3 answer key v1Jee advanced 2015 paper 2 code 3 answer key v1
Jee advanced 2015 paper 2 code 3 answer key v1
ย 
conceptual-problems-in-physics-for-iit-jee (1)
conceptual-problems-in-physics-for-iit-jee (1)conceptual-problems-in-physics-for-iit-jee (1)
conceptual-problems-in-physics-for-iit-jee (1)
ย 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
ย 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
ย 
IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3
ย 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
ย 

Viewers also liked

Jee main online paper 11 april 2014
Jee main online paper 11 april 2014Jee main online paper 11 april 2014
Jee main online paper 11 april 2014Anushri Kocher
ย 
Jee online-09-04-2014-phy-sol
Jee online-09-04-2014-phy-solJee online-09-04-2014-phy-sol
Jee online-09-04-2014-phy-solAshish Yadav
ย 
Important points on Gravitation for JEE Main 2015
Important points on Gravitation for JEE Main 2015Important points on Gravitation for JEE Main 2015
Important points on Gravitation for JEE Main 2015Ednexa
ย 
Jee main 19 april question paper
Jee main 19 april question paperJee main 19 april question paper
Jee main 19 april question paperAnushri Kocher
ย 
Current Electricity Notes for JEE Main 2015 - Part II
Current Electricity Notes for JEE Main 2015 - Part IICurrent Electricity Notes for JEE Main 2015 - Part II
Current Electricity Notes for JEE Main 2015 - Part IIEdnexa
ย 
Physics CBSE solution 2012
Physics CBSE solution 2012Physics CBSE solution 2012
Physics CBSE solution 2012studymate
ย 
11th april JEE Main online question paper
11th april JEE Main online question paper11th april JEE Main online question paper
11th april JEE Main online question paperPradeep Kumar
ย 
Jee 09 april 2014
Jee 09 april 2014Jee 09 april 2014
Jee 09 april 2014Darshan Pawale
ย 
Physics Measurements Notes for JEE Main 2015
Physics Measurements Notes for JEE Main 2015 Physics Measurements Notes for JEE Main 2015
Physics Measurements Notes for JEE Main 2015 Ednexa
ย 
Important Points on Elasticity for JEE Main 2015
Important Points on Elasticity for JEE Main 2015 Important Points on Elasticity for JEE Main 2015
Important Points on Elasticity for JEE Main 2015 Ednexa
ย 
Atomic Structure and Bonding
Atomic Structure and BondingAtomic Structure and Bonding
Atomic Structure and BondingCatherine Patterson
ย 

Viewers also liked (11)

Jee main online paper 11 april 2014
Jee main online paper 11 april 2014Jee main online paper 11 april 2014
Jee main online paper 11 april 2014
ย 
Jee online-09-04-2014-phy-sol
Jee online-09-04-2014-phy-solJee online-09-04-2014-phy-sol
Jee online-09-04-2014-phy-sol
ย 
Important points on Gravitation for JEE Main 2015
Important points on Gravitation for JEE Main 2015Important points on Gravitation for JEE Main 2015
Important points on Gravitation for JEE Main 2015
ย 
Jee main 19 april question paper
Jee main 19 april question paperJee main 19 april question paper
Jee main 19 april question paper
ย 
Current Electricity Notes for JEE Main 2015 - Part II
Current Electricity Notes for JEE Main 2015 - Part IICurrent Electricity Notes for JEE Main 2015 - Part II
Current Electricity Notes for JEE Main 2015 - Part II
ย 
Physics CBSE solution 2012
Physics CBSE solution 2012Physics CBSE solution 2012
Physics CBSE solution 2012
ย 
11th april JEE Main online question paper
11th april JEE Main online question paper11th april JEE Main online question paper
11th april JEE Main online question paper
ย 
Jee 09 april 2014
Jee 09 april 2014Jee 09 april 2014
Jee 09 april 2014
ย 
Physics Measurements Notes for JEE Main 2015
Physics Measurements Notes for JEE Main 2015 Physics Measurements Notes for JEE Main 2015
Physics Measurements Notes for JEE Main 2015
ย 
Important Points on Elasticity for JEE Main 2015
Important Points on Elasticity for JEE Main 2015 Important Points on Elasticity for JEE Main 2015
Important Points on Elasticity for JEE Main 2015
ย 
Atomic Structure and Bonding
Atomic Structure and BondingAtomic Structure and Bonding
Atomic Structure and Bonding
ย 

Similar to Full jee mains 2015 online paper 10th april final

physics pre board 1 solution ofor board exam -
physics pre board 1 solution ofor board exam -physics pre board 1 solution ofor board exam -
physics pre board 1 solution ofor board exam -ManishMishra398080
ย 
Jee main set A all questions
Jee main set A all questionsJee main set A all questions
Jee main set A all questionsembibe100marks
ย 
Oscillations 2008 prelim_solutions
Oscillations 2008 prelim_solutionsOscillations 2008 prelim_solutions
Oscillations 2008 prelim_solutionsJohn Jon
ย 
Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1askiitians
ย 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesSOURAV DAS
ย 

Similar to Full jee mains 2015 online paper 10th april final (6)

physics pre board 1 solution ofor board exam -
physics pre board 1 solution ofor board exam -physics pre board 1 solution ofor board exam -
physics pre board 1 solution ofor board exam -
ย 
Jee main set A all questions
Jee main set A all questionsJee main set A all questions
Jee main set A all questions
ย 
Problem set 6
Problem set 6 Problem set 6
Problem set 6
ย 
Oscillations 2008 prelim_solutions
Oscillations 2008 prelim_solutionsOscillations 2008 prelim_solutions
Oscillations 2008 prelim_solutions
ย 
Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1
ย 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
ย 

Recently uploaded

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
ย 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
ย 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
ย 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
ย 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
ย 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Dr. Mazin Mohamed alkathiri
ย 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
ย 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
ย 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
ย 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
ย 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
ย 

Recently uploaded (20)

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
ย 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
ย 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
ย 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
ย 
Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
ย 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
ย 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
ย 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
ย 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
ย 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
ย 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
ย 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
ย 

Full jee mains 2015 online paper 10th april final

  • 1. JEE Mains 2015 10th April (online) Physics Single Correct Answer Type: 1. In an ideal at temperature T, the average force that a molecule applies on the walls of a closed container depends on ๐‘‡ ๐‘Ž๐‘  ๐‘‡ ๐‘ž . A good estimate for q is: (A) 2 (B) 1 2 (C) 1 (D) 1 4 Answer: (C) Solution: Average linear for collision to occur ๐‘ก = 2๐‘‘ ๐‘ข Change in momentum in 1 collision ฮ”๐‘ = 2 ๐‘š๐‘ข โˆด average force in collision = ฮ”๐‘ ๐‘ก ๐‘ข = root mean square speed = 2 ๐‘š๐‘ข 2๐‘‘ ร— ๐‘ข โ‡’ ๐‘“ โˆ ๐‘ข2 โˆด ๐‘ข2 โˆ ๐‘‡ โ‡’ ๐‘“ ร— ๐‘‡ โ‡’ ๐‘ž = 1 2. In an unbiased n โ€“ p junction electrons diffuse from n-region to p-region because: (A) Electrons travel across the junction due to potential difference (B) Only electrons move from n to p region and not the vice โ€“ versa (C) Electron concentration in n โ€“ region is more as compared to that in p โ€“ region (D) Holes in p โ€“ region attract them Answer: (C) Solution: In a ๐‘ โˆ’ ๐‘› junction diffusion occurs due to spontaneous movement of majority charge carrier from the region of high concentration to low concentration so option 3 in correct. 3. A 10V battery with internal resistance 1ฮฉ ๐‘Ž๐‘›๐‘‘ ๐‘Ž 15๐‘‰ battery with internal resistance 0.6ฮฉ are connected in parallel to a voltmeter (see figure). The reading in the voltmeter will be close to:
  • 2. (A) 11.9 ๐‘‰ (B) 13.1 ๐‘‰ (C) 12.5 ๐‘‰ (D) 24.5 ๐‘‰ Answer: (B) Solution: The equivalent ems of the battery combination in given as Equation = ๐ธ1 ๐‘Ÿ1 + ๐ธ1 ๐‘Ÿ2 1 ๐‘Ÿ1 + 1 ๐‘Ÿ2 = 10 1 + 15 0.6 1 1 + 1 0.6 = 10+ 150 6 1+ 10 6 = 105 8 = 13.1 ๐‘ฃ๐‘œ๐‘™๐‘ก โˆด The reading measured by voltmeter = 13.1 ๐‘ฃ๐‘œ๐‘™๐‘ก 4. A proton (mass m) accelerate by a potential difference V flies through a uniform transverse magnetic field B. The field occupies a region of space by width โ€ฒ๐‘‘โ€ฒ . ๐ผ๐‘“ โ€ฒ๐›ผโ€ฒ be the angle of deviation of proton from initial direction of motion (see figure), the value of sin ๐›ผ will be: (A) ๐ต 2 โˆš ๐‘ž๐‘‘ ๐‘š๐‘‰ (B) ๐ต๐‘‘โˆš ๐‘ž 2๐‘š๐‘‰ (C) ๐ต ๐‘‘ โˆš ๐‘ž 2๐‘š๐‘‰ (D) ๐‘ž ๐‘‰ โˆš ๐ต๐‘‘ 2๐‘š Answer: (B)
  • 3. Solution: Due to potential difference V speed acquired by proton in ๐‘ฃ0 โ‡’ ๐‘Š = ๐‘ž ฮ” ๐‘‰ = ฮ”๐‘˜ โ‡’ ๐‘ž๐‘ฃ = 1 2 ๐‘š ๐‘ฃ0 2 โ‡’ ๐‘ฃ0 = โˆš 2๐‘ž๐‘ฃ ๐‘š Radius of circular path acquired is ๐‘… = ๐‘š๐‘ฃ0 ๐‘ž๐ต โ‡’ ๐‘… = ๐‘š ๐‘ž๐ต โˆš 2๐‘ž๐‘ฃ ๐‘š = โˆš 2๐‘ฃ๐‘š ๐‘ž ร— 1 ๐ต In โˆ†๐ถ๐‘ƒ๐ท,sin ๐›ผ = ๐‘‘ ๐‘… = ๐‘‘โˆš ๐‘ž 2 ๐‘ฃ๐‘š ๐ต = ๐ต๐‘‘โˆš ๐‘ž 2 ๐‘š๐‘ฃ 5. de โ€“ Broglie wavelength of an electron accelerated by a voltage of 50 V is close to (|๐‘’| = 1.6 ร— 10โˆ’19 ๐ถ, ๐‘š ๐‘’ = 9.1 ร— 10โˆ’31 ๐‘˜๐‘”, โ„Ž = 6.6 ร— 10โˆ’34 ๐ฝ๐‘ ): (A) 0.5 โ„ซ (B) 1.2 โ„ซ (C) 1.7 โ„ซ (D) 2.4 โ„ซ Answer: (B) Solution: De broglie wavelength ๐œ† in given by ๐œ† = โ„Ž ๐‘ = โ„Ž โˆš2 ๐‘š๐‘˜ โˆด ๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ = ๐‘˜ = ๐‘ž ฮ”๐‘ฃ โ‡’ ๐œ† = โ„Ž โˆš2๐‘š๐‘žโˆ†๐‘ฃ = 6.6 ร—10โˆ’34 โˆš2 ร—9.1 ร— 10โˆ’3 ร— 1.6 ร—10โˆ’19 ร— 50 = 6.6 ร—10โˆ’34 โˆš3.2 ร—9.1 ร— 10โˆ’31โˆ’19 + 2 = 6.6 ร—10โˆ’34 โˆš3.2 ร—9.1 ร— 10โˆ’48 = 6.6 ร—10โˆ’34 โˆš5.396 ร— 10โˆ’24 = 1.22 ร— 10โˆ’10 = 1.2 ๐ดยฐ 6. Suppose the drift velocity ๐‘ฃ ๐‘‘ in a material varied with the applied electric field E as ๐‘ฃ ๐‘‘ โˆ โˆš๐ธ. Then ๐‘‰ โˆ’ ๐ผ graph for a wire made of such a material is best given by:
  • 4. (A) (B) (C) (D) Answer: (C) Solution: โˆด ๐‘ฃ ๐‘‘ = ๐‘˜โˆš๐ธ and ๐ผ = ๐‘› ๐‘’ ๐ด ๐‘ฃ ๐‘‘ โ‡’ ๐ผ = ๐‘› ๐‘’๐ด ๐‘˜โˆš๐ธ โˆด ๐ธ = ๐‘ฃ ๐‘‘ โ‡’ ๐ผ = ๐‘›๐‘’๐ด๐‘˜ โˆš ๐‘ฃ ๐‘‘ โ‡’ ๐ผ โˆ โˆš ๐‘ฃ โ‡’ ๐‘ฃ โˆ ๐ผ2 So 7. A parallel beam of electrons travelling in x โ€“ direction falls on a slit of width d (see figure). If after passing the slit, an electron acquires momentum ๐‘ƒ๐‘ฆ in the y โ€“ direction then for a majority of electrons passing through the slit (h is Planckโ€™s constant):
  • 5. (A) |๐‘ƒ๐‘ฆ|๐‘‘ < โ„Ž (B) |๐‘ƒ๐‘ฆ|๐‘‘ > โ„Ž (C) |๐‘ƒ๐‘ฆ|๐‘‘ โ‰ƒ โ„Ž (D) |๐‘ƒ๐‘ฆ|๐‘‘ > > โ„Ž Answer: (D) Solution: The electron beam will be diffractive at an angle ฮธ For central maxima ๐‘‘ sin ๐œƒ = ๐œ† ๐‘‘ sin ๐œƒ = ๐‘Ÿ ๐‘ Also ๐‘ sin ๐œƒ = ๐‘ ๐‘ฆ โ‡’ ๐‘‘ ๐‘ ๐‘ฆ = โ„Ž โˆด For majority of ๐‘’ ๐œƒ โ€ฒ๐‘  passing through the shit lyeing in the central maxima ๐‘‘ ๐‘ ๐‘ฆ โ‰ˆ โ„Ž 8. A block of mass ๐‘š = 10 ๐‘˜๐‘” rests on a horizontal table. The coefficient of friction between the block and the table is 0.05. When hit by a bullet of mass 50 g moving with speed v, that gets embedded in it, the block moves and comes to stop after moving a distance of 2 m on the table. If a freely falling object were to acquire speed ๐‘ฃ 10 after being dropped from height H, then neglecting energy losses and taking ๐‘” = 10 ๐‘š๐‘ โˆ’2 , the value of H is close to: (A) 0.2 km (B) 0.5 km (C) 0.3 km (D) 0.4 km Answer: () Solution: 9. When current in a coil changes from 5 A to 2 A in 0.1 s, an average voltage of 50 V is produced. The self โ€“ inductance of the coil is: (A) 1.67 H (B) 6 H (C) 3 H (D) 0.67 H Answer: (A) Solution:
  • 6. Area of coil ๐‘‘ = ๐ฟ๐ผ โ‡’ โˆ†๐‘‘ โˆ†๐‘ก = ๐ฟ โˆ†๐ผ โˆ†๐‘ก โˆด (๐œ€๐‘–๐‘›๐‘‘) ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ = | โˆ†๐‘‘ โˆ†๐‘ก | = ๐ฟ | โˆ†๐ผ โˆ†๐‘ก | โ‡’ 50 = ๐ฟ ร— 5โˆ’2 0.1 โ‡’ 5 3 = ๐ฟ โ‡’ ๐ฟ = 1.674 10. ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ displacements of a particle are given as ๐‘ฅ(๐‘ก) = ๐‘Ž sin ๐œ”๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ฆ(๐‘ก) = ๐‘Ž sin 2๐œ”๐‘ก. Its trajectory will look like: (A) (B) (C) (D) Answer: (C) Solution: โˆต ๐‘ฅ = ๐ด sin ๐œ”๐‘ก โ‡’ ๐‘ ๐‘–๐‘› ๐œ”๐‘ก = ๐‘ฅ ๐ด Also, ๐‘๐‘œ๐‘  ๐œ”๐‘ก = โˆš1 โˆ’ sin2 ๐œ”๐‘ก = โˆš1 โˆ’ ๐‘ฅ2 ๐ด2
  • 7. โ‡’ cos ๐œ”๐‘ก = โˆš๐ด2โˆ’๐‘ฅ2 ๐ด As, ๐‘ฆ = 2๐ด sin ๐œ”๐‘ก cos ๐œ”๐‘ก โ‡’ ๐‘ฆ = 2 ๐ด ๐‘ฅ ๐ด โˆš๐ด2 โˆ’ ๐‘ฅ2 ๐ด โ‡’ ๐‘ฆ = 2 ๐ด ๐‘ฅ โˆš ๐ด2 โˆ’ ๐‘ฅ2 โ‡’ ๐‘ฆ = 0 ๐‘Ž๐‘ก ๐‘ฅ = 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ = ยฑ ๐ด Which in possible only in option (3) 11. Consider a thin uniform square sheet made of a rigid material. If its side is โ€˜aโ€™, mass m and moment of inertia I about one of its diagonals, then: (A) ๐ผ = ๐‘š๐‘Ž2 24 (B) ๐‘š๐‘Ž2 24 < ๐ผ < ๐‘š๐‘Ž2 12 (C) ๐ผ > ๐‘š๐‘Ž2 12 (D) ๐ผ = ๐‘š๐‘Ž2 12 Answer: (D) Solution: In a uniform square plate due to symmetry moment of Inertia about all the axis passing through centre and lying in the blank of the plate is same. โˆด ๐ผ ๐‘‘๐‘–๐‘Ž๐‘”๐‘œ๐‘›๐‘Ž๐‘™ = ๐ผ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ ๐‘ก๐‘œ ๐‘ ๐‘–๐‘‘๐‘’ = ๐‘š๐‘Ž2 12 12. Diameter of a steel ball is measured using a Vernier calipers which has divisions of 0.1 cm on its main scale (MS) and 10 divisions of its vernier scale (VS) match 9 divisions on the main scale. Three such measurements for a ball are given as: S.No. MS (cm) VS divisions 1. 0.5 8 2. 0.5 4 3. 0.5 6 If the zero error is โ€“ 0.03 cm, then mean corrected diameter is: (A) 0.53 cm
  • 8. (B) 0.56 cm (C) 0.59 cm (D) 0.52 cm Answer: (C) Solution: L.C. of Vernier calipers = 1 ๐‘š๐‘Ž๐‘–๐‘› ๐‘ ๐‘๐‘Ž๐‘™๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘‘๐‘–๐‘ฃ๐‘–๐‘ ๐‘œ๐‘›๐‘  vernier ๐‘ ๐‘๐‘Ž๐‘™๐‘’ = 0.1 10 = 0.01 ๐‘๐‘š Required of Vernier calipers = ๐‘€. ๐‘†. ๐‘…. +(๐ฟ. ๐ถ) ร— ๐‘ฃ๐‘  ๐‘‘๐‘–๐‘ฃ๐‘–๐‘ ๐‘–๐‘œ๐‘›๐‘ . โˆด Measured diameter are respecting 0.52 ๐‘๐‘š 0.54 ๐‘๐‘š, 0.56 ๐‘๐‘š โˆด ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ = 0.58 + 0.54 + 0.56 3 = 1.68 3 = 0.56 โˆด ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ = 0.56 โˆ’ (โˆ’0.03) = 0.56 + 0.03 = 0.59 ๐‘๐‘š 13. A very long (length L) cylindrical galaxy is made of uniformly distributed mass and has radius R (R < < L). A star outside the galaxy is orbiting the galaxy in a plane perpendicular to the galaxy and passing through its centre. If the time period of star is T and its distance from the galaxyโ€™s axis is r, then: (A) ๐‘‡ โˆ โˆš ๐‘Ÿ (B) ๐‘‡ โˆ ๐‘Ÿ (C) ๐‘‡ โˆ ๐‘Ÿ2 (D) ๐‘‡2 โˆ ๐‘Ÿ3 Answer: (B) Solution: Due to a long solid cylinder gravitational field strong can be given as: ๐‘”โ€ฒ = 2 ๐บ ๐œ† ๐‘ฅ Where ๐œ† = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘”๐‘Ž๐‘™๐‘Ž๐‘ฅ๐‘ฆ. ๐น๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘๐‘–๐‘ก๐‘Ž๐‘™ ๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘”๐‘Ž๐‘™๐‘Ž๐‘ฅ๐‘ฆ.
  • 9. ๐‘“๐‘” = ๐‘“๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘๐‘’๐‘ก๐‘Ž๐‘™ โ‡’ ๐‘š๐‘” = ๐‘š ๐œ”2 ๐‘ฅ โ‡’ 2๐บ๐œ† ๐‘ฅ = ๐œ”2 ๐‘ฅ โ‡’ ๐œ”2 โˆ 1 ๐‘ฅ2 โ‡’ ๐œ” โˆ 1 ๐‘ฅ โ‡’ 2๐œ‹ ๐‘‡ โˆ 1 ๐‘ฅ โ‡’ ๐‘‡ โˆ ๐‘ฅ So option 2 is correct 14. An electromagnetic wave travelling in the x โ€“ direction has frequency of 2 ร— 1014 ๐ป๐‘ง and electric field amplitude of 27 ๐‘‰๐‘šโˆ’1 . From the options given below, which one describes the magnetic field for this wave? (A) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8 ๐‘‡)๐‘—ฬ‚ sin[1.5 ร— 10โˆ’6 ๐‘ฅ โˆ’ 2 ร— 1014 ๐‘ก] (B) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8 ๐‘‡)๐‘–ฬ‚ sin[2๐œ‹(1.5 ร— 10โˆ’8 ๐‘ฅ โˆ’ 2 ร— 1014 ๐‘ก)] (C) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (3 ร— 10โˆ’8 ๐‘‡)๐‘—ฬ‚ sin[2๐œ‹(1.5 ร— 10โˆ’8 ๐‘ฅ โˆ’ 2 ร— 1014 ๐‘ก)] (D) ๐ตโƒ— (๐‘ฅ, ๐‘ก) = (9 ร— 10โˆ’8 ๐‘‡)๐‘˜ฬ‚ sin[2๐œ‹ (1.5 ร— 10โˆ’6 ๐‘ฅ โˆ’ 2 ร— 1014 ๐‘ก)] Answer: (D) Solution: ๐‘Šโ„Ž๐‘’๐‘› ๐ธ = ๐ธ0 ๐‘ ๐‘–๐‘› ๐ถ ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก ๐‘‡โ„Ž๐‘’๐‘› ๐ต = ๐ต0 ๐‘ ๐‘–๐‘› ๐ถ ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก Of light in travelling along ๐‘–ฬ‚ then ๐ตโƒ— in either along ๐‘— or๐‘˜โƒ— . โˆด ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘™๐‘–๐‘”โ„Ž๐‘ก ๐ถ = ๐ธ0 ๐ต0 โ‡’ ๐ต0 = ๐ธ0 ๐ถ โ‡’ ๐ต0 = 27 3ร—108 = 9 ร— 10โˆ’8 ๐‘‡ also, ๐œ” = 2๐œ‹ f = 2ฯ€ ร— 2 ร— 1014 = 4 ๐œ‹ ร— 1014 Looking into the option the correct Answer is ๐ตโƒ— = 9 ร— 10โˆ’8 sin2๐œ‹ (1.5 ร— 10โˆ’6 ๐‘ฅ โˆ’ 2 ร— 1014 ๐‘ก) ๐‘˜ฬ‚ 15. A telescope has an objective lens of focal length 150 cm and an eyepiece of focal length 5 cm. If a 50 m tall tower at a distance of 1 km is observed through this telescope in normal setting, the angle formed by the image of the tower is ๐œƒ, then ๐œƒ is close to:
  • 10. (A) 30ยฐ (B) 15ยฐ (C) 1ยฐ (D) 60ยฐ Answer: (D) Solution: 16. A block of mass ๐‘š = 0.1 ๐‘˜๐‘” is connected to a spring of unknown spring constant k. It is compressed to a distance x from its equilibrium position and released from rest. After approaching half the distance ( ๐‘ฅ 2 ) from equilibrium position, it hits another block and comes to rest momentarily, while the other block moves with a velocity 3 ๐‘š๐‘ โˆ’1 . The total initial energy of the spring is: (A) 0.6 ๐ฝ (B) 0.8 ๐ฝ (C) 1.5 ๐ฝ (D) 0.3 ๐ฝ Answer: (A) Solution: By energy conservation between compression positions ๐‘ฅ and ๐‘ฅ 2 1 2 ๐‘˜๐‘ฅ2 = 1 2 ๐‘˜ ( ๐‘ฅ 2 ) 2 + 1 2 ๐‘š๐‘ฃ2 1 2 ๐‘˜๐‘ฅ2 โˆ’ 1 2 ๐‘˜ ๐‘ฅ2 4 = 1 2 ๐‘š๐‘ฃ2 1 2 ๐‘˜๐‘ฅ2 ( 3 4 ) = 1 2 ๐‘š๐‘ฃ2 ๐‘ฃ = โˆš 3๐‘˜๐‘ฅ2 4๐‘š = โˆš 3๐‘˜ ๐‘š ๐‘ฅ 2 On collision with a block at rest โˆต Velocities are exchanged โ‡’ elastic collision between identical masses. โˆด ๐‘ฃ = 3 = โˆš 3๐‘˜ ๐‘š ๐‘ฅ 2 โ‡’ 6 = โˆš 3๐‘˜ ๐‘š ๐‘ฅ โ‡’ ๐‘ฅ = 6โˆš ๐‘š 3๐‘˜ โˆด The initial energy of the spring is
  • 11. ๐‘ˆ = 1 2 ๐‘˜ ๐‘ฅ2 = 1 2 ๐‘˜ ร— 36 ๐‘š 3๐‘˜ = 6๐‘š ๐‘ˆ = 6 ร— 0.1 = 0.6 ๐ฝ 17. Shown in the figure are two point charges + Q and โ€“ Q inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If ๐œŽ1is the surface charge on the inner surface and ๐‘„1net charge on it and ๐œŽ2 the surface charge on the other surface and ๐‘„2 net charge on it then: (A) ๐œŽ1 = 0, ๐‘„1 = 0, ๐œŽ2 = 0, ๐‘„2 = 0 (B) ๐œŽ1 โ‰  0, ๐‘„1 = 0, ๐œŽ2 โ‰  0, ๐‘„2 = 0 (C) ๐œŽ1 โ‰  0, ๐‘„1 โ‰  0, ๐œŽ2 โ‰  0, ๐‘„2 โ‰  0 (D) ๐œŽ1 โ‰  0, ๐‘„1 = 0, ๐œŽ2 = 0, ๐‘„2 = 0 Answer: (D) Solution: By the property of electrostatic shielding in the conductors ๐œ– = 0 in the conductor. So electric flux = 0 through a dotted Gaussian surface as shown The net enclosed charge through Gaussian surface = 0 โ‡’ Net charge ๐‘„1 on the inner surface = 0 but the equal and opposite induced charge on the surface will be distributed non uniformly on the inner surface So, ๐œŽ1 โ‰  0 โˆต ๐‘„1 = 0 on the inner surface So, net charge ๐‘„2 = 0 on the outer surface as conductor is neutral but โˆต outer surface is free from any electric field so no charge density exists on the outer surface. So, ๐œŽ2 = 0. 18. You are asked to design a shaving mirror assuming that a person keeps it 10 cm from his face and views the magnified image of the face at the closest comfortable distance of 25 cm. The radius of curvature of the mirror would then be: (A) 24 ๐‘๐‘š (B) 30 ๐‘๐‘š (C) 60 ๐‘๐‘š
  • 12. (D) โˆ’24 ๐‘๐‘š Answer: (C) Solution: If AB is the position of face of man then A โ€˜Bโ€™ is the position of image of face. As image is formed at 25cm form the object. โˆด From concave mirror image is 15cm behind the mirror. So, ๐‘ข = โˆ’10 ๐‘๐‘š, ๐‘ฃ = +15 ๐‘๐‘š โ‡’ 1 ๐‘“ = 1 ๐‘ข + 1 ๐‘ฃ โ‡’ 1 ๐‘“ = 1 โˆ’10 + 1 15 = โˆ’3 + 2 30 โ‡’ ๐‘“ = โˆ’300 ๐‘๐‘š So, radius of curvature = 60 ๐‘๐‘š 19. A thin disc of radius ๐‘ = 2๐‘Ž has a concentric hole of radius โ€˜aโ€™ in it (see figure). It carries uniform surface charge โ€ฒ๐œŽโ€ฒ on it. If the electric field on its axis at height โ€ฒโ„Žโ€ฒ (โ„Ž < < ๐‘Ž) from its centre is given as โ€˜Chโ€™ then value of โ€˜Cโ€™ is: (A) ๐œŽ 4 ๐›ผ๐œ–0 (B) ๐œŽ ๐›ผ๐œ–0 (C) ๐œŽ ๐‘†๐›ผ๐œ–0 (D) ๐œŽ 2๐›ผ๐œ–0 Answer: (A) Solution: โˆต at the axial point of a uniformly charged disc electric field is given by ๐ธ = ๐œŽ 2๐œ–0 (1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ)
  • 13. By superposition principle when inner disc is removed then electric field due to remaining disc is ๐ธ = ๐œŽ 2๐œ–0 [(1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ2) โˆ’ (1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ1)] = ๐œŽ 2๐œ–0 [๐‘๐‘œ๐‘ ๐œƒ1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ2] = ๐œŽ 2๐œ–0 [ โ„Ž โˆšโ„Ž2 + ๐‘Ž2 โˆ’ โ„Ž โˆšโ„Ž2 + ๐‘2 ] = ๐œŽ 2๐œ–0 [ โ„Ž ๐‘Žโˆš1 + โ„Ž2 ๐‘Ž2 โˆ’ โ„Ž โˆš1 + โ„Ž2 ๐‘2 ] โˆต โ„Ž โ‰ช ๐‘Ž and b โˆด ๐ธ = ๐œŽ 2๐œ–0 [ โ„Ž ๐‘Ž โˆ’ โ„Ž ๐‘ ] = ๐œŽ 2๐œ–0 [ โ„Ž ๐‘Ž โˆ’ โ„Ž 2๐‘Ž ] = ๐œŽโ„Ž 4๐œ–0 ๐‘Ž โ‡’ ๐ถ = ๐œŽ 4๐‘Ž๐œ–0 20. An ideal gas goes through a reversible cycle ๐‘Ž โ†’ ๐‘ โ†’ ๐‘ โ†’ ๐‘‘ has the V โ€“ T diagram shown below. Process ๐‘‘ โ†’ ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘ โ†’ ๐‘ are adiabatic. The corresponding P โ€“ V diagram for the process is (all figures are schematic and not drawn to scale) : (A)
  • 14. (B) (C) (D) Answer: (A) Solution: Is an adiabatic process ๐‘‡๐‘‰ ๐›พโˆ’1 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก โ‡’ ๐‘‰๐‘‡ 1 ๐›พโˆ’1 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก โ‡’ as T increase V decreases at non-uniform rate In process ๐‘Ž โ†’ ๐‘ P = constant as ๐‘‰ โˆ ๐‘‡ In process ๐‘ โ†’ ๐‘‘ ๐‘ƒโ€ฒ = constant s ๐‘‰ โˆ ๐‘‡ But since slope of V โ€“ T graph โˆ 1 ๐‘ƒ since slope of ab < slope of cd โ‡’ ๐‘ƒ๐‘Ž๐‘ > ๐‘ƒ๐‘๐‘‘ Also in adiabatic process ๐‘‘ โ†’ ๐‘Ž as T is increasing V in decreasing โ‡’ P is increasing, so P โ€“ V diagram is as below
  • 15. 21. A uniform solid cylindrical roller of mass โ€˜mโ€™ is being pulled on a horizontal surface with force F parallel to the surface and applied at its centre. If the acceleration of the cylinder is โ€˜aโ€™ and it is rolling without slipping then the value of โ€˜Fโ€™ is: (A) 3 2 ๐‘š๐‘Ž (B) 2 ๐‘š๐‘Ž (C) 5 3 ๐‘š๐‘Ž (D) ๐‘š๐‘Ž Answer: (A) Solution: From free body diagram of cylinder ๐น โˆ’ ๐‘“๐‘  = ๐‘š๐‘Ž โ€ฆ..(1) โˆต โˆ‘ ๐‘“๐‘’๐‘ฅ๐‘ก = ๐‘š๐‘Ž ๐‘๐‘š ๐‘Ž๐‘™๐‘ ๐‘œ โˆ‘ ๐œ ๐‘’๐‘ฅ๐‘ก = ๐ผ๐‘๐‘š โˆ โŸน ๐‘“๐‘  ๐‘… = ๐ผ๐‘๐‘š โˆ โŸน ๐‘“๐‘  ๐‘… = 1 2 ๐‘š๐‘…2 โˆ โ€ฆ.. (2) For rolling without slipping ๐‘Ž = ๐‘… โˆ โ€ฆโ€ฆ (3) โŸน โˆ= ๐‘ž ๐‘… โˆด ๐‘“๐‘  ๐‘… = 1 2 ๐‘š๐‘…2 ๐‘ž ๐‘… โŸน ๐‘“๐‘  = 1 2 ๐‘š๐‘Ž Put in (1) ๐‘“ โˆ’ 1 2 ๐‘š๐‘Ž = ๐‘š๐‘Ž
  • 16. โŸน ๐‘“ = 3 2 ๐‘š๐‘Ž 22. A 25 cm long solenoid has radius 2 cm and 500 total number of turns. It carries a current of 15 A. If it is equivalent to a magnet of the same size and magnetization ๐‘€โƒ—โƒ— (๐‘€๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘š๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’โ„ ), ๐‘กโ„Ž๐‘’๐‘› |๐‘€โƒ—โƒ— | is: (A) 3๐œ‹ ๐ด๐‘šโˆ’1 (B) 30000 ๐ด๐‘šโˆ’1 (C) 30000๐œ‹ ๐ด๐‘šโˆ’1 (D) 300 ๐ด๐‘šโˆ’1 Answer: (B) Solution: ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐ด๐‘™ ๐‘€๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘€โƒ—โƒ— = ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘š๐‘œ๐‘›๐‘’๐‘›๐‘ก ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = (๐‘๐‘œ.๐‘œ๐‘“ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ )ร—(๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก)ร—๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐‘ ๐ผ ๐ด ๐ด โ„“ = ๐‘๐ผ โ„“ = 500ร—15ร—100 25 = 60 ร— 500 = 30 ร— 103 = 30000 ๐ด๐‘šโˆ’1 23. In the circuits (a) and (b) switches ๐‘†1 ๐‘Ž๐‘›๐‘‘ ๐‘†2 are closed at t = 0 and are kept closed for a long time. The variation of currents in the two circuits for ๐‘ก โ‰ฅ 0 are roughly shown by (figures are schematic and not drawn to scale): (A)
  • 17. (B) (C) (D) Answer: (B) Solution: In CR series circuit ๐‘ž = ๐‘ž0 (1 โˆ’ ๐‘’ โˆ’๐‘ก ๐œ ) โŸน ๐‘ž = ๐ถ๐ธ (1 โˆ’ ๐‘’ โˆ’๐‘ก ๐‘…๐ถ) โˆด ๐ถ๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐ผ = ๐‘‘๐‘ž ๐‘‘๐‘ก = ๐ถ๐ธ ๐‘…๐ถ (+๐‘’ โˆ’๐‘ก ๐‘…๐ถ) ๐ผ = ๐ธ ๐‘… ๐‘’ โˆ’๐‘ก ๐‘…๐ถ โŸน ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘‘๐‘’๐‘๐‘Ž๐‘ฆ๐‘  ๐‘’๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘Ž๐‘‘ ๐‘–๐‘› ๐ฟ๐‘… ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐ผ = ๐ผ0 (1 โˆ’ ๐‘’ โˆ’๐‘ก ๐œ ) ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ผ0 = ๐ธ ๐‘… ๐‘Ž๐‘›๐‘‘ ๐œ = ๐ฟ ๐‘… ๐ผ = ๐ธ ๐‘… (1 โˆ’ ๐‘’ โˆ’๐‘…๐‘ก ๐ฟ ) โŸน ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก ๐‘”๐‘Ÿ๐‘œ๐‘ค๐‘  ๐‘’๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™๐‘™๐‘  โˆด ๐‘“๐‘œ๐‘Ÿ ๐ถ โˆ’ ๐‘… ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก
  • 18. For L โ€“ R circuit 24. If two glass plates have water between them and are separated by very small distance (see figure), it is very difficult to pull them apart. It is because the water in between forms cylindrical surface on the side that gives rise to lower pressure in the water in comparison to atmosphere. If the radius of the cylindrical surface is R and surface tension of water is T then the pressure in water between the plates is lower by: (A) 2๐‘‡ ๐‘… (B) ๐‘‡ 4๐‘… (C) 4๐‘‡ ๐‘… (D) ๐‘‡ 2๐‘… Answer: (A) Solution: ๐‘‘ = 2๐‘… ๐‘๐‘œ๐‘ ๐œƒ โˆด ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘Ž ๐‘‘๐‘œ๐‘ข๐‘๐‘™๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘ฃ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘–๐‘™๐‘š โˆ†๐‘ƒ = 2๐‘‡ ( 1 ๐‘…1 + 1 ๐‘…2 ) โˆต ๐‘…1 = ๐‘… ๐‘Ž๐‘›๐‘‘ ๐‘…2 = โˆž โˆ†๐‘ƒ = 2๐‘‡ ( 1 ๐‘… + 1 โˆž )
  • 19. โˆ†๐‘ƒ = 2๐ผ ๐‘… โˆด Pressure is more in the concave side hence pressure in water between the plates is lower by 2๐‘‡ ๐‘… 25. A simple harmonic oscillator of angular frequency 2 rad ๐‘ โˆ’1 is acted upon by an external force ๐น = sin ๐‘ก ๐‘. If the oscillator is at rest in its equilibrium position at ๐‘ก = ๐‘œ, its position at later times is proportional to: (A) sin ๐‘ก + 1 2 cos 2๐‘ก (B) ๐‘๐‘œ๐‘ ๐‘ก โˆ’ 1 2 sin2๐‘ก (C) sin ๐‘ก โˆ’ 1 2 sin2๐‘ก (D) sin ๐‘ก + 1 2 sin2๐‘ก Answer: (C) Solution: It is given that oscillator at rest at t = 0 i.e. at t = 0, v = 0 So, in option we can check by putting ๐‘ฃ = ๐‘‘๐‘ฅ ๐‘‘๐‘ก = 0 (1) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก + 1 2 cos2๐‘ก โŸน ๐‘ฃ โˆ cos ๐‘ก + 1 2 ร— 2 (โˆ’ sin 2๐‘ก) โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 โˆ’ 0 โ‰  0 (2) ๐ผ๐‘“ ๐‘ฅ โˆ cos ๐‘ก โˆ’ 1 2 sin ๐‘ก โŸน ๐‘ฃ โˆ โˆ’ sin ๐‘ก โˆ’ 1 2 cos ๐‘ก โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ โˆ’ 1 2 โ‰  0 (3) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก โˆ’ 1 2 ๐‘ ๐‘–๐‘›๐œƒ 2๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐œ โˆ cos ๐‘ก โˆ’ 1 2 ร— 2 cos 2๐‘ก โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 โˆ’ 1 = 0 (4) ๐ผ๐‘“ ๐‘ฅ โˆ sin ๐‘ก + 1 2 sin2๐‘ก โŸน ๐‘ฃ โˆ cos ๐‘ก + 1 2 ร— 2 cos2๐‘ก โŸน ๐‘Ž๐‘ก ๐‘ก = 0, ๐‘ฃ โˆ 1 + 1 โŸน ๐‘ฃ โˆ 2 โ‰  0 โˆด ๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘œ๐‘› (3) ๐‘ฃ = 0 ๐‘Ž๐‘ก ๐‘ก = 0 26. If a body moving in a circular path maintains constant speed of 10 ๐‘š๐‘ โˆ’1 , then which of the following correctly describes relation between acceleration and radius? (A)
  • 20. (B) (C) (D) Answer: (D) Solution: V = constant โŸน No tangential acceleration โŸน Only centripetal acceleration ๐‘Ž = ๐‘ฃ2 ๐‘… โŸน ๐‘Ž๐‘… = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
  • 21. โŸน ๐‘Ž โˆ 1 ๐‘… 27. If it takes 5 minutes to fill a 15 litre bucket from a water tap of diameter 2 โˆš ๐œ‹ ๐‘๐‘š then the Reynolds number for the flow is (density of water =103 ๐‘˜๐‘” ๐‘š3โ„ ๐‘Ž๐‘›๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ = 10โˆ’3 ๐‘ƒ๐‘Ž. ๐‘ ) close to: (A) 5500 (B) 550 (C) 1100 (D) 11,000 Answer: (A) Solution: Reynolds number ๐‘… = ๐‘†๐‘‰๐ท ๐œ‚ ๐ท = Diameter of litre Also rate of flow = ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘ก๐‘–๐‘š๐‘’ = ๐ด ๐‘‰ ๐‘‰ ๐‘ก = ๐œ‹ ๐ท2 4 ร— ๐‘‰ โ‡’ ๐‘‰ = 4๐‘‰ ๐œ‹๐ท2 ๐‘ก โˆด ๐‘… = ๐‘† ๐ท ๐œ‚ ร— 4 ๐‘‰ ๐œ‹ ๐ท2 ๐‘ก = 4 ๐‘† ๐‘‰ ๐œ‹ ๐œ‚ ๐ท ๐‘ก = 4 ร— 103 ร— 15 ร— 10โˆ’3 ๐œ‹ ร— 10โˆ’3 ร— 2 ร— 5 ร— 60 โˆš ๐œ‹ ร— 102 = 10000 โˆš ๐œ‹ โ‰ˆ 5500 28. If one were to apply Bohr model to a particle of mass โ€˜mโ€™ and charge โ€˜qโ€™ moving in a plane under the influence of a magnetic field โ€˜Bโ€™, the energy of the charged particle in the ๐‘› ๐‘กโ„Ž level will be: (A) ๐‘› ( โ„Ž๐‘ž๐ต ๐œ‹๐‘š ) (B) ๐‘› ( โ„Ž๐‘ž๐ต 4๐œ‹๐‘š ) (C) ๐‘› ( โ„Ž๐‘ž๐ต 2๐œ‹๐‘š ) (D) ๐‘› ( โ„Ž๐‘ž๐ต 8๐œ‹๐‘š ) Answer: (B) Solution:
  • 22. For a charge q moving in a +r uniform magnetic field B ๐‘“๐‘š = ๐‘š๐‘ฃ2 ๐‘… ๐‘ž๐‘‰๐ต = ๐‘š๐‘ฃ2 ๐‘… โ‡’ ๐‘š๐‘ฃ2 = ๐‘ž๐‘‰๐ต๐‘… โ‡’ 1 2 ๐‘š๐‘ฃ2 = ๐‘ž๐‘‰๐ต๐‘… 2 โ‡’ ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ = ๐‘ž๐‘‰๐ต๐‘… 2 (1) By Bohrโ€™s quantisation condition Angular momentum ๐ฟ = ๐‘› โ„Ž 2๐œ‹ โ‡’ ๐‘š๐‘ฃ๐‘… = ๐‘›โ„Ž 2๐œ‹ โ‡’ ๐‘ฃ๐‘… = ๐‘›โ„Ž 2๐œ‹ ๐‘š (2) Put (2) in (2) โ‡’ ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ = ๐‘ž๐ต 2 ( โ„Ž 2 ๐œ‹ ๐‘š ) = ๐‘ž๐ต ๐‘›โ„Ž 4 ๐œ‹ ๐‘š 29. If the capacitance of a nanocapacitor is measured in terms of a unit โ€˜uโ€™ made by combining the electronic charge โ€˜eโ€™, Bohr radius โ€ฒ๐‘Ž0 โ€ฒ , Planckโ€™s constant โ€˜hโ€™ and speed of light โ€˜cโ€™ then: (A) ๐‘ข = ๐‘’2 ๐‘Ž0 โ„Ž๐‘ (B) ๐‘ข = โ„Ž๐‘ ๐‘’2 ๐‘Ž0 (C) ๐‘ข = ๐‘’2 ๐‘ โ„Ž๐‘Ž0 (D) ๐‘ข = ๐‘’2โ„Ž ๐‘๐‘Ž0 Answer: (A) Solution: โˆต ๐ถ๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐ถ = ๐‘„ โˆ†๐‘ฃ ๐ด๐‘™๐‘ ๐‘œ [ โ„Ž๐‘ ๐œ† ] = [ โ„Ž๐‘ ๐‘Ž0 ] = [๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ] โˆด [๐ถ] = [๐‘„] [โˆ†๐‘ฃ] = [๐‘„] [๐‘„] [โˆ†๐‘ฃ] [๐‘„] โˆต ๐‘Š = ๐‘žโˆ†๐‘ฃ โ‡’ [๐‘„] [โˆ†๐‘ฃ] = [๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ] โˆด [๐ถ] = [๐‘„2] [๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ] = [๐‘„2] [๐‘Ž0] [โ„Ž๐‘] โˆด [๐ถ๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘Ž๐‘›๐‘๐‘’ ] = [๐‘„2] [๐‘Ž0] [โ„Ž๐‘] โ‡’ ๐‘ข = ๐‘’2 ๐‘Ž0 โ„Ž๐‘
  • 23. 30. A bat moving at 10 ๐‘š๐‘ โˆ’1 towards a wall sends a sound signal of 8000 Hz towards it. On reflection it hears a sound of frequency๐‘“. The value of ๐‘“ in Hz is close to (๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ = 320 ๐‘š๐‘ โˆ’1) (A) 8258 (B) 8424 (C) 8000 (D) 8516 Answer: (D) Solution: We can assume that reflected wave is due to image of B coming with same speed in opposite direction Observer ๐‘“ = ๐‘ฃ + 10 ๐‘ฃ โˆ’ 10 ร— ๐‘“0 = 320 + 10 320 โˆ’ 10 ร— 8000 = 330 310 ร— 8000 = 33 31 ร— 8000 = 8516 ๐ป๐‘ง
  • 24. JEE Mains 2015 10th April (online) Chemistry Single correct answer type 1. 1.4 g of an organic compound was digested according to Kjeldahlโ€™s method and the ammonia evolved was absorbed in 60 mL of M/10 ๐ป2 ๐‘†๐‘‚4 solution. The excess sulphuric acid required 20 mL of M/10 NaOH solution for neutralization. The percentage of nitrogen in the compound is: (A) 24 (B)3 (C)5 (D)10 Solution: (D) 60 ร— 1 10 = 6 ๐‘š๐‘€ ๐ป2 ๐‘†๐‘‚4 used Excess ๐ป2 ๐‘†๐‘‚4 โ‰ก 20 ร— 1 10 ร— 1 2 = 1 ๐‘š๐‘€ ๐ป2 ๐‘†๐‘‚4 ๐ป2 ๐‘†๐‘‚4 used = 6 โˆ’ 1 = 5 ๐‘š๐‘€ 2๐‘๐ป3 + ๐ป2 ๐‘†๐‘‚4 โŸถ (๐‘๐ป4)2 ๐‘†๐‘‚4 mM of ๐‘๐ป3 = 10 ๐‘š๐‘€ Mass of ๐‘ = 10 ร— 10โˆ’3 ร— 14 ( ๐‘” ๐‘š๐‘œ๐‘™๐‘’ ) = 0.140๐‘” % ๐‘2 = 0.140 1.4 ร— 100 = 10% 2. The optically inactive compound from the following is: (A) 2-chloropropanal (B) 2-chloro-2-methylbutane (C) 2-chlorobutane (D) 2-chloropentane Solution: (B) (Optically active) (Optically inactive because of 2 โˆ’ ๐ถ๐ป3 groups present on same C atom)
  • 25. (Optically active) 3. The least number of oxyacids are formed by: (A) Chlorine (B) Fluorine (C) Sulphur (D) Nitrogen Solution: (B) Fluorine does not form oxyacids as it is more electronegative than oxygen. 4. Gaseous ๐‘2 ๐‘‚4 dissociates into gaseous ๐‘๐‘‚2according to the reaction๐‘2 ๐‘‚4(๐‘”) โ‡Œ 2๐‘๐‘‚2(๐‘”) At 300 K and 1 atm pressure, the degree of dissociation of ๐‘2 ๐‘‚4 is 0.2. If one mole of ๐‘2 ๐‘‚4 gas is contained in a vessel, then the density of the equilibrium mixture is: (A) 3.11 g/L (B) 1.56 g/L (C) 4.56 g/L (D) 6.22 g/L Solution: (A) ๐‘2 ๐‘‚4 โ‡Œ 2๐‘๐‘‚2 (1 โˆ’ ๐›ผ) 2๐›ผ Total moles at equilibrium = 1 โˆ’ ๐›ผ + 2๐›ผ = 1 + ๐›ผ = 1.2 M avg for equilibrium mixture = 92 ๐‘” ๐‘š๐‘œ๐‘™๐‘’ (๐‘2 ๐‘‚4) 1.2 ๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ = ๐‘ƒ๐‘€ ๐‘Ž๐‘ฃ๐‘” ๐‘…๐‘‡ = 1 ร— 76.67 0.082 ร— 300 = 76.67 24.6 = 3.11 ๐‘”๐ฟโˆ’1 5. Arrange the following amines in the order of increasing basicity. (A)
  • 26. (B) (C) (D) Solution: (C) Most basic due to +I effect of methyl group. Methoxy group provides electron density at - ๐‘๐ป2 -๐‘๐‘‚2 group with draws electron density from N of -๐‘๐ป2 6.
  • 27. A is; (A) (B) (C) (D) Solution: (A) 7. A solution at 20 ๐‘œ ๐ถ is composed of 1.5 mol of benzene and 3.5 mol of toluene. If the vapour pressure of pure benzene and pure toluene at this temperature are 74.7 torr and 22.3 torr, respectively, then the total vapour pressure of the solution and the benzene mole fraction in equilibrium with it will be, respectively: (A) 30.5 torr and 0.389 (B) 35.0 torr and 0.480 (C) 38.0 torr and 0.589 (D) 35.8 torr and 0.280 Solution: (C) ๐‘‹ ๐ต๐‘’๐‘›๐‘ง๐‘’๐‘›๐‘’ = 1.5 5 = 0.3 ๐‘‹ ๐‘‡๐‘œ๐‘™๐‘ข๐‘’๐‘›๐‘’ = 3.5 5 = 0.7 ๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = 0.3 ร— 74.7 + 0.7 ร— 22.3
  • 28. = 22.41 + 15.61 = 38.02 โ‰ˆ 38 ๐‘‡๐‘œ๐‘Ÿ๐‘Ÿ By Daltonโ€™s law to vapour phase ๐‘‹ ๐ต๐‘’๐‘›๐‘ง๐‘’๐‘›๐‘’ โ€ฒ (๐‘ฃ๐‘Ž๐‘ ๐‘โ„Ž๐‘Ž๐‘ ๐‘’) = 0.3 ร— 74.7 38 = 22.41 38 = 0.589 8. Which molecule/ion among the following cannot act as a ligand in complex compounds? (A) ๐ถ๐‘โˆ’ (B) ๐ถ๐ป4 (C) ๐ถ๐‘‚ (D) ๐ต๐‘Ÿโˆ’ Solution: (B) ๐ถ๐ป4 does not have either a lone pair or ๐œ‹-electron pair it cannot act as ligand. 9. A compound A with molecular formula ๐ถ10 ๐ป13 ๐ถ๐‘™ gives a white precipitate on adding silver nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on ozonolysis gives C and D. C gives Cannizaro reaction but not aldol condensation. D gives aldol condensation but not Cannizaro reaction. A is: (A) (B) (C) (D) Solution: (B) Chlorine attached to tertiary carbon will give a white precipitate on adding ๐ด๐‘”๐‘๐‘‚3 (Saytzeff Rule)
  • 29. 10. is used as: (A) Antacid (B) Insecticide (C) Antihistamine (D) Analgesic Solution: (D) Acetyl salicylic acid is analgesic. 11. An aqueous solution of a salt X turns blood red on treatment with ๐‘†๐ถ๐‘โˆ’ and blue on treatment with ๐พ4[๐น๐‘’(๐ถ๐‘)6], X also gives a positive chromyl chloride test. The salt X is: (A) ๐น๐‘’๐ถ๐‘™3 (B) ๐น๐‘’(๐‘๐‘‚3)3 (C) ๐ถ๐‘ข๐ถ๐‘™2 (D) ๐ถ๐‘ข(๐‘๐‘‚3)2 Solution: (A) ๐น๐‘’๐ถ๐ฟ3 + 3 ๐‘†๐ถ๐‘๐‘Ž๐‘ž โˆ’ โ‡Œ ๐น๐‘’(๐‘†๐ถ๐‘)3 + 3 ๐ถ๐‘™โˆ’ (๐ต๐‘™๐‘œ๐‘œ๐‘‘ ๐‘Ÿ๐‘’๐‘‘) 4 ๐น๐‘’๐ถ๐‘™3 + 3๐พ4[๐น๐‘’(๐ถ๐‘)6] โŸถ 12 ๐พ๐ถ๐‘™ + ๐น๐‘’4[๐น๐‘’(๐ถ๐‘)6]3 ๐‘ƒ๐‘Ÿ๐‘ข๐‘ ๐‘ ๐‘–๐‘œ๐‘› ๐‘๐‘™๐‘ข๐‘’ 2๐น๐‘’๐ถ๐‘™3 + 3๐ป2 ๐‘†๐‘‚4 โŸถ ๐น๐‘’2(๐‘†๐‘‚4)3 + 6๐ป๐ถ๐‘™ ๐พ2 ๐ถ๐‘Ÿ2 ๐‘‚7 + 2๐ป2 ๐‘†๐‘‚4 โŸถ 2๐พ๐ป๐‘†๐‘‚4 + 2๐ถ๐‘Ÿ๐‘‚3 + ๐ป2 ๐‘‚ ๐ถ๐‘Ÿ๐‘‚3 + 2๐ป๐ถ๐‘™ โŸถ ๐ถ๐‘Ÿ๐‘‚2 ๐ถ๐‘™2 + ๐ป2 ๐‘‚ (๐ถโ„Ž๐‘Ÿ๐‘œ๐‘š๐‘ฆ๐‘™๐‘โ„Ž๐‘™๐‘œ๐‘Ÿ๐‘–๐‘‘๐‘’) ๐ถ๐‘’๐‘‚2 ๐ถ๐‘™2 + 4 ๐‘ ๐‘Ž๐‘‚๐ป โŸถ ๐‘๐‘Ž2 ๐ถ๐‘Ÿ๐‘‚4 + 2๐‘๐‘Ž๐ถ๐‘™ + 2๐ป2 ๐‘‚ (๐‘ฆ๐‘’๐‘™๐‘™๐‘œ๐‘ค)
  • 30. ๐‘๐‘Ž2 ๐ถ๐‘Ÿ๐‘‚4 + ๐‘ƒ๐‘(๐ถ๐ป3 ๐ถ๐‘‚๐‘‚)2 โŸถ ๐‘ƒ๐‘๐ถ๐‘Ÿ๐‘‚4 + 2๐ถ๐ป3 ๐ถ๐‘‚๐‘‚๐‘๐‘Ž (๐‘ฆ๐‘’๐‘™๐‘™๐‘œ๐‘ค ๐‘๐‘๐‘ก) 12. The correct statement on the isomerism associated with the following complex ions, (A) [๐‘๐‘–(๐ป2 ๐‘‚)5 ๐‘๐ป3]2+ (B) [๐‘๐‘–(๐ป2 ๐‘‚)4(๐‘๐ป3)2]2+ and (C) [๐‘๐‘–(๐ป2 ๐‘‚)3(๐‘๐ป3)3]2+ is (D) (A) and (B) show only geometrical isomerism Solution: (D) [๐‘๐‘– (๐ป2 ๐‘‚)4(๐‘๐ป3)2]2+ Show c is & trans geometrical isomerism [๐‘๐‘– (๐ป2 ๐‘‚)3(๐‘๐ป3)3]2+ Show facial & meridional geometrical isomerism. 13. In the presence of a small amount of phosphorous, aliphatic carboxylic acids react with ๐›ผ- hydrogen has been replaced by halogen. This reaction is known as: (A) Etard reaction (B) Wolff-Kischner reaction (C) Rosenmund reaction (D) Hell-volhard-zelinsky reaction Solution: (D) This reaction is known as HVZ reaction. 14. The reaction 2N2O5(g) โ†’ 4NO2(g) + O2(g) follows first order kinetics. The pressure of a vessel containing only N2O5 was found to increase from 50 mm Hg to 87.5 mm Hg in 30 min. The pressure exerted by the gases after 60 min. Will be (Assume temperature remains constant) : (A) 106.25 mm Hg (B) 125 mm Hg (C) 116.25 mm Hg (D) 150 mm Hg Solution: (A) 2๐‘2 ๐‘‚5(๐‘”) โŸถ 4 ๐‘๐‘‚2(๐‘”) (๐‘0 โˆ’ ๐‘ฅ) 2๐‘ฅ + ๐‘‚2(๐‘”) ๐‘ฅ 2 โˆ‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘0 โˆ’ ๐‘ฅ + 2๐‘ฅ + ๐‘ฅ 2 = ๐‘0 + 3๐‘ฅ 2 = ๐‘๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ 87.5 = 50 + 3๐‘ฅ 2 3๐‘ฅ 2 = 37.5 โˆด ๐‘ฅ = 37.5 ร— 2 3 = 25
  • 31. For first order kinetics ๐‘˜๐‘ก = ln ๐‘0 ๐‘0 โˆ’ ๐‘ฅ = ๐‘™๐‘› 50 25 = ln 2 ๐‘˜ = 1 ๐‘ก ln 2 = 1 30 ln 2 After 60 min ๐‘˜ = 1 ๐‘กโ€ฒ ln ๐‘0 ๐‘0 โˆ’ ๐‘ฅโ€ฒ โ‡’ 1 30 ln 2 = 1 60 ln ๐‘0 ๐‘0 โˆ’ ๐‘ฅโ€ฒ 2 ln 2 = ln ๐‘0 ๐‘0 โˆ’ ๐‘ฅโ€ฒ โˆ’ ln 4 ๐‘0 ๐‘0 โˆ’ ๐‘ฅโ€ฒ = 4 โ‡’ ๐‘0 = 4 ๐‘0 โˆ’ 4๐‘ฅโ€ฒ ๐‘ฅโ€ฒ = 4๐‘0 โˆ’ ๐‘0 4 = 3๐‘0 4 = 3 ร— 50 4 = 37.5 ฮฃ60 ๐‘š๐‘–๐‘› ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘0 + 3๐‘ฅโ€ฒ 2 = 50 + 3 ร— 37.5 2 = 50 + 56.25 = 106.25 ๐‘š๐‘š 15. If the principal quantum number n = 6, the correct sequence of filling of electrons will be: (A) ns โ†’ (n โˆ’ 1) d โ†’ (n โˆ’ 2) f โ†’ np (B) ns โ†’ np โ†’ (n โˆ’ 1)d โ†’ (n โˆ’ 2)f (C) ns โ†’ (n โˆ’ 2)f โ†’ np โ†’ (n โˆ’ 1)d (D) ns โ†’ (n โˆ’ 2)f โ†’ (n โˆ’ 1)d โ†’ np Solution: (D) As per (n + โ„“) rule when n = 6 ns subshell โ‡’ 6 + 0 = 6 (n โ€“ 1) d subshell โ‡’ 5 + 2 = 7 (n โ€“ 2) f subshell โ‡’ 4 + 3 = 7 np subshell โ‡’ 6 + 1 = 7 When n + โ„“ values are same, the one have lowest n value filled first. ns , (n โˆ’ 2)f, (n โˆ’ 1)d, np (n + โ„“) values โ‡’ 7 , 7 , 7 n value โ‡’ 4 , 5 , 6 16. The cation that will not be precipitated by H2S in the presence of dil HCl is: (A) Co2+ (B) As3+ (C) Pb2+ (D) Cu2+ Solution: (A) Co2+ precipitated by H2S in presence of NH4OH in group IV as CoS (Black ppt.) Other are precipitated as sulphide in presence of dil HCl in group II.
  • 32. 17. The geometry of XeOF4 by VSEPR theory is: (A) Trigonal bipyramidal (B) Square pyramidal (C) Pentagonal planar (D) Octahedral Solution: (B) H = 1 2 (V + M โˆ’ C + A) = 1 2 (8 + 4) = 6 sp3 d2 Hybridization 4 B.P + 1 B.P (Double bonded) + 1 L.P, Square pyramidal Oxygen atom doubly bonded to Xe lone pair of electrons on apical position. 18. The correct order of thermal stability of hydroxides is: (A) Mg(OH)2 < Sr(OH)2 < Ca(OH)2 < Ba(OH)2 (B) Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2 (C) Ba(OH)2 < Sr(OH)2 < Ca(OH)2 < Mg(OH)2 (D) Ba(OH)2 < Ca(OH)2 < Sr(OH)2 < Mg(OH)2 Solution: (B) Thermal stabilities of hydroxides of group II A elements increase from Be(OH)2 to Ba(OH)2 because going down the group the cation size increases & covalent character decreases & ionic character increases i.e. Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2 19. Photochemical smog consists of excessive amount of X, in addition to aldehydes, ketones, peroxy acetyl nitrile (PAN), and so forth. X is: (A) CH4 (B) CO2 (C) O3 (D) CO Solution: (C) Photochemical smog is the chemical reaction of sunlight, nitrogen oxides and VOCs in the atmosphere.
  • 33. NO2 hv โ†’ NO + O O + O2 โ†’ O3 So, it consists of excessive amount of ozone molecules as atomic oxygen reacts with one of the abundant oxygen molecules producing ozone. 20. A sample of a hydrate of barium chloride weighing 61 g was heated until all the water of hydration is removed. The dried sample weighed 52 g. The formula of the hydrated salt is: (atomic mass, Ba = 137 amu, Cl = 35.5 amu) (A) BaCl2 โˆ™ H2O (B) BaCl2 โˆ™ 3H2O (C) BaCl2 โˆ™ 4H2O (D) BaCl2 โˆ™ 2H2O Solution: (D) BaCl2 โˆ™ xH2O โ†’ BaCl2 + x H2O (137 + 2 ร— 35.5 + 18x) = (208 + 18x) g/mole 208 + 18 x 208 = 61 52 10816 + 936 x = 12688 936 x = 1872 x = 2 Formula is BaCl2 โˆ™ 2H2O 21. The following statements relate to the adsorption of gases on a solid surface. Identify the incorrect statement among them: (A) Entropy of adsorption is negative (B) Enthalpy of adsorption is negative (C) On adsorption decrease in surface energy appears as heat (D) On adsorption, the residual forces on the surface are increased Solution: (D) Adsorption is spontaneous process โˆ†G is โ€“ve During adsorption randomness of adsorbate molecules reduced โˆ†S is โ€“ve โˆ†G = โˆ†H โˆ’ Tโˆ†S โˆ†H = โˆ†G + Tโˆ†S โˆ†H is highly โ€“ve and residual forces on surface are satisfied. 22. In the isolation of metals, calcination process usually results in: (A) Metal oxide (B) Metal carbonate (C) Metal sulphide (D) Metal hydroxide
  • 34. Solution: (A) Calcination used for decomposition of metal carbonates M CO3 โˆ† โ†’ MO + CO2 โ†‘ 23. A variable, opposite external potential (Eext) is applied to the cell Zn | Zn2+ (1M) โˆฅ Cu2+ (1 M)| Cu , of potential 1.1 V. When Eext < 1.1 V and Eext > 1.1 V, respectively electrons flow from: (A) Anode to cathode in both cases (B) Anode to cathode and cathode to anode (C) Cathode to anode and anode to cathode (D) Cathode to anode in both cases Solution: (B) For the Daniel cell Ecell = 0.34 โˆ’ (โˆ’0.76) = 1.10 V When Eext < 1.10 V electron flow from anode to cathode in external circuit When Eext > 1.10 V electrons flow from cathode to anode in external circuit (Reverse Reaction) 24. Complete hydrolysis of starch gives: (A) Galactose and fructose in equimolar amounts (B) Glucose and galactose in equimolar amouunts (C) Glucose and fructose in equimolar amounts (D) Glucose only Solution: (D) On complete hydrolysis of starch, glucose is formed. Amylase is an enzyme that catalyses the hydrolysis of starch into sugars. 25. Match the polymers in column-A with their main uses in column-B and choose the correct answer: Column - A Column - B A. Polystyrene i. Paints and lacquers B. Glyptal ii. Rain coats C. Polyvinyl chloride chloride iii. Manufacture of toys D. Bakelite iv. Computer discs (A) A โ€“ iii , B โ€“ i , C โ€“ ii , D โ€“ iv (B) A โ€“ ii , B โ€“ i , C โ€“ iii , D โ€“ iv (C) A โ€“ ii , B โ€“ iv , C โ€“ iii , D โ€“ i (D) A โ€“ iii , B โ€“ iv , C โ€“ ii , D โ€“ i Solution: (A) A โ€“ iii , B โ€“ i , C โ€“ ii , D โ€“ iv
  • 35. 26. Permanent hardness in water cannot be cured by: (A) Treatment with washing soda (B) Ion exchange method (C) Calgonโ€™s methos (D) Boiling Solution: (D) Permanent hardness due to SO4 2โˆ’ , Clโˆ’ of Ca2+ and Mg2+ cannot be removed by boiling. 27. In the long form of periodic table, the valence shell electronic configuration of 5s2 5p4 corresponds to the element present in: (A) Group 16 and period 5 (B) Group 17 and period 5 (C) Group 16 and period 6 (D) Group 17 and period 6 Solution: (A) 5s2 , 5p4 configuration is actually 36[Kr]5s2 , 4d10 , 5p4 i.e. 5th period and group 16 and element Tellurium. 28. The heat of atomization of methane and ethane are 360 kJ/mol and 620 kJ/mol, respectively. The longest wavelength of light capable of breaking the C โˆ’ C bond is (Avogadro number = 6.023 ร— 1023 , h = 6.62 ร— 10โˆ’34 J s): (A) 2.48 ร— 104 nm (B) 1.49 ร— 104 nm (C) 2.48 ร— 103 nm (D) 1.49 ร— 103 nm Solution: (D) 4 B.E (C โˆ’ H) bond = 360 kJ B.E (C โˆ’ H) bond = 90 kJ/mole In C2H6 โ‡’ B. E(Cโˆ’C) + 6B. E(Cโˆ’H) = 620 kJ B. E(Cโˆ’C) bond = 620 โˆ’ 6 ร— 90 = 80 kJ moleโ„ B. E(Cโˆ’C) bond = 80 96.48 = 0.83 eV bondโ„ ฮป(Photon in โ„ซ) for rupture of C โˆ’ C bond = 12408 0.83 = 14950โ„ซ = 1495 nm โ‰ˆ 1.49 ร— 103 nm 29. Which of the following is not an assumption of the kinetic theory of gases?
  • 36. (A) Collisions of gas particles are perfectly elastic. (B) A gas consists of many identical particles which are in continual motion. (C) At high pressure, gas particles are difficult to compress. (D) Gas particles have negligible volume. Solution: (C) At high pressures gas particles difficult to compress rather they are not compressible at all. 30. After understanding the assertion and reason, choose the correct option. Assertion: In the bonding molecular orbital (MO) of H2 , electron density is increases between the nuclei. Reason: The bonding MO is ฯˆA + ฯˆB , which shows destructive interference of the combining electron waves. (A) Assertion and Reason are correct, but Reason is not the correct explanation for the Assertion. (B) Assertion and Reason are correct and Reason is the correct explanation for the Assertion. (C) Assertion is incorrect, Reason is correct. (D) Assertion is correct, Reason is incorrect. Solution: (D) Electron density between nuclei increased during formation of BMO in H2. BMO is ฯˆA + ฯˆB (Linear combination of Atomic orbitals) provides constructive interference.
  • 37. JEE Mains 2015 10th April (online) Mathematics 1. If the coefficient of the three successive terms in the binomial expansion of (1 + ๐‘ฅ) ๐‘› are in the ratio 1 : 7 : 42, then the first of these terms in the expansion is : 1. 9 ๐‘กโ„Ž 2. 6 ๐‘กโ„Ž 3. 8 ๐‘กโ„Ž 4. 7 ๐‘กโ„Ž Answer: (4) Solution: Let ๐‘› ๐ถ๐‘Ÿ be the first term, then ๐‘› ๐ถ ๐‘Ÿ ๐‘› ๐ถ ๐‘Ÿ+1 = 1 7 โ‡’ ๐‘Ÿ + 1 ๐‘› โˆ’ ๐‘Ÿ = 1 7 โ‡’ 7๐‘Ÿ + 7 = ๐‘› โˆ’ ๐‘Ÿ ๐‘› โˆ’ 8๐‘Ÿ = 7 โ€ฆ..(i) Also ๐‘› ๐ถ ๐‘Ÿ+1 ๐‘› ๐ถ ๐‘Ÿ+2 = 7 42 = 1 6 โ‡’ ๐‘Ÿ + 2 ๐‘› โˆ’ ๐‘Ÿ โˆ’ 1 = 1 6 โ‡’ 6๐‘Ÿ + 12 = ๐‘› โˆ’ ๐‘Ÿ โˆ’ 1 ๐‘› โˆ’ 7๐‘Ÿ = 13 โ€ฆโ€ฆ(ii) Solving ๐‘› โˆ’ 8๐‘Ÿ = 7 โ€ฆ.(i) ๐‘› โˆ’ 7๐‘Ÿ = 13 โ€ฆ..(ii) ____________ โˆ’๐‘Ÿ = โˆ’6 ๐‘Ÿ = 6 Hence 7 ๐‘กโ„Ž term is the answer. 2. The least value of the product ๐‘ฅ๐‘ฆ๐‘ง for which the determinant | ๐‘ฅ 1 1 1 ๐‘ฆ 1 1 1 ๐‘ง | is non โ€“ negative, is: 1. โˆ’1 2. โˆ’16โˆš2 3. โˆ’8 4. โˆ’2โˆš2 Answer: (3) Solution: | ๐‘ฅ 1 1 1 ๐‘ฆ 1 1 1 ๐‘ง | = ๐‘ฅ๐‘ฆ๐‘ง โˆ’ (๐‘ฅ + ๐‘ฆ + ๐‘ง) + 2 Since ๐ด. ๐‘€ โ‰ฅ ๐บ. ๐‘€
  • 38. ๐‘ฅ + ๐‘ฆ + ๐‘ง 3 โ‰ฅ (๐‘ฅ๐‘ฆ๐‘ง) 1 3 ๐‘ฅ + ๐‘ฆ + ๐‘ง โ‰ฅ 3(๐‘ฅ๐‘ฆ๐‘ง) 1 3 โˆด Least value of xyz will have from (when determinant non- negative terms) ๐‘ฅ๐‘ฆ๐‘ง โˆ’ (3)(๐‘ฅ๐‘ฆ๐‘ง) 1 3 + 2 โ‰ฅ 0 ๐‘ก3 โˆ’ 3๐‘ก + 2 โ‰ฅ 0 (๐‘ก + 2)(๐‘ก2 โˆ’ 2๐‘ก + 1) ๐‘ก = โˆ’2 ๐‘Ž๐‘›๐‘‘ ๐‘ก = +1 Least value of ๐‘ก3 = โˆ’8. 3. The contrapositive of the statement โ€œIf it is raining, then I will not comeโ€, is: 1. If I will come, then it is not raining 2. If I will come, then it is raining 3. If I will not come, then it is raining 4. If I will not come, then it is not raining Answer: (1) Solution: Contrapositive of ๐‘ƒ โ‡’ ๐‘ž is ~๐‘ž โ‡’ ~ ๐‘ƒ So contra positive of the statement โ€œIf it is raining, then I will not comeโ€, would be If I will come, then it is not raining. 4. lim ๐‘ฅโ†’0 ๐‘’ ๐‘ฅ2 โˆ’cos ๐‘ฅ sin2 ๐‘ฅ is equal to: 1. 2 2. 3 2 3. 5 4 4. 3 Answer: (2) Solution: ๐‘’ ๐‘ฅ2 โˆ’cos ๐‘ฅ sin2 ๐‘ฅ = (1 + ๐‘ฅ2 โˆŸ1 + ๐‘ฅ4 โˆŸ2 โ€ฆ โ€ฆ ) โˆ’ (1 โˆ’ ๐‘ฅ2 โˆŸ2 + ๐‘ฅ4 โˆŸ4 โ€ฆ โ€ฆ ๐‘›) sin2 ๐‘ฅ ๐‘ฅ2 โˆ’ ๐‘ฅ2 ( +3๐‘ฅ2 2 + 11 ๐‘ฅ4 24 sin2 ๐‘ฅ ๐‘ฅ2 โˆ™๐‘ฅ2 ) take ๐‘ฅ2 common
  • 39. [lim ๐‘ฅโ†’0 + 3 2 + 11 24 ๐‘ฅ2 sin2 ๐‘ฅ ๐‘ฅ2 ] = 3 2 . 5. If Rolleโ€™s theorem holds for the function ๐‘“(๐‘ฅ) = 2๐‘ฅ3 + ๐‘๐‘ฅ2 + ๐‘๐‘ฅ, ๐‘ฅ โˆˆ [โˆ’1, 1], at the point ๐‘ฅ = 1 2 , then 2b + c equals: 1. 2 2. 1 3. -1 4. -3 Answer: (3) Solution: If Rolleโ€™s theorem is satisfied in the interval [-1, 1], then ๐‘“(โˆ’1) = ๐‘“(1) โˆ’2 + ๐‘ โˆ’ ๐‘ = 2 + ๐‘ + ๐‘ ๐‘ = โˆ’2 also ๐‘“โ€ฒ(๐‘ฅ) = 6๐‘ฅ2 + 2๐‘๐‘ฅ + ๐‘ Also if ๐‘“โ€ฒ ( 1 2 ) = 0 them 6 1 4 + 2๐‘ 1 2 + ๐‘ = 0 3 2 + ๐‘ + ๐‘ = 0 โˆต ๐‘ = โˆ’2, ๐‘ = 1 2 โˆด 2๐‘ + ๐‘ = 2 ( 1 2 ) + (โˆ’2) = 1 โˆ’ 2 = โˆ’1. 6. If the points (1, 1, ๐œ†) ๐‘Ž๐‘›๐‘‘ (โˆ’3, 0, 1) are equidistant from the plane, 3๐‘ฅ + 4๐‘ฆ โˆ’ 12๐‘ง + 13 = 0, then ๐œ† satisfies the equation: 1. 3๐‘ฅ2 + 10๐‘ฅ + 7 = 0 2. 3๐‘ฅ2 + 10๐‘ฅ โˆ’ 13 = 0 3. 3๐‘ฅ2 โˆ’ 10๐‘ฅ + 7 = 0 4. 3๐‘ฅ2 โˆ’ 10๐‘ฅ + 21 = 0 Answer: (3) Solution: (1, 1, ๐œ†) ๐‘Ž๐‘›๐‘‘ (โˆ’3, 0, 1) in equidistant from 3๐‘ฅ + 4๐‘ฆ โˆ’ 12๐‘ง + 13 = 0 then
  • 40. | 3 + 4 โˆ’ 12๐œ† + 13 โˆš32 + 42 + 122 | = | โˆ’9 + 0 โˆ’ 12 + 13 โˆš32 + 42 + 122 | |20 โˆ’ 12๐œ†| = |โˆ’8| |5 โˆ’ 3๐œ† | = |โˆ’2| 25 โˆ’ 30๐œ† + 9๐œ†2 = 4 9๐œ†2 โˆ’ 30๐œ† + 21 = 0 3๐œ†2 โˆ’ 10๐œ† + 7 = 0 โˆด Option 3๐‘ฅ2 โˆ’ 10๐‘ฅ + 7 = 0 Is correct 7. In a ฮ”๐ด๐ต๐ถ, ๐‘Ž ๐‘ = 2 + โˆš3 ๐‘Ž๐‘›๐‘‘ โˆ ๐ถ = 60 ๐‘œ . Then the ordered pair (โˆ ๐ด, โˆ ๐ต) is equal to: 1. (105 ๐‘œ , 15 ๐‘œ) 2. (15 ๐‘œ , 105 ๐‘œ) 3. (45 ๐‘œ , 75 ๐‘œ) 4. (75 ๐‘œ , 45 ๐‘œ ) Answer: (1) Solution: Since ๐‘Ž ๐‘ = 2+ โˆš3 1 โˆ ๐ด > โˆ ๐ต. Hence only option 1 & 4 could be correct checking for option (1) ๐‘Ž ๐‘ = sin105 ๐‘œ sin 15 ๐‘œ = ๐‘ ๐‘–๐‘› (60 ๐‘œ + 45 ๐‘œ ) sin(60 ๐‘œ โˆ’ 45 ๐‘œ) = โˆš3 + 1 โˆš3 โˆ’ 1 ๐‘Ž ๐‘ = 2 + โˆš3 1 Hence option (105 ๐‘œ , 15 ๐‘œ) is correct. 8. A factory is operating in two shifts, day and night, with 70 and 30 workers respectively. If per day mean wage of the day shift workers is Rs. 54 and per day mean wage of all the workers is Rs. 60, then per day mean wage of the night shift workers (in Rs.) is : 1. 75 2. 74 3. 69 4. 66 Answer: (2) Solution: ๐‘›1 ๐‘ฅ1 +๐‘›2 ๐‘ฅ2 ๐‘›1+๐‘›2 = ๐‘ฅ 70 โˆ™ (54) + 30 (๐‘ฅ2) 70 + 30 = 60
  • 41. = 3780 + 30 ๐‘ฅ2 = 6000 โˆด ๐‘ฅ2 = 6000 โˆ’ 3780 30 = 2220 30 = 74. 9. The integral โˆซ ๐‘‘๐‘ฅ (๐‘ฅ+1) 3 4 (๐‘ฅโˆ’2) 5 4 is equal to: 1. 4 ( ๐‘ฅโˆ’2 ๐‘ฅ+1 ) 1 4 + ๐ถ 2. โˆ’ 4 3 ( ๐‘ฅ+1 ๐‘ฅโˆ’2 ) 1 4 + ๐ถ 3. 4 ( ๐‘ฅ+1 ๐‘ฅโˆ’2 ) 1 4 + ๐ถ 4. โˆ’ 4 3 ( ๐‘ฅโˆ’2 ๐‘ฅ+1 ) 1 4 + ๐ถ Answer: (2) Solution: โˆซ ๐‘‘๐‘ฅ (๐‘ฅ+1) 3 4 (๐‘ฅโˆ’2) 5 4 Divide & Multiply the denominator by (๐‘ฅ + 1) 5 4. โˆซ ๐‘‘๐‘ฅ (๐‘ฅ + 1)2 ( ๐‘ฅ โˆ’ 2 ๐‘ฅ + 1) 5 4 Put ๐‘ฅโˆ’2 ๐‘ฅ+1 = ๐‘ก ( 1 (๐‘ฅ + 1) โˆ’ (๐‘ฅ โˆ’ 2)(1) (๐‘ฅ + 1)2 ) ๐‘‘๐‘ฅ = ๐‘‘๐‘ก 3 (๐‘ฅ + 1)2 ๐‘‘๐‘ฅ = ๐‘‘๐‘ก 1 ๐‘‘๐‘ฅ (๐‘ฅ + 1)2 = 1 ๐‘‘๐‘ก 3 โ‡’ 1/3 โˆซ ๐‘ก 5 4 ๐‘‘๐‘ก = 1 ๐‘ก 1 4 3 ( โˆ’1 4 ) = โˆ’4 3 1 ๐‘ก 1 4 + ๐ถ โˆ’4 3 ( ๐‘ฅ+1 ๐‘ฅโˆ’2 ) 1 4 + ๐ถ. 10. Let ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— be two unit vectors such that |๐‘Ž + ๐‘โƒ— | = โˆš3 .
  • 42. If ๐‘ = ๐‘Ž + 2๐‘โƒ— (๐‘Ž ร— ๐‘โƒ— ), then 2|๐‘| is equal to: 1. โˆš51 2. โˆš37 3. โˆš43 4. โˆš55 Answer: (4) Solution: As |๐‘Ž ร— ๐‘โƒ— | = โˆš3 Squaring both the sides |๐‘Ž|2 + |๐‘โƒ— | 2 + 2๐‘Ž โˆ™ ๐‘โƒ— = 3 1 + 1 + 2 โˆ™ 1 โˆ™ 1 โˆ™ cos ๐œƒ = 3 2๐‘๐‘œ๐‘ ๐œƒ = 1 ๐‘๐‘œ๐‘ ๐œƒ = 1 2 ๐œƒ = 60 โˆด Angle between ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— ๐‘–๐‘  60 ๐‘œ Now, |๐‘| = |๐‘Ž + 2๐‘ + 3(๐‘Ž ร— ๐‘)| Squaring both the sides |๐‘|2 = ||๐‘Ž|2 + 4|๐‘โƒ— | 2 + 9 (๐‘Ž ร— ๐‘)2 + 4 ๐‘Ž โˆ™ (๐‘) + 3๐‘Ž โˆ™ (๐‘Ž ร— ๐‘) + 6๐‘ โˆ™ (๐‘Ž ร— ๐‘)| |๐‘|2 = |1 + 4 + 9 sin2 ๐œƒ + 4 ๐‘๐‘œ๐‘ ๐œƒ + 0 + 0 | |๐‘|2 = |5 + 9. 3 4 + 4. 1 2 | = 55 4 โˆด 2|๐‘| = โˆš55. 11. The area (in square units) of the region bounded by the curves ๐‘ฆ + 2๐‘ฅ2 = 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ + 3๐‘ฅ2 = 1, is equal to: 1. 3 4 2. 1 3 3. 3 5 4. 4 3 Answer: (4) Solution:
  • 43. Point of intersection Put ๐‘ฆ = โˆ’2๐‘ฅ2 ๐‘–๐‘› ๐‘ฆ + 3๐‘ฅ2 = 1 ๐‘ฅ2 = 1 ๐‘ฅ = ยฑ 1 The desired area would be โˆซ (๐‘ฆ1 โˆ’ ๐‘ฆ2) ๐‘‘๐‘ฅ = โˆซ ((1 โˆ’ 3๐‘ฅ2) โˆ’ (โˆ’2๐‘ฅ2)) ๐‘‘๐‘ฅ 1 โˆ’1 1 โˆ’1 โˆซ (1 โˆ’ ๐‘ฅ2)๐‘‘๐‘ฅ 1 โˆ’1 (๐‘ฅ โˆ’ ๐‘ฅ3 3 ) โˆ’1 1 = ((1 โˆ’ 1 3 ) โˆ’ (โˆ’1 + 1 3 )) 2 3 โˆ’ ( โˆ’2 3 ) = 4 3 . 12. If ๐‘ฆ + 3๐‘ฅ = 0 is the equation of a chord of the circle, ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 30๐‘ฅ = 0, then the equation of the circle with this chord as diameter is : 1. ๐‘ฅ2 + ๐‘ฆ2 + 3๐‘ฅ โˆ’ 9๐‘ฆ = 0 2. ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 3๐‘ฅ + 9๐‘ฆ = 0 3. ๐‘ฅ2 + ๐‘ฆ2 + 3๐‘ฅ + 9๐‘ฆ = 0 4. ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 3๐‘ฅ โˆ’ 9๐‘ฆ = 0 Answer: (2) Solution:
  • 44. ๐‘ฆ = โˆ’3๐‘ฅ 4๐‘ฅ2 + ๐‘ฆ2 โˆ’ 30๐‘ฅ = 0 Point of intersection ๐‘ฅ2 + 9๐‘ฅ2 โˆ’ 30๐‘ฅ = 0 10๐‘ฅ2 โˆ’ 30๐‘ฅ = 0 10๐‘ฅ (๐‘ฅ โˆ’ 3) = 0 ๐‘ฅ = 0 or ๐‘ฅ = 3 Therefore y = 0 if x = 0, and y =-9 if x = 3. Point of intersection (0, 0) (3, -9) Diametric form of circle, ๐‘ฅ (๐‘ฅ โˆ’ 3) + ๐‘ฆ(๐‘ฆ + 9) = 0 ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 3๐‘ฅ + 9๐‘ฆ = 0. 13. The value of โˆ‘ (๐‘Ÿ + 2) (๐‘Ÿ โˆ’ 3)30 ๐‘Ÿ=16 is equal to: 1. 7775 2. 7785 3. 7780 4. 7770 Answer: (3) Solution: โˆ‘ (๐‘Ÿ + 2) (๐‘Ÿ โˆ’ 3)30 ๐‘Ÿ=16 = โˆ‘ (๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 6) โˆ’ โˆ‘ (๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 6)15 1 30 1 Put r = 30 in ( ๐‘Ÿ(๐‘Ÿ+1) (2๐‘Ÿ+1) 6 โˆ’ ๐‘Ÿ(๐‘Ÿ+1) 2 โˆ’ 6๐‘Ÿ) 30 โˆ™ (31)(61) 6 โˆ’ 15(31) โˆ’ 6(30) 9455 โˆ’ 465 โˆ’ 180 8810 And on putting ๐‘Ÿ = 15 We get 15โˆ™(16) (31) 6 โˆ’ 15โˆ™16 2 โˆ’ 6 โˆ™ (15) = (7) โˆ™ (8) โˆ™ (31) โˆ’ 15 โˆ™16 2 โˆ’ 6 โˆ™ (15)
  • 45. = 1240 โˆ’ 120 โˆ’ 90 = 1030 Therefore โˆ‘ (๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 6) โˆ’ โˆ‘ (๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 6)15 1 30 1 = 8810 โˆ’ 1030 = 7780. 14. Let L be the line passing through the point P(1, 2) such that its intercepted segment between the co-ordinate axes is bisected at P. If ๐ฟ1 is the line perpendicular to L and passing through the point (-2, 1), then the point of intersection of L and ๐ฟ1 is: 1. ( 3 5 , 23 10 ) 2. ( 4 5 , 12 5 ) 3. ( 11 20 , 29 10 ) 4. ( 3 10 , 17 5 ) Answer: (2) Solution: If P is the midpoint of the segment between the axes, them point A would be (2, 0) and B would be (0, 4). The equation of the line would be ๐‘ฅ 2 + ๐‘ฆ 4 = 1 That is 2๐‘ฅ + ๐‘ฆ = 4 โ€ฆ..(i) The line perpendicular to it would be ๐‘ฅ โˆ’ 2๐‘ฆ = ๐‘˜ Since it passes through (-2, 1) โˆ’2 โˆ’ 2 = ๐‘˜ โˆ’4 = ๐‘˜ โˆด Line will become ๐‘ฅ โˆ’ 2๐‘ฆ = โˆ’4 โ€ฆ..(ii) Solving (i) and (ii) we get ( 4 5 , 12 5 ). 15. The largest value of r for which the region represented by the set { ๐œ” โˆˆ๐ถ |๐œ”โˆ’4โˆ’๐‘–| โ‰ค ๐‘Ÿ } is contained in the region represented by the set { ๐‘ง โˆˆ๐ถ |๐‘งโˆ’1| โ‰ค |๐‘ง+๐‘–| }, is equal to :
  • 46. 1. 2โˆš2 2. 3 2 โˆš2 3. โˆš17 4. 5 2 โˆš2 Answer: (4) Solution: |๐‘ง โˆ’ 1| โ‰ค |๐‘ง + ๐‘–| The region in show shaded right side of the line ๐‘ฅ + ๐‘ฆ = 0 The largest value of r would be the length of perpendicular from A (4, 1) on the line ๐‘ฅ + ๐‘ฆ = 0 | 4 + 1 โˆš2 | = 5 โˆš2 = 5 2 โˆš2 . 16. Let the sum of the first three terms of an A.P. be 39 and the sum of its last four terms be 178. If the first term of this A.P. is 10, then the median of the A.P. is : 1. 26.5 2. 29.5 3. 28 4. 31 Answer: (2) Solution: Let the A.P. be a; a + d a + 2d โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ„“ โˆ’ 3๐‘‘, โ„“ โˆ’ 2๐‘‘, โ„“ โˆ’ ๐‘‘, โ„“ Where a is the first term and โ„“ is the last term Sum of 1 ๐‘ ๐‘ก 3 terms is 39. 3๐‘Ž + 3๐‘‘ = 39 30 + 3๐‘‘ = 30 as ๐‘Ž = 10 (Given) ๐‘‘ = 9 3 = 3
  • 47. Sum of last 4 terms is 178. 4โ„“ โˆ’ 6๐‘‘ = 178 4โ„“ โˆ’ 18 = 178 4โ„“ = 196 โ„“ = 49 10, 13, 16, 19โ€ฆโ€ฆ.46, 49 Total number of the 10 + (n โ€“ 1) 3 - 49 n โ€“ 1 = 13 n = 14 So the median of the series would be mean of 7 ๐‘กโ„Ž ๐‘Ž๐‘›๐‘‘ 8 ๐‘กโ„Ž term 10+6โˆ™(3)+10+7โˆ™3 2 28 + 31 2 = 59 2 = 29.5 Alternate way The median would be mean of 10 and 49, That is 29.5. 17. For ๐‘ฅ > 0, let ๐‘“(๐‘ฅ) = โˆซ log ๐‘ก 1+๐‘ก ๐‘‘๐‘ก. ๐‘ฅ 1 Then ๐‘“(๐‘ฅ) + ๐‘“ ( 1 ๐‘ฅ ) is equal to : 1. 1 2 (log ๐‘ฅ)2 2. log ๐‘ฅ 3. 1 4 log ๐‘ฅ2 4. 1 4 (log ๐‘ฅ)2 Answer: (1) Solution: ๐‘“(๐‘ฅ) = โˆซ log ๐‘ก 1 + ๐‘ก ๐‘ฅ 1 โˆ™ ๐‘‘๐‘ก And ๐‘“ ( 1 ๐‘ฅ ) = โˆซ log ๐‘ก 1+๐‘ก โˆ™ ๐‘‘๐‘ก 1 ๐‘ฅ 1 Put ๐‘ก = 1 ๐‘ง ๐‘‘๐‘ก = โˆ’ 1 ๐‘ง2 ๐‘‘๐‘ก โˆ’ 1 ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐‘‘๐‘ก ๐‘“(๐‘ฅ) = โˆซ log ๐‘ง ๐‘ง2 (1 + 1 ๐‘ง) ๐‘ง 1 โˆ™ ๐‘‘๐‘ง
  • 48. ๐‘“(๐‘ฅ) = โˆซ log ๐‘ง ๐‘ง(1 + ๐‘ง) ๐‘‘๐‘ง ๐‘ง 1 ๐‘“(๐‘ฅ) + ๐‘“ ( 1 ๐‘ฅ ) = โˆซ log ๐‘ง [ 1 1 + ๐‘ง + 1 2(1 + ๐‘ง) ] ๐‘‘๐‘ง ๐‘ฅ 1 = โˆซ 1 ๐‘ง log ๐‘ง ๐‘‘๐‘ง ๐‘ฅ 1 Put log ๐‘ง = ๐‘ƒ 1 ๐‘ง ๐‘‘๐‘ง = ๐‘‘๐‘ โˆซ ๐‘ƒ โˆ™ ๐‘‘๐‘ ๐‘ฅ 1 ( ๐‘ƒ2 2 ) 1 ๐‘ฅ = 1 2 (log ๐‘ง)1 ๐‘ฅ = (log ๐‘ฅ)2 2 18. In a certain town, 25% of the families own a phone and 15% own a car; 65% families own neither a phone nor a car and 2,000 families own both a car and a phone. Consider the following three statements: (a) 5% families own both a car and a phone. (b) 35% families own either a car or a phone. (c) 40, 000 families live in the town. Then, 1. Only (b) and (c) are correct 2. Only (a) and (b) are correct 3. All (a), (b) and (c) are correct 4. Only (a) and (c) are correct Answer: (3) Solution: Let set A contains families which own a phone and set B contain families which own a car. If 65% families own neither a phone nor a car, then 35% will own either a phone or a car โˆด (๐ดโ‹ƒ๐ต) = 35% Also we know that ๐‘›(๐ด โˆช ๐ต) = ๐‘›(๐ด) + ๐‘›(๐ต) โˆ’ ๐‘›(๐ด โˆฉ ๐ต) 35 = 25 + 15 - ๐‘›(๐ด โˆฉ ๐ต) ๐‘›(๐ด โˆฉ ๐ต) = 5% 5% families own both phone and car and it is given to be 2000. โˆด 5% ๐‘œ๐‘“ ๐‘ฅ = 2000 5 100 ๐‘ฅ = 2000
  • 49. X = 40,000 Hence correct option is (a) (b) and (c) are correct. 19. IF ๐ด = [ 0 1 โˆ’1 0 ], then which one of the following statements is not correct? 1. ๐ด3 + ๐ผ = ๐ด(๐ด3 โˆ’ ๐ผ) 2. ๐ด4 โˆ’ ๐ผ = ๐ด2 + ๐ผ 3. ๐ด2 + ๐ผ = ๐ด(๐ด2 โˆ’ ๐ผ) 4. ๐ด3 โˆ’ ๐ผ = ๐ด(๐ด โˆ’ ๐ผ) Answer: (3) Solution: A = [ 0 โˆ’1 1 0 ] ๐ด2 = [ 0 โˆ’1 1 0 ] [ 0 โˆ’1 1 0 ] = [ โˆ’1 0 0 โˆ’1 ] ๐ด3 = [ โˆ’1 0 0 โˆ’1 ] [ 0 โˆ’1 1 0 ] = [ 0 1 โˆ’1 0 ] ๐ด4 = [ 0 1 โˆ’1 0 ] [ 0 โˆ’1 1 0 ] [ 1 0 0 1 ] Option (1) ๐ด3 + ๐ผ = ๐ด (๐ด3 โˆ’ ๐ผ) [ 0 1 โˆ’1 0 ] [ โˆ’1 โˆ’1 1 โˆ’1 ] = [ 1 โˆ’1 1 1 ] [ 1 โˆ’1 1 1 ] = [ 1 โˆ’1 1 1 ] โ€ฆ..Correct Option (2) ๐ด4 โˆ’ ๐ผ = ๐ด2 + ๐ผ [ 0 0 0 0 ] = [ 0 0 0 0 ] โ€ฆ.Correct Option (3) [ 0 0 0 0 ] = [ 0 โˆ’1 1 0 ] [ โˆ’2 0 0 โˆ’2 ] = [ 0 2 โˆ’2 0 ] โ€ฆ..Incorrect Option 4 ๐ด3 โˆ’ ๐ผ = ๐ด(๐ด โˆ’ ๐ผ) [ โˆ’1 โˆ’1 โˆ’1 โˆ’1 ] = [ 0 โˆ’1 1 0 ] [ โˆ’1 โˆ’1 1 โˆ’1 ] [ โˆ’1 1 โˆ’1 1 ] ๐ด3 โˆ’ ๐ผ = ๐ด4 โˆ’ ๐ด [ 1 1 โˆ’1 1 ] = [ 1 0 0 1 ] โˆ’ [ 0 โˆ’1 1 0 ] = [ 1 1 โˆ’1 1 ] โ€ฆโ€ฆCorrect. 20. Let X be a set containing 10 elements and P(X) be its power set. If A and B are picked up at random from P(X), with replacement, then the probability that A and B have equal number of elements, is: 1. (210โˆ’1) 220
  • 50. 2. 20 ๐ถ10 220 3. 20 ๐ถ10 210 4. (210โˆ’1) 210 Answer: (2) Solution: The power set of x will contain 210 sets of which 10 ๐ถ0 will contain 0 element 10 ๐ถ1 will contain 1 element 10 ๐ถ2 will contain 2 element โ‹ฎ โ‹ฎ 10 ๐ถ10 will contain 10 element. So total numbers of ways in which we can select two sets with replacement is 210 ร— 210 = 220 And favorable cases would be 10 ๐ถ0 โˆ™ 10 ๐ถ0 + 10 ๐ถ1 10 ๐ถ1 + โ€ฆ โ€ฆ 10 ๐ถ10 10 ๐ถ10 = 20 ๐ถ10. Hence Probability would be = 20 ๐ถ10 220 Hence 20 ๐ถ10 220 in the correct option 21. If 2 + 3๐‘– is one of the roots of the equation 2๐‘ฅ3 โˆ’ 9๐‘ฅ2 + ๐‘˜๐‘ฅ โˆ’ 13 = 0, ๐‘˜ โˆˆ ๐‘…, then the real root of this equation: 1. Exists and is equal to 1 2 2. Does not exist 3. Exists and is equal to 1 4. Exists and is equal to โˆ’ 1 2 Answer: (1) Solution: If 2 + 3๐‘– in one of the roots, then 2 โˆ’ 3๐‘– would be other Since coefficients of the equation are real. Let ๐›พ be the third root, then product of roots โ†’ ๐›ผ ๐›ฝ ๐›พ = 13 2 (2 + 3๐‘–) (2 โˆ’ 3๐‘–) โˆ™ ๐›พ = 13 2 (4 + 9) โˆ™ ๐›พ = 13 2 ๐›พ = 1 2 . The value of k will come if we Put ๐‘ฅ = 1 2 in the equation 2 โˆ™ 1 8 โˆ’ 9 4 + ๐‘˜ โˆ™ 1 2 โˆ’ 13 = 0
  • 51. ๐‘˜ 2 = 15 ๐‘˜ = 30. โˆด Equation will become 2๐‘ฅ3 โˆ’ 9๐‘ฅ2 + 30๐‘ฅ โˆ’ 13 = 0 ๐›ผ๐›ฝ + ๐›ฝ๐›พ + ๐›พ๐›ผ = 30 2 = 15 (2 + 3๐‘–) 1 2 + (2 โˆ’ 3๐‘–) 1 2 + (2 + 3๐‘–) (2 โˆ’ 3๐‘–) = 15 1 + ๐‘– 2 + 1 โˆ’ ๐‘– 2 + 13 = 15 15 = 15 Hence option (1) is correct. โ€˜Exists and is equal to 1 2 โ€˜ 22. If the tangent to the conic, ๐‘ฆ โˆ’ 6 = ๐‘ฅ2 at (2, 10) touches the circle, ๐‘ฅ2 + ๐‘ฆ2 + 8๐‘ฅ โˆ’ 2๐‘ฆ = ๐‘˜ (for some fixed k) at a point (๐›ผ, ๐›ฝ); then (๐›ผ, ๐›ฝ) is : 1. (โˆ’ 7 17 , 6 17 ) 2. (โˆ’ 8 17 , 2 17 ) 3. (โˆ’ 6 17 , 10 17 ) 4. (โˆ’ 4 17 , 1 17 ) Answer: (2) Solution: The equation of tangent (T = 0) would be 1 2 (๐‘ฆ + 10) โˆ’ 6 = 2๐‘ฅ 4๐‘ฅ โˆ’ ๐‘ฆ + 2 = 0 The centre of the circle is (โˆ’4, 1) and the point of touch would be the foot of perpendicular from (โˆ’4, 1) on 4๐‘ฅ โˆ’ ๐‘ฆ + 2 = 0 ๐‘ฅ + 4 4 = ๐‘ฆ โˆ’ 1 โˆ’1 = โˆ’ ( โˆ’16 โˆ’ 1 + 2 42 + 12 ) ๐‘ฅ+4 4 = 15 17 and ๐‘ฆโˆ’1 โˆ’1 = 15 17 ๐‘ฅ = โˆ’ 8 17 ๐‘ฆ = โˆ’15 17 + 1 = 2 17
  • 52. Hence option (โˆ’ 8 17 , 2 17 ) is correct. 23. The number of ways of selecting 15 teams from 15 men and 15 women, such that each team consists of a man and a woman, is: 1. 1960 2. 1240 3. 1880 4. 1120 Answer: (2) Solution: No. of ways of selecting 1 ๐‘ ๐‘ก team from 15 men and 15 women 15 ๐ถ1 15 ๐ถ1 = 152 2 ๐‘›๐‘‘ team- 14 ๐ถ1 14 ๐ถ1 142 and so on. So total number of way 12 + 22 โ€ฆ โ€ฆ โ€ฆ 152 = 15 (16) (31) 6 = (5) โˆ™ (8) โˆ™ (31) 1240 Hence option 1240 is correct. 24. If the shortest distance between the line ๐‘ฅโˆ’1 ๐›ผ = ๐‘ฆ+1 โˆ’1 = ๐‘ง 1 , (๐›ผ โ‰  โˆ’1) and ๐‘ฅ + ๐‘ฆ + ๐‘ง + 1 = 0 = 2๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง + 3 ๐‘–๐‘  1 โˆš3 , then a value of ๐›ผ is : 1. โˆ’ 19 16 2. 32 19 3. โˆ’ 16 19 4. 19 32 Answer: (2) Solution: Let us change the line into symmetric form. ๐‘ฅ + ๐‘ฆ + ๐‘ง + 1 = 0 = 2๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง + 3 Put ๐‘ง = 1, so we get ๐‘ฅ + ๐‘ฆ + 2 = 0 and 2๐‘ฅ โˆ’ ๐‘ฆ + 4 = 0 We will get ๐‘ฅ = โˆ’2 ๐‘ฆ = 0 โˆด The point (โˆ’2, 0, 1) lies on the line and perpendicular vector will come from
  • 53. | ๐‘– ๐‘— ๐‘˜ 1 1 1 2 โˆ’1 1 | = 2๐‘– + ๐‘— โˆ’ 3๐‘˜ So the equation line would be ๐‘ฅ + 2 2 = ๐‘ฆ 1 = ๐‘ง โˆ’ 1 โˆ’3 And the other line ๐‘ฅ โˆ’ 1 ๐›ผ = ๐‘ฆ + 1 โˆ’1 = ๐‘ง 1 Shortest distance would be ๐ท = [(๐‘Ž2 โˆ’ ๐‘Ž1), ๐‘1 ๐‘2] |๐‘1 ร— ๐‘2| When ๐‘Ž1 = (โˆ’2๐‘– + ๐‘œ๐‘— + 1๐‘˜) ๐‘Ž2 = (๐‘– โˆ’ ๐‘— + 0๐‘˜) ๐‘1 = 2๐‘– + ๐‘— โˆ’ 3๐‘˜ ๐‘2 = ๐›ผ๐‘– โˆ’ ๐‘— + ๐‘˜ | 3 โˆ’1 โˆ’1 2 1 โˆ’3 ๐›ผ 1 โˆ’3 | | ๐‘– ๐‘— ๐‘˜ 2 1 โˆ’3 ๐›ผ โˆ’1 1 | = 3(1 โˆ’ 3) + 1 (2 + 3๐›ผ) + 1 (2 + ๐›ผ) |โˆ’2๐‘– โˆ’ ๐‘— (2 โˆ’ 3๐›ผ) + ๐‘˜ (โˆ’2 โˆ’ ๐›ผ)| | โˆ’6 + 2 + 3๐›ผ + 2 + ๐›ผ โˆš4 + (2 + 3๐›ผ)2 + (2 + ๐›ผ)2 | = 1 โˆš3 |4๐›ผ โˆ’ 2| โˆš4 + 4 + 12๐›ผ + 9๐›ผ2 + 4 + 4๐›ผ + ๐›ผ2 = 1 โˆš3 | 4๐›ผ โˆ’ 2 โˆš10๐›ผ2 + 16๐›ผ + 12 | = 1 โˆš3 (16๐›ผ2 โˆ’ 16๐›ผ + 4)3 = 10๐›ผ2 + 16๐›ผ + 12 48๐›ผ2 โˆ’ 48๐›ผ + 12 = 10๐›ผ2 + 16๐›ผ + 12 38๐›ผ2 โˆ’ 64๐›ผ = 0 ๐›ผ(19๐›ผ โˆ’ 32) = 0 ๐›ผ = 32 19
  • 54. 25. The distance from the origin, of the normal to the curve, ๐‘ฅ = 2 cos ๐‘ก + 2๐‘ก sin ๐‘ก, ๐‘ฆ = 2 sin ๐‘ก โˆ’ 2๐‘ก cos ๐‘ก ๐‘Ž๐‘ก ๐‘ก = ๐œ‹ 4 , is : 1. โˆš2 2. 2โˆš2 3. 4 4. 2 Answer: (4) Solution: at ๐‘ก = ๐œ‹ 4 ๐‘ฅ = 2 1 โˆš2 + 2 ๐œ‹ 4 = (โˆš2 + ๐œ‹ 2โˆš2 ) = ( 8 + ๐œ‹ 2โˆš2 ) ๐‘ฆ = 2 1 โˆš2 โˆ’ 2 ๐œ‹ 4 โˆ™ 1 โˆš2 = (โˆš2 โˆ’ ๐œ‹ 2โˆš2 ) โˆ’ ( 8 โˆ’ ๐œ‹ 2โˆš2 ) ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 2 cos ๐‘ก โˆ’ 2 [cos ๐‘ก + ๐‘ก (โˆ’ sin ๐‘ก)] = 2๐‘ก sin ๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก = โˆ’2 sin ๐‘ก + 2 [sin ๐‘ก + ๐‘ก โˆ™ cos ๐‘ก] = 2๐‘ก cos ๐‘ก ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = tan ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ก = ๐œ‹ 4 ๐‘Ž๐‘›๐‘‘ tan ๐œ‹ 4 = 1 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 1 Slope of tangent is 1 & therefore slope of normal would be -1. Equation of normal ๐‘ฆ โˆ’ ( 8โˆ’๐œ‹ 2โˆš 2 ) = โˆ’1 (๐‘ฅ โˆ’ ( 8+๐œ‹ 2โˆš2 )) ๐‘ฅ + ๐‘ฆ = ๐‘ก (8 + ๐œ‹) 2โˆš2 + ( 8 โˆ’ ๐œ‹ 2โˆš2 ) ๐‘ฅ + ๐‘ฆ = 16 2โˆš2 and distance from origin 16 2โˆš2 โˆš2 = 4 26. An ellipse passes through the foci of the hyperbola, 9๐‘ฅ2 โˆ’ 4๐‘ฆ2 = 36 and its major and minor axes lie along the transverse and conjugate axes of the hyperbola respectively. If the product of eccentricities of the two conics is 1 2 , then which of the following points does not lie on the ellipse? 1. ( โˆš39 2 , โˆš3) 2. ( 1 2 โˆš13, โˆš3 2 ) 3. (โˆš 13 2 , โˆš6) 4. (โˆš13, 0)
  • 55. Answer: (2) Solution: Equation of the hyperbola ๐‘ฅ2 4 โˆ’ ๐‘ฆ2 9 = 1 Focus of hyperbola (ae, 0) and (-ae, 0) a = 2 ๐‘’ = โˆš1 + 9 4 = โˆš13 2 โˆด Focus would be (+ โˆš13 2 , 0) ๐‘Ž๐‘›๐‘‘ (โˆ’ โˆš13 2 , 0) Product of eccentricity would be โˆš13 2 โˆ™ ๐‘’1 = 1 2 โˆด ๐‘’1 = 1 โˆš13 . As the major & minor axis of the ellipse coin side with focus of the hyperbola then the value of a for ellipse would be โˆš13, ๐‘’ = โˆš1 โˆ’ ๐‘2 ๐‘Ž2 ๐‘2 13 = 12 13 1 โˆš3 = โˆš1 โˆ’ ๐‘2 13 ๐‘2 = 12 1 13 = 1 โˆ’ ๐‘2 13 โˆด Equation of the ellipse would be ๐‘ฅ2 13 + ๐‘ฆ2 12 = 1. Option (i) 39 4 โˆ™(13) + 3 12 = 1 Satisfies the equation hence it lies on the ellipse. Option (ii) 13 4 (13) + 3 4.12 = 1 does not lie on the ellipse. Option (iii) 13 2(13) + 6 12 = 1 satisfy Option (iv) 13 13 + 0 = 1 satisfy So option ( 1 2 โˆš13, โˆš3 2 ) is the answer.
  • 56. 27. The points (0, 8 3 ) , (1, 3) ๐‘Ž๐‘›๐‘‘ (82, 30) : 1. Form an obtuse angled triangle 2. Form an acute angled triangle 3. Lie on a straight line 4. Form a right angled triangle Answer: (3) Solution: The options A B C (0 8 2 ) (1, 3) (82, 30) Are collinear as slope f AB is equal to slope of BC 3 โˆ’ 8 3 1 โˆ’ 0 = 30 โˆ’ 3 82 โˆ’ 1 1 3 = 27 81 = 1 3 Hence option (Lie on a straight line) is correct. 28. If ๐‘“(๐‘ฅ) โˆ’ 2 tanโˆ’1 ๐‘ฅ + sinโˆ’1 ( 2๐‘ฅ 1+๐‘ฅ2) , ๐‘ฅ > 1, then ๐‘“(5) is equal to : 1. ๐œ‹ 2 2. tanโˆ’1 ( 65 156 ) 3. ๐œ‹ 4. 4 tanโˆ’1 (5) Answer: (3) Solution: 2 tanโˆ’1 ๐‘ฅ + sinโˆ’1 ( 2๐‘ฅ 1 + ๐‘ฅ2 ) , ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ > 1. = 2 tanโˆ’1 ๐‘ฅ + ๐œ‹ โˆ’ 2 tanโˆ’1 ๐‘ฅ ๐‘Ž๐‘  ๐‘ฅ > 1 โˆด ๐‘“(5) = ๐œ‹ โˆด Answer is ๐œ‹ Or ๐‘“(5) = 2 tanโˆ’1 (5) + sinโˆ’1 ( 10 26 )
  • 57. = ๐œ‹ โˆ’ tanโˆ’1 ( 10 24 ) + tanโˆ’1 ( 10 24 ) ๐œ‹ sinโˆ’1 ( 10 26 ) 29. Let the tangents drawn to the circle, ๐‘ฅ2 + ๐‘ฆ2 = 16 from the point P(0, h) meet the ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  at points A and B. If the area of ฮ”๐ด๐‘ƒ๐ต is minimum, then h is equal to : 1. 4โˆš2 2. 3โˆš2 3. 4โˆš3 4. 3โˆš3 Answer: (1) Solution: Let the equation of the tangent be (๐‘ฆ โˆ’ โ„Ž) = ๐‘š (๐‘ฅ โˆ’ 0) ๐‘š๐‘ฅ โˆ’ ๐‘ฆ + โ„Ž = 0 | โ„“๐‘› โˆš๐‘š2 + 1 | = 4 โ„Ž2 = 16๐‘š2 + 16 ๐‘š2 = โ„Ž2 โˆ’ 16 16 ๐‘š = โˆšโ„Ž2 โˆ’ 16 4 So co-ordinate of B would be โˆš โ„Ž2 โˆ’ 16 4 ๐‘ฅ โˆ’ ๐‘ฆ + โ„Ž = 0 ๐‘ฅ = 4โ„Ž โˆšโ„Ž2 โˆ’ 16 Also of triangle = 1 2 ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ฅ ๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก
  • 58. ฮ” = 1 2 8โ„Ž โˆšโ„Ž2 โˆ’ 16 โˆ™ โ„Ž ฮ” = 4 โ„Ž2 โˆšโ„Ž2 โˆ’ 16 ๐‘‘ฮ” ๐‘‘โ„Ž = 4 [ 2โ„Žโˆšโ„Ž2 โˆ’ 16 โˆ’ 2โ„Ž โˆ™ โ„Ž2 2โˆšโ„Ž2 โˆ’ 16 (โ„Ž2 โˆ’ 16) ] = 4โ„Ž [ 4(โ„Ž2 โˆ’ 16) โˆ’ 2โ„Ž2 2โˆšโ„Ž2 โˆ’ 16 (โ„Ž2 โˆ’ 16) ] = 4โ„Ž[2โ„Ž2 โˆ’ 64] 2โˆšโ„Ž2 โˆ’ 16 (โ„Ž2 โˆ’ 16) For are to be minima โ„Ž = โˆš32 โ„Ž2 = 32 โ„Ž = 4โˆš2 30. If ๐‘ฆ (๐‘ฅ) is the solution of the differential equation (๐‘ฅ + 2) ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฅ2 + 4๐‘ฅ โˆ’ 9, ๐‘ฅ โ‰  โˆ’2 and ๐‘ฆ(0) = 0, then ๐‘ฆ(โˆ’4) is equal to : 1. -1 2. 1 3. 0 4. 2 Answer: (3) Solution: (๐‘ฅ + 2) โˆ™ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฅ2 + 4๐‘ฅ + 4 โˆ’ 13 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = (๐‘ฅ + 2)2 (๐‘ฅ + 2) โˆ’ 13 (๐‘ฅ + 2) ๐‘‘๐‘ฆ = ((๐‘ฅ + 2) โˆ’ 13 ๐‘ฅ๐‘š ) ๐‘‘๐‘ฅ ๐‘ฆ = ๐‘ฅ2 2 + 2๐‘ฅ โˆ’ 13 log ๐‘’|(๐‘ฅ + 2)| + ๐ถ If ๐‘ฅ = 0 then ๐‘ฆ = 0
  • 59. 0 = 0 + 0 โˆ’ 13 ๐‘™๐‘œ๐‘”|2| + ๐ถ ๐‘ โˆถ 13 log(2) If ๐‘ฅ = โˆ’4, then ๐‘ฆ ๐‘ฆ = 16 2 โˆ’ 8 โˆ’ 13 log|โˆ’2| + 13 log |2| ๐‘ฆ = 0 Hence as is option 0