SlideShare a Scribd company logo
1 of 24
Download to read offline
.
.
The MDL principle for arbitrary data:
either discrete or continuous or none of them
Joe Suzuki
Osaka University
WITMSE 2013
Sanjo-Kaikan, University of Tokyo, Japan
August 26, 2013
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Road Map
Road Map
1 Problem
2 The Ryabko measure
3 The Radon-Nikodym theorem
4 Generalization
5 Universal Histogram Sequence
6 Conclusion
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Road Map
The slides of this talk can be seen via Internet
keywords: Joe Suzuki
slideshare
http://www.slideshare.net/prof-joe/
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Problem
Given {(xi , yi )}n
i=1, identify whether X ⊥⊥ Y or not
A, B: finite sets
xn = (x1, · · · , xn) ∈ An, yn = (y1, · · · , yn) ∈ Bn
Pn(xn|θ), Pn(yn|θ), Pn(xn, yn|θ): expressed by parameter θ
p: the prior probability of X ⊥⊥ Y
Bayesian solution
.
.
X ⊥⊥ Y ⇐⇒ pQn
(xn
)Qn
(yn
) ≥ (1 − p)Qn
(xn
, yn
)
Qn
(xn
) :=
∫
Pn
(xn
|θ)w(θ)dθ , Qn
(yn
) :=
∫
Pn
(yn
|θ)w(θ)dθ
Qn
(xn
, yn
) :=
∫
Pn
(xn
, yn
|θ)w(θ)dθ
using a weight w over θ.
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Problem
Q should be an alternative to P as n grows
A: the finite set in which X takes values.
Q is a Bayesian measure
.
.
Kraft’s inequality: ∑
xn∈An
Qn
(xn
) ≤ 1 (1)
 
For Example, Qn(xn) = |A|−n, xn ∈ An
satisfies (1); but
does not converges to Pn in any sense
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Problem
Universal Bayesian Measures
Qn
(xn
) :=
∫
Pn
(xn
|θ)w(θ)dθ
w(θ) ∝
∏
x∈A
θ−a[x]
with {a[x] = 1
2 }x∈A (Krichevsky-Trofimov)
−
1
n
log Qn
(xn
) → H(P)
for any Pn
(xn
|θ) =
∏
x∈A
θ−c[x]
with {c[x]}x∈A in xn ∈ An.
Shannon McMillian Breiman:
−
1
n
log Pn
(xn
|θ) −→ H(P)
for any stationary ergodic P, so that for Pn(xn) := Pn(xn|θ),
1
n
log
Pn(xn)
Qn(xn)
→ 0 . (2)
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Problem
When X has a density function f
There exists a g s.t. ∫
xn∈Rn
gn
(xn
) ≤ 1 (3)
1
n
log
f n(xn)
gn(xn)
→ 0 (4)
for any f satisfying a condition mentioned later (Ryabko 2009).
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Problem
The problem in this paper
Universal Bayesian measure in the general settings
.
.
What are (1)(2) and (3)(4) for general random variables ?
1 without assuming either discrete or continuous
2 removing the constraint Ryabko poses:
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
The Ryabko measure
Ryabko measure: X has a density function f
A: the set in which X takes values.
{Aj }∞
j=0 :
{
A0 := {A}
Aj+1 is a refinement of Aj
For example, for A = [0, 1), A0 = {[0, 1)}
A1 = {[0, 1/2), [1/2, 1)}
A2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)}
. . .
Aj = {[0, 2−(j−1)), [2−(j−1), 2 · 2−(j−1)), · · · , [(2j−1 − 1)2−(j−1), 1)}
. . .
sj : A → Aj : x ∈ a ∈ Aj =⇒ sj (x) = a
λ: the Lebesgue measure
fj (x) :=
Pj (sj (x))
λ(sj (x))
for x ∈ A
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
The Ryabko measure
Given xn = (x1, · · · , xn) ∈ An s.t. (sj (x1), · · · , sj (xn)) = (a1, · · · , an) ∈ An
j ,
f n
j (xn
) := fj (x1) · · · fj (xn) =
Pj (a1) · · · Pj (an)
λ(a1) . . . λ(an)
.
gn
j (xn
) :=
Qn
j (a1, · · · , an)
λ(a1) · · · λ(an)
Qj : a universal Bayesian measure w.r.t. finite set Aj .
 
f n(xn) := f (x1) · · · f (xn)
gn
(xn
) :=
∞∑
j=0
wj gn
j (xn
) for {ωj }∞
j=1 s.t.
∑
j
ωj = 1, ωj > 0
1
n
log
f n(xn)
gn(xn)
→ 0
for any f s.t. differential entropy h(fj ) → h(f ) as j → ∞ (Ryabko, 2009)
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
The Radon-Nikodym theorem
In general, exactly when a density function exists ?
B: the entire Borel sets of R
µ(D) := P(X ∈ D): the probability of (X ∈ D) for D ∈ B
FX : the distribution function of X
µ is absolutely continuous w.r.t. λ (µ ≪ λ)
.
The following two are equivalent:
1 f : R → R exists s.t. P(X ≤ x) = FX (x) =
∫
t≤x
f (t)dt
2 for any D ∈ B, λ(D) :=
∫
D dx = 0 =⇒ µ(D) = 0.
f (x) =
dFX (x)
dx
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
The Radon-Nikodym theorem
Even discrete variables have density functions!
B: a countable subset of R
µ(D) := P(X ∈ D): the probability of (X ∈ D) for D ⊆ B
r : B → R
µ is absolutely continuous w.r.t. η (µ ≪ η)
.
1 f : B → R exists s.t. P(X ∈ D) =
∑
x∈D
f (x)r(x), D ⊆ B
2 for any D ⊆ B, η(D) :=
∑
x∈D
r(x) = 0 =⇒ µ(D) = 0.
f (x) =
P(X = x)
r(x)
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
The Radon-Nikodym theorem
Radon-Nikodym
µ, η: σ-finite measures over σ-field F
µ is absolutely continuous w.r.t. η (µ ≪ η)
.
.
1 F-measurable f exists s.t. for any A ∈ F, µ(A) =
∫
A
f (t)dη(t)
2 for any A ∈ F, η(A) = 0 =⇒ µ(A) = 0
∫
A
f (t)dη(t) := sup
{Ai }
∑
i
[ inf
x∈Ai
f (x)]η(Ai )
dµ
dη
:= f is the density function w.r.t. η when µ is the probability measure.
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
When Y has a density function w.r.t. η s.t. µ ≪ η
B: the set in which Y takes values.
{Bj }∞
k=0 :
{
B0 := {B}
Bk+1 is a refinement of Bk
For example, for B = N := {1, 2, · · · }, B0 = {B}
B1 := {{1}, {2, 3, · · · }}
B2 := {{1}, {2}, {3, 4, · · · }}
. . .
Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · · }}
. . .
tk : B → Bk: y ∈ b ∈ Bk =⇒ tk(y) = b
η: µ ≪ η
fk(y) :=
Pk(tk(y))
η(tk(y))
for y ∈ B
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
Given yn = (y1, · · · , yn) ∈ Bn, s.t.
(tk(y1), · · · , tk(yn)) = (b1, · · · , bn) ∈ Bn
k ,
f n
k (yn
) := fk(y1) · · · fk(yn) =
Pk(b1) · · · Pk(bn)
η(b1) . . . η(bn)
gn
k (yn
) :=
Qn
k (b1, · · · , bn)
η(b1) · · · η(bn)
Qk: a universal Bayesian measure w.r.t. finite set Bk
Similarly,
1
n
log
f n(xn)
gn(xn)
→ 0
for any f s.t. h(fj ) → h(f ) as j → ∞
h(f ) :=
∫
−f (y) log f (y)dη(y)
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
Generalization
µn
(Dn
) :=
∫
D
f n
(yn
)dηn
(yn
) , Dn
∈ Bn
νn
(Dn
) :=
∫
D
gn
(yn
)dηn
(yn
) , Dn
∈ Bn
f n(yn)
gn(yn)
=
dµn
dηn
(yn
)/
dνn
dηn
(yn
) =
dµn
dνn
(yn
)
D(µ||ν) :=
∫
dµ log
dµ
dν
h(f ) :=
∫
−f (y) log f (y)dη(y)
= −
∫
dµ
dη
(y) log
dµ
dη
(y) · dη(y) = −D(µ||η)
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
Result 1
Proposition 1 (Suzuki, 2011)
.
If µ ≪ η, ν ≪ η exists s.t. νn(Rn) ≤ 1 and
1
n
log
dµn
dνn
(yn
) → 0
for any µ s.t. D(µk||η) → D(µ||η) as k → ∞.
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
The solution of the exercise in Introduction
{Aj × Bk}
gn
j,k(xn
, yn
) :=
Qn
j,k(a1, b1, · · · , an, bn)
λ(a1) · · · λ(an)η(b1) · · · η(bn)
gn
(xn
, yn
) :=
∑
j,k
wj,kgn
j,k(xn
, yn
) for {ωj,k} s.t.
∑
j,k
ωj,k = 1, ωj,k > 0
1
n
log
f n(xn, yn)
gn(xn, yn)
→ 0
Solution
We estimate
f n(xn, yn)
f n(xn)f n(yn)
by
gn(xn, yn)
gn(xn)gn(yn)
extending
Qn(xn, yn)
Qn(xn)Qn(yn)
.
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Generalization
Further generalization
Proposition 1 assumes
a specific histogram sequence {Bk}; and
µ should satisfy D(µk||η) → D(µ||η) as k → ∞
 
{Bk} should be universal
Construct {Bk} s.t. D(µk||η) → D(µ||η) as k → ∞ for any µ
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Universal Histogram Sequence
Universal histogram sequence {Bk}
µ, σ ∈ R, σ > 0.
{Ck}∞
k=0:
C0 = {(−∞, ∞)}
C1 = {(−∞, µ], (µ, ∞)}
C2 = {(−∞, µ − σ], (µ − σ, µ], (µ, µ + σ], (µ + σ, ∞)}
· · ·
Ck → Ck+1:


(−∞, µ − (k − 1)σ] → (−∞, µ − kσ], (µ − kσ, µ − (k − 1)σ]
(a, b] → (a, a+b
2 ], (a+b
2 , b]
(µ + (k − 1)σ, ∞) → (µ + (k − 1)σ, µ + kσ], (µ + kσ, ∞)
 
B: the set in which Y takes values
Bk := {B ∩ c|c ∈ Ck}{ϕ} .
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Universal Histogram Sequence
B = R and µ ≪ λ
{Bk} = {Ck}
For each y ∈ B, there exist K ∈ N and a unique {(ak, bk]}∞
k=K s.t.
{
y ∈ [ak, bk] ∈ Bk , k = K, K + 1, · · ·
|ak − bk| → 0 , k → ∞
FY : the distribution function of Y



fk(y) =
P(Y ∈ (ak, bk])
λ((ak, bk])
=
FY (bk) − FY (ak)
bk − ak
→ f (y) , y ∈ B
h(fk) → h(f )
as k → ∞ for any f
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Universal Histogram Sequence
B = N and µ ≪ η
B0 = {B}
B1 := {{1}, {2, 3, · · · }}
B2 := {{1}, {2}, {3, 4, · · · }}
. . .
Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · · }}
. . .
can be obtained via µ = 1, σ = 1.
For each y ∈ B, there exists K ∈ N and a unique {Dk}∞
k=1 s.t.
{
y ∈ Dk ∈ Bk k = 1, 2, · · ·
{y} = Dk ∈ Bk, k = K, K + 1, · · ·



fk(y) =
P(Y ∈ Dk)
η(Dk)
→ f (y) =
P(Y = y)
η({y})
, y ∈ B
h(fk) → h(f )
as k → ∞ for any f
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Universal Histogram Sequence
Result 2
Theorem 1
.
.
If µ ≪ η, ν ≪ η exists s.t. νn(Rn) ≤ 1 and for any µ
1
n
log
dµn
dνn
(yn
) → 0
The proof is based on the following observation:
Billingeley: Probability & Measure, Problem 32.13
lim
h→0
µ((x − h, x + h])
η((x − h, x + h])
= f (x) , x ∈ R
to remove the condition Ryabko posed:
“for any µ s.t. D(µk||η) → D(µ||η) as k → ∞”
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24
Conclusion
Summary and Discussion
Universal Bayesian Measure
.
.the random variables may be either discrete or continuous
a universal histogram sequence to remove Ryabko’s condition
Many Applications
.
Bayesian network structure estimation (DCC 2012)
The Bayesian Chow-Liu Algorithm (PGM 2012)
Markov order estimation even when {Xi } is continuous
Extending MDL:
gn(yn|m): the universal Bayesian measure w.r.t. model m given yn ∈ Bn
pm: the prior probability of model m
− log gn
(yn
|m) − log pm → min
Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them
WITMSE 2013Sanjo-Kaikan, University of To
/ 24

More Related Content

What's hot

Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationTatsuya Yokota
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Expectation Maximization Algorithm with Combinatorial Assumption
Expectation Maximization Algorithm with Combinatorial AssumptionExpectation Maximization Algorithm with Combinatorial Assumption
Expectation Maximization Algorithm with Combinatorial AssumptionLoc Nguyen
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions ManualElementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions Manualzuxigytix
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsAlexander Decker
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...Yoshihiro Mizoguchi
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsVjekoslavKovac1
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Tensor Train decomposition in machine learning
Tensor Train decomposition in machine learningTensor Train decomposition in machine learning
Tensor Train decomposition in machine learningAlexander Novikov
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mappingLinh Tran
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 

What's hot (20)

Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classification
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Expectation Maximization Algorithm with Combinatorial Assumption
Expectation Maximization Algorithm with Combinatorial AssumptionExpectation Maximization Algorithm with Combinatorial Assumption
Expectation Maximization Algorithm with Combinatorial Assumption
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions ManualElementary Linear Algebra 5th Edition Larson Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions Manual
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappings
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...
Graph partitioning and characteristic polynomials of Laplacian matrics of Roa...
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Solution homework2
Solution homework2Solution homework2
Solution homework2
 
Tensor Train decomposition in machine learning
Tensor Train decomposition in machine learningTensor Train decomposition in machine learning
Tensor Train decomposition in machine learning
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mapping
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 

Viewers also liked

香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923
香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923
香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923Adams Company Limited
 
2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information Theory2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information TheoryJoe Suzuki
 
公開鍵暗号3: ナップザック暗号
公開鍵暗号3: ナップザック暗号公開鍵暗号3: ナップザック暗号
公開鍵暗号3: ナップザック暗号Joe Suzuki
 
公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮Joe Suzuki
 
Ansys.结构有限元高级分析方法与范例应用
Ansys.结构有限元高级分析方法与范例应用Ansys.结构有限元高级分析方法与范例应用
Ansys.结构有限元高级分析方法与范例应用pboy123
 

Viewers also liked (8)

香港六合彩
香港六合彩香港六合彩
香港六合彩
 
香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923
香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923
香港經濟日報: 企業宣傳新策:博低頭族一Like 20130923
 
2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information Theory2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information Theory
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
 
公開鍵暗号3: ナップザック暗号
公開鍵暗号3: ナップザック暗号公開鍵暗号3: ナップザック暗号
公開鍵暗号3: ナップザック暗号
 
公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮公開鍵暗号(7): データ圧縮
公開鍵暗号(7): データ圧縮
 
Ansys.结构有限元高级分析方法与范例应用
Ansys.结构有限元高级分析方法与范例应用Ansys.结构有限元高级分析方法与范例应用
Ansys.结构有限元高级分析方法与范例应用
 
Kids Can Code
Kids Can CodeKids Can Code
Kids Can Code
 

Similar to MDL PRINCIPLE

Bayes Independence Test
Bayes Independence TestBayes Independence Test
Bayes Independence TestJoe Suzuki
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Tomoya Murata
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Gabriel Peyré
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Krzysztof Pomorski
 
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...Joe Suzuki
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersTaiji Suzuki
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
The Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu AlgorithmThe Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu AlgorithmJoe Suzuki
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Valentin De Bortoli
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesGabriel Peyré
 
1 hofstad
1 hofstad1 hofstad
1 hofstadYandex
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用Ryo Hayakawa
 

Similar to MDL PRINCIPLE (20)

Bayes Independence Test
Bayes Independence TestBayes Independence Test
Bayes Independence Test
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Tutorial7
Tutorial7Tutorial7
Tutorial7
 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handout
 
The Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu AlgorithmThe Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu Algorithm
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
lecture-2-not.pdf
lecture-2-not.pdflecture-2-not.pdf
lecture-2-not.pdf
 
Bayes gauss
Bayes gaussBayes gauss
Bayes gauss
 
2014 9-22
2014 9-222014 9-22
2014 9-22
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
A
AA
A
 
Lecture9 xing
Lecture9 xingLecture9 xing
Lecture9 xing
 
1 hofstad
1 hofstad1 hofstad
1 hofstad
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用
 

More from Joe Suzuki

RとPythonを比較する
RとPythonを比較するRとPythonを比較する
RとPythonを比較するJoe Suzuki
 
R集会@統数研
R集会@統数研R集会@統数研
R集会@統数研Joe Suzuki
 
E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...Joe Suzuki
 
分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減するJoe Suzuki
 
連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定Joe Suzuki
 
E-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka UniversityE-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka UniversityJoe Suzuki
 
AMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップAMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップJoe Suzuki
 
CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要Joe Suzuki
 
Forest Learning from Data
Forest Learning from DataForest Learning from Data
Forest Learning from DataJoe Suzuki
 
A Bayesian Approach to Data Compression
A Bayesian Approach to Data CompressionA Bayesian Approach to Data Compression
A Bayesian Approach to Data CompressionJoe Suzuki
 
研究紹介(学生向け)
研究紹介(学生向け)研究紹介(学生向け)
研究紹介(学生向け)Joe Suzuki
 
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...Joe Suzuki
 
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...Joe Suzuki
 
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...Joe Suzuki
 
連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定Joe Suzuki
 
Jeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model SelectionJeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model SelectionJoe Suzuki
 
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐるJoe Suzuki
 
MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後Joe Suzuki
 

More from Joe Suzuki (20)

RとPythonを比較する
RとPythonを比較するRとPythonを比較する
RとPythonを比較する
 
R集会@統数研
R集会@統数研R集会@統数研
R集会@統数研
 
E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...
 
分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する
 
連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定
 
E-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka UniversityE-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka University
 
UAI 2017
UAI 2017UAI 2017
UAI 2017
 
AMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップAMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップ
 
CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要
 
Forest Learning from Data
Forest Learning from DataForest Learning from Data
Forest Learning from Data
 
A Bayesian Approach to Data Compression
A Bayesian Approach to Data CompressionA Bayesian Approach to Data Compression
A Bayesian Approach to Data Compression
 
研究紹介(学生向け)
研究紹介(学生向け)研究紹介(学生向け)
研究紹介(学生向け)
 
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...
 
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
 
2016 7-13
2016 7-132016 7-13
2016 7-13
 
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
 
連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定
 
Jeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model SelectionJeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model Selection
 
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
 
MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後
 

Recently uploaded

Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Scott Andery
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditSkynet Technologies
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 

Recently uploaded (20)

Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance Audit
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 

MDL PRINCIPLE

  • 1. . . The MDL principle for arbitrary data: either discrete or continuous or none of them Joe Suzuki Osaka University WITMSE 2013 Sanjo-Kaikan, University of Tokyo, Japan August 26, 2013 Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 2. Road Map Road Map 1 Problem 2 The Ryabko measure 3 The Radon-Nikodym theorem 4 Generalization 5 Universal Histogram Sequence 6 Conclusion Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 3. Road Map The slides of this talk can be seen via Internet keywords: Joe Suzuki slideshare http://www.slideshare.net/prof-joe/ Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 4. Problem Given {(xi , yi )}n i=1, identify whether X ⊥⊥ Y or not A, B: finite sets xn = (x1, · · · , xn) ∈ An, yn = (y1, · · · , yn) ∈ Bn Pn(xn|θ), Pn(yn|θ), Pn(xn, yn|θ): expressed by parameter θ p: the prior probability of X ⊥⊥ Y Bayesian solution . . X ⊥⊥ Y ⇐⇒ pQn (xn )Qn (yn ) ≥ (1 − p)Qn (xn , yn ) Qn (xn ) := ∫ Pn (xn |θ)w(θ)dθ , Qn (yn ) := ∫ Pn (yn |θ)w(θ)dθ Qn (xn , yn ) := ∫ Pn (xn , yn |θ)w(θ)dθ using a weight w over θ. Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 5. Problem Q should be an alternative to P as n grows A: the finite set in which X takes values. Q is a Bayesian measure . . Kraft’s inequality: ∑ xn∈An Qn (xn ) ≤ 1 (1)   For Example, Qn(xn) = |A|−n, xn ∈ An satisfies (1); but does not converges to Pn in any sense Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 6. Problem Universal Bayesian Measures Qn (xn ) := ∫ Pn (xn |θ)w(θ)dθ w(θ) ∝ ∏ x∈A θ−a[x] with {a[x] = 1 2 }x∈A (Krichevsky-Trofimov) − 1 n log Qn (xn ) → H(P) for any Pn (xn |θ) = ∏ x∈A θ−c[x] with {c[x]}x∈A in xn ∈ An. Shannon McMillian Breiman: − 1 n log Pn (xn |θ) −→ H(P) for any stationary ergodic P, so that for Pn(xn) := Pn(xn|θ), 1 n log Pn(xn) Qn(xn) → 0 . (2) Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 7. Problem When X has a density function f There exists a g s.t. ∫ xn∈Rn gn (xn ) ≤ 1 (3) 1 n log f n(xn) gn(xn) → 0 (4) for any f satisfying a condition mentioned later (Ryabko 2009). Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 8. Problem The problem in this paper Universal Bayesian measure in the general settings . . What are (1)(2) and (3)(4) for general random variables ? 1 without assuming either discrete or continuous 2 removing the constraint Ryabko poses: Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 9. The Ryabko measure Ryabko measure: X has a density function f A: the set in which X takes values. {Aj }∞ j=0 : { A0 := {A} Aj+1 is a refinement of Aj For example, for A = [0, 1), A0 = {[0, 1)} A1 = {[0, 1/2), [1/2, 1)} A2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)} . . . Aj = {[0, 2−(j−1)), [2−(j−1), 2 · 2−(j−1)), · · · , [(2j−1 − 1)2−(j−1), 1)} . . . sj : A → Aj : x ∈ a ∈ Aj =⇒ sj (x) = a λ: the Lebesgue measure fj (x) := Pj (sj (x)) λ(sj (x)) for x ∈ A Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 10. The Ryabko measure Given xn = (x1, · · · , xn) ∈ An s.t. (sj (x1), · · · , sj (xn)) = (a1, · · · , an) ∈ An j , f n j (xn ) := fj (x1) · · · fj (xn) = Pj (a1) · · · Pj (an) λ(a1) . . . λ(an) . gn j (xn ) := Qn j (a1, · · · , an) λ(a1) · · · λ(an) Qj : a universal Bayesian measure w.r.t. finite set Aj .   f n(xn) := f (x1) · · · f (xn) gn (xn ) := ∞∑ j=0 wj gn j (xn ) for {ωj }∞ j=1 s.t. ∑ j ωj = 1, ωj > 0 1 n log f n(xn) gn(xn) → 0 for any f s.t. differential entropy h(fj ) → h(f ) as j → ∞ (Ryabko, 2009) Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 11. The Radon-Nikodym theorem In general, exactly when a density function exists ? B: the entire Borel sets of R µ(D) := P(X ∈ D): the probability of (X ∈ D) for D ∈ B FX : the distribution function of X µ is absolutely continuous w.r.t. λ (µ ≪ λ) . The following two are equivalent: 1 f : R → R exists s.t. P(X ≤ x) = FX (x) = ∫ t≤x f (t)dt 2 for any D ∈ B, λ(D) := ∫ D dx = 0 =⇒ µ(D) = 0. f (x) = dFX (x) dx Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 12. The Radon-Nikodym theorem Even discrete variables have density functions! B: a countable subset of R µ(D) := P(X ∈ D): the probability of (X ∈ D) for D ⊆ B r : B → R µ is absolutely continuous w.r.t. η (µ ≪ η) . 1 f : B → R exists s.t. P(X ∈ D) = ∑ x∈D f (x)r(x), D ⊆ B 2 for any D ⊆ B, η(D) := ∑ x∈D r(x) = 0 =⇒ µ(D) = 0. f (x) = P(X = x) r(x) Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 13. The Radon-Nikodym theorem Radon-Nikodym µ, η: σ-finite measures over σ-field F µ is absolutely continuous w.r.t. η (µ ≪ η) . . 1 F-measurable f exists s.t. for any A ∈ F, µ(A) = ∫ A f (t)dη(t) 2 for any A ∈ F, η(A) = 0 =⇒ µ(A) = 0 ∫ A f (t)dη(t) := sup {Ai } ∑ i [ inf x∈Ai f (x)]η(Ai ) dµ dη := f is the density function w.r.t. η when µ is the probability measure. Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 14. Generalization When Y has a density function w.r.t. η s.t. µ ≪ η B: the set in which Y takes values. {Bj }∞ k=0 : { B0 := {B} Bk+1 is a refinement of Bk For example, for B = N := {1, 2, · · · }, B0 = {B} B1 := {{1}, {2, 3, · · · }} B2 := {{1}, {2}, {3, 4, · · · }} . . . Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · · }} . . . tk : B → Bk: y ∈ b ∈ Bk =⇒ tk(y) = b η: µ ≪ η fk(y) := Pk(tk(y)) η(tk(y)) for y ∈ B Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 15. Generalization Given yn = (y1, · · · , yn) ∈ Bn, s.t. (tk(y1), · · · , tk(yn)) = (b1, · · · , bn) ∈ Bn k , f n k (yn ) := fk(y1) · · · fk(yn) = Pk(b1) · · · Pk(bn) η(b1) . . . η(bn) gn k (yn ) := Qn k (b1, · · · , bn) η(b1) · · · η(bn) Qk: a universal Bayesian measure w.r.t. finite set Bk Similarly, 1 n log f n(xn) gn(xn) → 0 for any f s.t. h(fj ) → h(f ) as j → ∞ h(f ) := ∫ −f (y) log f (y)dη(y) Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 16. Generalization Generalization µn (Dn ) := ∫ D f n (yn )dηn (yn ) , Dn ∈ Bn νn (Dn ) := ∫ D gn (yn )dηn (yn ) , Dn ∈ Bn f n(yn) gn(yn) = dµn dηn (yn )/ dνn dηn (yn ) = dµn dνn (yn ) D(µ||ν) := ∫ dµ log dµ dν h(f ) := ∫ −f (y) log f (y)dη(y) = − ∫ dµ dη (y) log dµ dη (y) · dη(y) = −D(µ||η) Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 17. Generalization Result 1 Proposition 1 (Suzuki, 2011) . If µ ≪ η, ν ≪ η exists s.t. νn(Rn) ≤ 1 and 1 n log dµn dνn (yn ) → 0 for any µ s.t. D(µk||η) → D(µ||η) as k → ∞. Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 18. Generalization The solution of the exercise in Introduction {Aj × Bk} gn j,k(xn , yn ) := Qn j,k(a1, b1, · · · , an, bn) λ(a1) · · · λ(an)η(b1) · · · η(bn) gn (xn , yn ) := ∑ j,k wj,kgn j,k(xn , yn ) for {ωj,k} s.t. ∑ j,k ωj,k = 1, ωj,k > 0 1 n log f n(xn, yn) gn(xn, yn) → 0 Solution We estimate f n(xn, yn) f n(xn)f n(yn) by gn(xn, yn) gn(xn)gn(yn) extending Qn(xn, yn) Qn(xn)Qn(yn) . Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 19. Generalization Further generalization Proposition 1 assumes a specific histogram sequence {Bk}; and µ should satisfy D(µk||η) → D(µ||η) as k → ∞   {Bk} should be universal Construct {Bk} s.t. D(µk||η) → D(µ||η) as k → ∞ for any µ Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 20. Universal Histogram Sequence Universal histogram sequence {Bk} µ, σ ∈ R, σ > 0. {Ck}∞ k=0: C0 = {(−∞, ∞)} C1 = {(−∞, µ], (µ, ∞)} C2 = {(−∞, µ − σ], (µ − σ, µ], (µ, µ + σ], (µ + σ, ∞)} · · · Ck → Ck+1:   (−∞, µ − (k − 1)σ] → (−∞, µ − kσ], (µ − kσ, µ − (k − 1)σ] (a, b] → (a, a+b 2 ], (a+b 2 , b] (µ + (k − 1)σ, ∞) → (µ + (k − 1)σ, µ + kσ], (µ + kσ, ∞)   B: the set in which Y takes values Bk := {B ∩ c|c ∈ Ck}{ϕ} . Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 21. Universal Histogram Sequence B = R and µ ≪ λ {Bk} = {Ck} For each y ∈ B, there exist K ∈ N and a unique {(ak, bk]}∞ k=K s.t. { y ∈ [ak, bk] ∈ Bk , k = K, K + 1, · · · |ak − bk| → 0 , k → ∞ FY : the distribution function of Y    fk(y) = P(Y ∈ (ak, bk]) λ((ak, bk]) = FY (bk) − FY (ak) bk − ak → f (y) , y ∈ B h(fk) → h(f ) as k → ∞ for any f Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 22. Universal Histogram Sequence B = N and µ ≪ η B0 = {B} B1 := {{1}, {2, 3, · · · }} B2 := {{1}, {2}, {3, 4, · · · }} . . . Bk := {{1}, {2}, · · · , {k}, {k + 1, k + 2, · · · }} . . . can be obtained via µ = 1, σ = 1. For each y ∈ B, there exists K ∈ N and a unique {Dk}∞ k=1 s.t. { y ∈ Dk ∈ Bk k = 1, 2, · · · {y} = Dk ∈ Bk, k = K, K + 1, · · ·    fk(y) = P(Y ∈ Dk) η(Dk) → f (y) = P(Y = y) η({y}) , y ∈ B h(fk) → h(f ) as k → ∞ for any f Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 23. Universal Histogram Sequence Result 2 Theorem 1 . . If µ ≪ η, ν ≪ η exists s.t. νn(Rn) ≤ 1 and for any µ 1 n log dµn dνn (yn ) → 0 The proof is based on the following observation: Billingeley: Probability & Measure, Problem 32.13 lim h→0 µ((x − h, x + h]) η((x − h, x + h]) = f (x) , x ∈ R to remove the condition Ryabko posed: “for any µ s.t. D(µk||η) → D(µ||η) as k → ∞” Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24
  • 24. Conclusion Summary and Discussion Universal Bayesian Measure . .the random variables may be either discrete or continuous a universal histogram sequence to remove Ryabko’s condition Many Applications . Bayesian network structure estimation (DCC 2012) The Bayesian Chow-Liu Algorithm (PGM 2012) Markov order estimation even when {Xi } is continuous Extending MDL: gn(yn|m): the universal Bayesian measure w.r.t. model m given yn ∈ Bn pm: the prior probability of model m − log gn (yn |m) − log pm → min Joe Suzuki (Osaka University) The MDL principle for arbitrary data: either discrete or continuous or none of them WITMSE 2013Sanjo-Kaikan, University of To / 24