SlideShare a Scribd company logo
1 of 27
Download to read offline
. 
. 
Learning BNs with Discrete and Continuous Variables 
Joe Suzuki 
Osaka University 
PGM 2014 @Utrecht 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 1 / 27
Road Map 
Road Map 
1. Learning BNs 
2. When a Density exists 
3. The General Case 
4. Practical BN Learning with Discrete and Continuous Variables 
5. Conclusion 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 2 / 27
Learning BNs 
Factor P(X; Y ; Z) 
P(X)P(Y )P(Z) P(X)P(Y ; Z) P(Y )P(Z; X) 
P(X; Y )P(X; Z) 
P(Z)P(X; Y ) 
P(X) 
P(X; Y )P(Y ; Z) 
P(Y ) 
P(X; Z)P(Y ; Z) 
P(Z) 
P(Y )P(Z)P(X; Y ; Z) 
P(Y ; Z) 
P(Z)P(X)P(X; Y ; Z) 
P(Z;X) 
P(X)P(Y )P(X; Y ; Z) 
P(X; Y ) 
P(X;Y ; Z) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 3 / 27
Learning BNs 
BNs for X; Y ; Z 
X 
m Xm (1) (2) (3) (4) 
m X 
m X 
AAU 
Ym- Zm 
m X 
 A AK 
m Y m Z 
m X 
 AAU 
Y m- 
Z 
m m X 
 AKA 
Y m Z 
m  
m X 
m X 
 AAU 
Y m Z 
m X 
 
Y m 
Z 
m m Y m Z 
 
m X 
m 
m -  
Y m Z 
m Y m Z 
Ym- Zm 
m 
AKA 
Y m Z 
(5) (6) (7) (8) 
(9) (10) (11) 
Markov Equivalence 
(5) (8) 
m X 
 AAU 
Y m 
Z 
m m X 
 AAU 
Y m Z 
m  
m X 
 AKA 
Y m 
Z 
m m X 
 AKA 
Y m Z 
m  
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 4 / 27
Learning BNs 
The Problem 
Identify the BN structures among (1)-(11) from n examples 
xn = (x1;    ; xn) ; yn = (y1;    ; yn) ; zn = (z1;    ; zn) 
X = x1 Y = y1 Z = z1 
X = x2 Y = y2 Z = z2 
... ... 
... 
X = xn Y = yn Z = zn 
9= 
; 
i:i:d: 
  
  
(N̸= 3 variables will be considered) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 5 / 27
Learning BNs 
In any database, some
elds are discrete and others continuous 
Discrete Only: fMale,Femaleg fMarried,Unmarriedg Age 
Continous Only: Height Weight Footsize 
Discrete/Continous: Height Weight Age 
  
. 
BN Structure Learning with both Discrete and Continuous Variables. 
. 
.Why do you solve the easiest but unrealistic problems ? 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 6 / 27
Learning BNs 
Previous Works 
Independent Testing PC Algorithm (Spirtes, 2000) etc. 
Bayesian the problem can be classi
ed into 
Factor Scores 
Structure Scores given Factor Scores to
nd the Best 
almost all assume 
Descrete only 
Gaussian only 
Descrete and Continuous are mixed: no performance guaranteed 
1. Friedman and Goldszmidt (UAI-97) decretizing continous vaiables 
2. the R package by Bottcher (2003) assuming Gaussian 
3. Monti and Cooper (NIPS-96) approxmating neural networks 
Shenoy (PGM-12): mxtures of polynomials only for density estimation 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 7 / 27
Learning BNs 
N = 2 (Bayesian Independence Test) 
w(): the Prior over  
p: the Prior of X ?? Y 
Qn(xn) := 
∫ 
Pn(xnj)w()d ; Qn(yn) := 
∫ 
Pn(ynj)w()d ; 
Qn(xn; yn) := 
∫ 
Pn(xn; ynj)w()d ; 
The Posterior Prob. of X ?? Y given xn; yn: 
P(X ?? Y jxn; yn) = 
pQn(xn)Q(yn) 
pQn(xn)Q(yn) + (1  p)Qn(xn; yn) 
; 
The Decision Rule: 
X ?? Y () pQn(xn)Q(yn)  (1  p)Qn(xn; yn) : 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 8 / 27
Learning BNs 
Identify the Structure among (1)-(11) 
p1;    ; p11: the Priors over (1)-(11) 
  
7 Factor Scores: 
Qn(yn);Qn(zn);Qn(xn; yn);Qn(xn; zn);Qn(yn; zn);Qn(xn; yn; zn) 
11 Structure Scores: 
p1Qn(xn)Qn(yn)Q(zn) p2Qn(xn)Qn(yn; zn) 
p3Qn(yn)Qn(zn; xn) p4Qn(zn)Qn(xn; yn) 
Qn(xn; yn)Qn(X; zn) 
p5 
Qn(xn) 
p6 
Qn(xn; yn)Qn(yn; zn) 
Qn(yn) 
p7 
Qn(xn; zn)Qn(yn; zn) 
Qn(zn) 
p8 
Qn(yn)Qn(zn)Q(xn; yn; zn) 
Qn(yn; zn) 
p9 
Qn(zn)Qn(xn)Qn(xn; yn; zn) 
Qn(zn; xn) 
p10 
Qn(xn)Qn(yn)Qn(xn; yn; zn) 
Qn(xn; yn) 
p11Qn(xn; yn; zn) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 9 / 27
Learning BNs 
Factor Score Qn(xn) := 
∫ 
Pn(xnj)w()d 
c: # of ones in xn (binary) 
w() /  
a+1(1  ) 
b+1 =) Q(xn+1jxn) = 
Qn+1(xn+1) 
Qn(xn) 
= 
c + a 
n + a + b 
P(xnj) = c(1  )nc 
Kraft's Inequality: 
Σ 
xn 
Qn(xn)  1 
. 
Qn: Universal 
. 
For any  in P(Xj), as n ! 1, with Prob. 1 
. 
1 
n 
log 
Pn(xnj) 
Qn(xn) 
! 0 
Decision Rule does not depend on the Prior fpig and w() as n ! 1 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 10 / 27
When a Density exists 
When a density f exists w.r.t. X (Ryabko, 2009) 
A0 := fAg 
Aj+1 is a re
nement of Aj 
For each level j , quantize xn = (x1;    ; xn) into (a(j) 
1 ;    ; a(j) 
n ) 
... 
- 
... 
... ... 
- 
- 
A1 
A2 
Aj 
gn 
1 (xn) = 
Qn 
1 (a(1) 
1 ;    ; a(1) 
n ) 
(a(1) 
1 )    (a(1) 
n ) 
gn 
2 (xn) = 
Qn 
2 (a(2) 
1 ;    ; a(2) 
n ) 
(a(2) 
1 )    (a(2) 
n ) 
gn 
j (xn) = 
Qn 
j (a(j) 
1 ;    ; a(j) 
n ) 
(a(j) 
1 )    (a(j) 
n ) 
: Lebesgue measure (interval length) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 11 / 27
When a Density exists 
Use some 
Σ 
j wj = 1, wj  0 and obtain gn(xn) := 
1Σ 
j=1 
wjgn 
j (xn) 
Similarly, obtain 
gn(yn); gn(zn); gn(xn; yn); gn(xn; zn); gn(yn; zn); gn(xn; yn; zn) 
. 
p1gn(xn)gn(yn)g(zn) p2gn(xn)gn(yn; zn) 
p3gn(yn)gn(zn; xn) p4gn(zn)gn(xn; yn) 
gn(xn; yn)gn(X; zn) 
p5 
gn(xn) 
p6 
gn(xn; yn)gn(yn; zn) 
gn(yn) 
p7 
gn(xn; zn)Qn(yn; zn) 
Qn(zn) 
p8 
gn(yn)Qn(zn)Q(xn; yn; zn) 
Qn(yn; zn) 
p9 
gn(zn)Qn(xn)Qn(xn; yn; zn) 
Qn(zn; xn) 
p10 
gn(xn)Qn(yn)Qn(xn; yn; zn) 
Qn(xn; yn) 
p11Qn(xn; yn; zn) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 12 / 27
When a Density exists 
Universaliy of gn 
f : the (true) density 
fj : (approximated) density of level j 
f n(xn) := f (x1)    f (xn) 
. 
Ryabko 2009 
. 
For any f s.t. D(f jjfj ) ! 0 (j ! 1), w.th Prob. 1, as n ! 1 
. 
1 
n 
log 
f n(xn) 
gn(xn) 
! 0 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 13 / 27
The General Case 
When no density exist w.r.t. X (Suzuki 2011) 
B1 := ff1g; f2; 3;    gg 
B2 := ff1g; f2g; f3; 4;    gg 
: : : 
Bk := ff1g; f2g;    ; fkg; fk + 1; k + 2;    gg 
: : : 
For each level k, quantize xn = (x1;    ; xn) into (b(k) 
1 ;    ; b(k) 
n ) 
(fkg) = 
1 
k 
 1 
k + 1 
gn 
k (yn) := 
Qn 
k (b(k) 
1 ;    ; b(k) 
n ) 
(b(k) 
1 )    (b(k) 
n ) 
Σ 
!k = 1, !k  0, gn(xn) := 
1Σ 
k=1 
!kgn 
k (xn) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 14 / 27
The General Case 
D(f jjfj )̸! 0 as j ! 1 (1) 
∫ 1 
1 
2 
f (x)dx  0 
- 
0 1 x 
C0 
C1 
C2 
C3 
... 
... 
... 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 15 / 27
The General Case 
D(f jjfj )̸! 0 as j ! 1 (2) 
∫ 1 
1 
f (x)dx  0 
- 
0 1 x 
C0 
C1 
C2 
C3 
... 
... 
... 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 16 / 27
The General Case 
D(f jjfj ) ! 0 as j ! 1 
Universal Histogram Sequence fCkg1 
k=0 
... ... 
- 
   x 
C0 
C1 
C2 
C3 
... 
. 
Suzuki 2013 
. 
For any (generalized) density f as n ! 1 with Prob. 1 
. 
1 
n 
log 
f n(xn) 
gn(xn) 
! 0 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 17 / 27
The General Case 
For (X; Y ) rather than X 
gn 
jk (xn; yn) := 
Qn 
jk (a(j) 
1 ;    ; a(j) 
1 ; b(k) 
1 ;    ; b(k) 
n ) 
(a(j) 
1 )    (a(j) 
n )(b(k) 
1 )    (b(k) 
n ) 
Σ 
jk !jk = 1, !jk  0, gn(xn; yn) := 
1Σ 
k=1 
!jkgn 
jk (xn; yn) 
Similarly, obtain 2N  1 = 7 facter scores 
gn(yn); gn(zn); gn(xn; yn); gn(xn; zn); gn(yn; zn); gn(xn; yn; zn) 
and M(N) = 11 structure scores 
p1gn(xn)gn(yn)g(zn); p2gn(xn)gn(yn; zn); 
   ; p10 
gn(xn)gn(yn)gn(xn; yn; zn) 
gn(xn; yn) 
; p11gn(xn; yn; zn) 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 18 / 27
Practical BN Learning with Discrete and Continuous Variables 
Factor and Structure Scores 
STEP 1: compute 2N  1 factor scores. For (10), 
1 
n 
f log p11log gn(xn)log gn(yn)log gn(xn; yn; zn)+log gn(xn; yn)g 
X Y (X;Y ) Z (X; Z) (Y ; Z) (X;Y ; Z) 
1 
n log gn() 1.617 1.533 3.249 1.647 3.318 3.290 4.943 
  
STEP 2: compute M(N) structure scores and
nd the best. For N = 3 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
4.799 4.908 4.852 4.897 4.950 5.006 4.962 4.833 4.890 4.845 4.943 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 19 / 27
Practical BN Learning with Discrete and Continuous Variables 
Computing Factor Scores 
Input xn 2 An, output gn(xn) 
1. For each k = 1;    ;K, gn 
k (xn) := 0 
2. For each k = 1;    ;K and each a 2 Ak , ck (a) := 0 
3. For each i = 1;    ; n, for each k = 1;    ;K 
1. Find ai 2 Ak from xi 2 A 
2. gn 
k (xn) := gn 
k (xn)  log 
ck (ai ) + 1=2 
i  1 + jAk j=2 
+ log(X (ai )) 
3. ck (ai ) := ck (ai ) + 1 
4. gn(xn) := 1 
K 
ΣK 
k=1 gn 
k (xn) 
Qn 
k (xn) = 
Πn 
i=1 
c(a(k) 
i ) + 1=2 
i  1 + jAj=2 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 20 / 27
Practical BN Learning with Discrete and Continuous Variables 
Computation: maxfO(n2NK);M(N)g = O(M(N)) 
. 
Factor Scores 
. 
.O(n2NK) 
Proportional to n and 2N 
a(1) 
7! a(2) 
i 
i 
7!   7! a(K) 
i : Binary Search 
Proprtional to K 
gn(xn; yn) can be obtained by 
ΣK 
k=1 
!kgn 
k;k (xn; yn) rather than 
ΣJ 
j=1 
ΣK 
k=1 
!jkgn 
jk (xn; yn). 
. 
Structure Scores 
. 
.O(M(N)) 
Compute the M(N) structure scores and
nd the best. 
Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 21 / 27

More Related Content

What's hot

Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
esasancpe
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
Tomonari Masada
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
DAVID GIKUNJU
 

What's hot (19)

A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
 
The Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu AlgorithmThe Universal Bayesian Chow-Liu Algorithm
The Universal Bayesian Chow-Liu Algorithm
 
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Kt2418201822
Kt2418201822Kt2418201822
Kt2418201822
 
Properties of fuzzy inner product spaces
Properties of fuzzy inner product spacesProperties of fuzzy inner product spaces
Properties of fuzzy inner product spaces
 
Topological String Amplitudes, by W. A. Zúñiga-Galindo (CINVESTAV)
Topological String Amplitudes, by W. A. Zúñiga-Galindo (CINVESTAV)Topological String Amplitudes, by W. A. Zúñiga-Galindo (CINVESTAV)
Topological String Amplitudes, by W. A. Zúñiga-Galindo (CINVESTAV)
 
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
RuFiDiM
RuFiDiMRuFiDiM
RuFiDiM
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
 
Hypothesis testings on individualized treatment rules
Hypothesis testings on individualized treatment rulesHypothesis testings on individualized treatment rules
Hypothesis testings on individualized treatment rules
 
2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information Theory2013 IEEE International Symposium on Information Theory
2013 IEEE International Symposium on Information Theory
 
Omiros' talk on the Bernoulli factory problem
Omiros' talk on the  Bernoulli factory problemOmiros' talk on the  Bernoulli factory problem
Omiros' talk on the Bernoulli factory problem
 
Fem 3d solid
Fem 3d solidFem 3d solid
Fem 3d solid
 
Stability criterion of periodic oscillations in a (7)
Stability criterion of periodic oscillations in a (7)Stability criterion of periodic oscillations in a (7)
Stability criterion of periodic oscillations in a (7)
 
2014 9-22
2014 9-222014 9-22
2014 9-22
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

Similar to 2014 9-16

Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
Krzysztof Pomorski
 

Similar to 2014 9-16 (20)

Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
 
WITMSE 2013
WITMSE 2013WITMSE 2013
WITMSE 2013
 
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...Bayesian network structure estimation based on the Bayesian/MDL criteria when...
Bayesian network structure estimation based on the Bayesian/MDL criteria when...
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new information
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulli
 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
 
Orthogonal Polynomial
Orthogonal PolynomialOrthogonal Polynomial
Orthogonal Polynomial
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Generative models : VAE and GAN
Generative models : VAE and GANGenerative models : VAE and GAN
Generative models : VAE and GAN
 
comm_ch02_random_en.pdf
comm_ch02_random_en.pdfcomm_ch02_random_en.pdf
comm_ch02_random_en.pdf
 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengths
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 

More from Joe Suzuki

分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する
Joe Suzuki
 
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
Joe Suzuki
 

More from Joe Suzuki (20)

RとPythonを比較する
RとPythonを比較するRとPythonを比較する
RとPythonを比較する
 
R集会@統数研
R集会@統数研R集会@統数研
R集会@統数研
 
E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...E-learning Development of Statistics and in Duex: Practical Approaches and Th...
E-learning Development of Statistics and in Duex: Practical Approaches and Th...
 
分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する分枝限定法でモデル選択の計算量を低減する
分枝限定法でモデル選択の計算量を低減する
 
連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定
 
E-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka UniversityE-learning Design and Development for Data Science in Osaka University
E-learning Design and Development for Data Science in Osaka University
 
UAI 2017
UAI 2017UAI 2017
UAI 2017
 
AMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップAMBN2017 サテライトワークショップ
AMBN2017 サテライトワークショップ
 
CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要CRAN Rパッケージ BNSLの概要
CRAN Rパッケージ BNSLの概要
 
Forest Learning from Data
Forest Learning from DataForest Learning from Data
Forest Learning from Data
 
A Bayesian Approach to Data Compression
A Bayesian Approach to Data CompressionA Bayesian Approach to Data Compression
A Bayesian Approach to Data Compression
 
研究紹介(学生向け)
研究紹介(学生向け)研究紹介(学生向け)
研究紹介(学生向け)
 
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...Efficietly Learning Bayesian Network Structuresbased on the B&B Strategy: A ...
Efficietly Learning Bayesian Network Structures based on the B&B Strategy: A ...
 
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
Forest Learning based on the Chow-Liu Algorithm and its Application to Genom...
 
2016 7-13
2016 7-132016 7-13
2016 7-13
 
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
Structure Learning of Bayesian Networks with p Nodes from n Samples when n&lt...
 
連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定連続変量を含む相互情報量の推定
連続変量を含む相互情報量の推定
 
Jeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model SelectionJeffreys' and BDeu Priors for Model Selection
Jeffreys' and BDeu Priors for Model Selection
 
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる離散と連続の入り混じった相互情報量を推定して、SNP と遺伝子発現量の因果関係をさぐる
離散と連続の入り混じった相互情報量を推定して、 SNP と遺伝子発現量の因果関係をさぐる
 
MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後MaCaulay2 Miuraパッケージの開発と今後
MaCaulay2 Miuraパッケージの開発と今後
 

Recently uploaded

If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
Kayode Fayemi
 
Uncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac FolorunsoUncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac Folorunso
Kayode Fayemi
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
raffaeleoman
 
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
amilabibi1
 

Recently uploaded (18)

Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
 
Digital collaboration with Microsoft 365 as extension of Drupal
Digital collaboration with Microsoft 365 as extension of DrupalDigital collaboration with Microsoft 365 as extension of Drupal
Digital collaboration with Microsoft 365 as extension of Drupal
 
If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
 
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
 
Uncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac FolorunsoUncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac Folorunso
 
Dreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio IIIDreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio III
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
 
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdfThe workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
 
Causes of poverty in France presentation.pptx
Causes of poverty in France presentation.pptxCauses of poverty in France presentation.pptx
Causes of poverty in France presentation.pptx
 
ICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdfICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdf
 
My Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle BaileyMy Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle Bailey
 
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
 
Dreaming Marissa Sánchez Music Video Treatment
Dreaming Marissa Sánchez Music Video TreatmentDreaming Marissa Sánchez Music Video Treatment
Dreaming Marissa Sánchez Music Video Treatment
 
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdfAWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
 
Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510
 
Report Writing Webinar Training
Report Writing Webinar TrainingReport Writing Webinar Training
Report Writing Webinar Training
 
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
 
lONG QUESTION ANSWER PAKISTAN STUDIES10.
lONG QUESTION ANSWER PAKISTAN STUDIES10.lONG QUESTION ANSWER PAKISTAN STUDIES10.
lONG QUESTION ANSWER PAKISTAN STUDIES10.
 

2014 9-16

  • 1. . . Learning BNs with Discrete and Continuous Variables Joe Suzuki Osaka University PGM 2014 @Utrecht Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 1 / 27
  • 2. Road Map Road Map 1. Learning BNs 2. When a Density exists 3. The General Case 4. Practical BN Learning with Discrete and Continuous Variables 5. Conclusion Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 2 / 27
  • 3. Learning BNs Factor P(X; Y ; Z) P(X)P(Y )P(Z) P(X)P(Y ; Z) P(Y )P(Z; X) P(X; Y )P(X; Z) P(Z)P(X; Y ) P(X) P(X; Y )P(Y ; Z) P(Y ) P(X; Z)P(Y ; Z) P(Z) P(Y )P(Z)P(X; Y ; Z) P(Y ; Z) P(Z)P(X)P(X; Y ; Z) P(Z;X) P(X)P(Y )P(X; Y ; Z) P(X; Y ) P(X;Y ; Z) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 3 / 27
  • 4. Learning BNs BNs for X; Y ; Z X m Xm (1) (2) (3) (4) m X m X AAU Ym- Zm m X A AK m Y m Z m X AAU Y m- Z m m X AKA Y m Z m m X m X AAU Y m Z m X Y m Z m m Y m Z m X m m - Y m Z m Y m Z Ym- Zm m AKA Y m Z (5) (6) (7) (8) (9) (10) (11) Markov Equivalence (5) (8) m X AAU Y m Z m m X AAU Y m Z m m X AKA Y m Z m m X AKA Y m Z m Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 4 / 27
  • 5. Learning BNs The Problem Identify the BN structures among (1)-(11) from n examples xn = (x1; ; xn) ; yn = (y1; ; yn) ; zn = (z1; ; zn) X = x1 Y = y1 Z = z1 X = x2 Y = y2 Z = z2 ... ... ... X = xn Y = yn Z = zn 9= ; i:i:d:     (N̸= 3 variables will be considered) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 5 / 27
  • 6. Learning BNs In any database, some
  • 7. elds are discrete and others continuous Discrete Only: fMale,Femaleg fMarried,Unmarriedg Age Continous Only: Height Weight Footsize Discrete/Continous: Height Weight Age   . BN Structure Learning with both Discrete and Continuous Variables. . .Why do you solve the easiest but unrealistic problems ? Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 6 / 27
  • 8. Learning BNs Previous Works Independent Testing PC Algorithm (Spirtes, 2000) etc. Bayesian the problem can be classi
  • 9. ed into Factor Scores Structure Scores given Factor Scores to
  • 10. nd the Best almost all assume Descrete only Gaussian only Descrete and Continuous are mixed: no performance guaranteed 1. Friedman and Goldszmidt (UAI-97) decretizing continous vaiables 2. the R package by Bottcher (2003) assuming Gaussian 3. Monti and Cooper (NIPS-96) approxmating neural networks Shenoy (PGM-12): mxtures of polynomials only for density estimation Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 7 / 27
  • 11. Learning BNs N = 2 (Bayesian Independence Test) w(): the Prior over p: the Prior of X ?? Y Qn(xn) := ∫ Pn(xnj)w()d ; Qn(yn) := ∫ Pn(ynj)w()d ; Qn(xn; yn) := ∫ Pn(xn; ynj)w()d ; The Posterior Prob. of X ?? Y given xn; yn: P(X ?? Y jxn; yn) = pQn(xn)Q(yn) pQn(xn)Q(yn) + (1 p)Qn(xn; yn) ; The Decision Rule: X ?? Y () pQn(xn)Q(yn) (1 p)Qn(xn; yn) : Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 8 / 27
  • 12. Learning BNs Identify the Structure among (1)-(11) p1; ; p11: the Priors over (1)-(11)   7 Factor Scores: Qn(yn);Qn(zn);Qn(xn; yn);Qn(xn; zn);Qn(yn; zn);Qn(xn; yn; zn) 11 Structure Scores: p1Qn(xn)Qn(yn)Q(zn) p2Qn(xn)Qn(yn; zn) p3Qn(yn)Qn(zn; xn) p4Qn(zn)Qn(xn; yn) Qn(xn; yn)Qn(X; zn) p5 Qn(xn) p6 Qn(xn; yn)Qn(yn; zn) Qn(yn) p7 Qn(xn; zn)Qn(yn; zn) Qn(zn) p8 Qn(yn)Qn(zn)Q(xn; yn; zn) Qn(yn; zn) p9 Qn(zn)Qn(xn)Qn(xn; yn; zn) Qn(zn; xn) p10 Qn(xn)Qn(yn)Qn(xn; yn; zn) Qn(xn; yn) p11Qn(xn; yn; zn) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 9 / 27
  • 13. Learning BNs Factor Score Qn(xn) := ∫ Pn(xnj)w()d c: # of ones in xn (binary) w() / a+1(1 ) b+1 =) Q(xn+1jxn) = Qn+1(xn+1) Qn(xn) = c + a n + a + b P(xnj) = c(1 )nc Kraft's Inequality: Σ xn Qn(xn) 1 . Qn: Universal . For any in P(Xj), as n ! 1, with Prob. 1 . 1 n log Pn(xnj) Qn(xn) ! 0 Decision Rule does not depend on the Prior fpig and w() as n ! 1 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 10 / 27
  • 14. When a Density exists When a density f exists w.r.t. X (Ryabko, 2009) A0 := fAg Aj+1 is a re
  • 15. nement of Aj For each level j , quantize xn = (x1; ; xn) into (a(j) 1 ; ; a(j) n ) ... - ... ... ... - - A1 A2 Aj gn 1 (xn) = Qn 1 (a(1) 1 ; ; a(1) n ) (a(1) 1 ) (a(1) n ) gn 2 (xn) = Qn 2 (a(2) 1 ; ; a(2) n ) (a(2) 1 ) (a(2) n ) gn j (xn) = Qn j (a(j) 1 ; ; a(j) n ) (a(j) 1 ) (a(j) n ) : Lebesgue measure (interval length) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 11 / 27
  • 16. When a Density exists Use some Σ j wj = 1, wj 0 and obtain gn(xn) := 1Σ j=1 wjgn j (xn) Similarly, obtain gn(yn); gn(zn); gn(xn; yn); gn(xn; zn); gn(yn; zn); gn(xn; yn; zn) . p1gn(xn)gn(yn)g(zn) p2gn(xn)gn(yn; zn) p3gn(yn)gn(zn; xn) p4gn(zn)gn(xn; yn) gn(xn; yn)gn(X; zn) p5 gn(xn) p6 gn(xn; yn)gn(yn; zn) gn(yn) p7 gn(xn; zn)Qn(yn; zn) Qn(zn) p8 gn(yn)Qn(zn)Q(xn; yn; zn) Qn(yn; zn) p9 gn(zn)Qn(xn)Qn(xn; yn; zn) Qn(zn; xn) p10 gn(xn)Qn(yn)Qn(xn; yn; zn) Qn(xn; yn) p11Qn(xn; yn; zn) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 12 / 27
  • 17. When a Density exists Universaliy of gn f : the (true) density fj : (approximated) density of level j f n(xn) := f (x1) f (xn) . Ryabko 2009 . For any f s.t. D(f jjfj ) ! 0 (j ! 1), w.th Prob. 1, as n ! 1 . 1 n log f n(xn) gn(xn) ! 0 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 13 / 27
  • 18. The General Case When no density exist w.r.t. X (Suzuki 2011) B1 := ff1g; f2; 3; gg B2 := ff1g; f2g; f3; 4; gg : : : Bk := ff1g; f2g; ; fkg; fk + 1; k + 2; gg : : : For each level k, quantize xn = (x1; ; xn) into (b(k) 1 ; ; b(k) n ) (fkg) = 1 k 1 k + 1 gn k (yn) := Qn k (b(k) 1 ; ; b(k) n ) (b(k) 1 ) (b(k) n ) Σ !k = 1, !k 0, gn(xn) := 1Σ k=1 !kgn k (xn) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 14 / 27
  • 19. The General Case D(f jjfj )̸! 0 as j ! 1 (1) ∫ 1 1 2 f (x)dx 0 - 0 1 x C0 C1 C2 C3 ... ... ... Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 15 / 27
  • 20. The General Case D(f jjfj )̸! 0 as j ! 1 (2) ∫ 1 1 f (x)dx 0 - 0 1 x C0 C1 C2 C3 ... ... ... Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 16 / 27
  • 21. The General Case D(f jjfj ) ! 0 as j ! 1 Universal Histogram Sequence fCkg1 k=0 ... ... - x C0 C1 C2 C3 ... . Suzuki 2013 . For any (generalized) density f as n ! 1 with Prob. 1 . 1 n log f n(xn) gn(xn) ! 0 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 17 / 27
  • 22. The General Case For (X; Y ) rather than X gn jk (xn; yn) := Qn jk (a(j) 1 ; ; a(j) 1 ; b(k) 1 ; ; b(k) n ) (a(j) 1 ) (a(j) n )(b(k) 1 ) (b(k) n ) Σ jk !jk = 1, !jk 0, gn(xn; yn) := 1Σ k=1 !jkgn jk (xn; yn) Similarly, obtain 2N 1 = 7 facter scores gn(yn); gn(zn); gn(xn; yn); gn(xn; zn); gn(yn; zn); gn(xn; yn; zn) and M(N) = 11 structure scores p1gn(xn)gn(yn)g(zn); p2gn(xn)gn(yn; zn); ; p10 gn(xn)gn(yn)gn(xn; yn; zn) gn(xn; yn) ; p11gn(xn; yn; zn) Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 18 / 27
  • 23. Practical BN Learning with Discrete and Continuous Variables Factor and Structure Scores STEP 1: compute 2N 1 factor scores. For (10), 1 n f log p11log gn(xn)log gn(yn)log gn(xn; yn; zn)+log gn(xn; yn)g X Y (X;Y ) Z (X; Z) (Y ; Z) (X;Y ; Z) 1 n log gn() 1.617 1.533 3.249 1.647 3.318 3.290 4.943   STEP 2: compute M(N) structure scores and
  • 24. nd the best. For N = 3 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 4.799 4.908 4.852 4.897 4.950 5.006 4.962 4.833 4.890 4.845 4.943 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 19 / 27
  • 25. Practical BN Learning with Discrete and Continuous Variables Computing Factor Scores Input xn 2 An, output gn(xn) 1. For each k = 1; ;K, gn k (xn) := 0 2. For each k = 1; ;K and each a 2 Ak , ck (a) := 0 3. For each i = 1; ; n, for each k = 1; ;K 1. Find ai 2 Ak from xi 2 A 2. gn k (xn) := gn k (xn) log ck (ai ) + 1=2 i 1 + jAk j=2 + log(X (ai )) 3. ck (ai ) := ck (ai ) + 1 4. gn(xn) := 1 K ΣK k=1 gn k (xn) Qn k (xn) = Πn i=1 c(a(k) i ) + 1=2 i 1 + jAj=2 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 20 / 27
  • 26. Practical BN Learning with Discrete and Continuous Variables Computation: maxfO(n2NK);M(N)g = O(M(N)) . Factor Scores . .O(n2NK) Proportional to n and 2N a(1) 7! a(2) i i 7! 7! a(K) i : Binary Search Proprtional to K gn(xn; yn) can be obtained by ΣK k=1 !kgn k;k (xn; yn) rather than ΣJ j=1 ΣK k=1 !jkgn jk (xn; yn). . Structure Scores . .O(M(N)) Compute the M(N) structure scores and
  • 27. nd the best. Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 21 / 27
  • 28. Practical BN Learning with Discrete and Continuous Variables Experiment 1 1. X; Y 2 f0; 1g (X ?? Y ): equi-prob., U N(x + y; 1), V N(x y; 1) 2. X; Y N(0; 1) (X ?? Y ), U;V 2 f0; 1g s.t. P(U = 1jX + Y = z) = P(V = 1jX Y = z) = 8 : 0; z 1 (z + 1)=2; 1 z 1 1; z 1 X 2 f0; 1g
  • 29. Y 2 f0; 1g
  • 30. (a) (b) X N(0; 1)
  • 31. Y N(0; 1)
  • 32. ? HHHHj ? ? HHHHj ?
  • 33. U N(0; 1)
  • 34. V N(0; 1)
  • 35. U 2 f0; 1g
  • 36. V 2 f0; 1g Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 22 / 27
  • 37. Practical BN Learning with Discrete and Continuous Variables Bayesian Networks n 100 200 500 1000 2000 (a) gn(xn; yn; un; vn) 5.009 4.858 4.626 4.616 4.552 4:224 KL divergence 0.785 0.634 0.402 0.392 0.328 execution time (sec) 1.079 1.276 1.939 4.596 7.047 (b) gn(xn; yn; un; vn) 4.435 4.191 4.002 3.867 3.771 3:372 KL divergence 1.063 0.819 0.630 0.495 0.399 execution time (sec) 0.601 0.849 1.721 2.582 4.619 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 23 / 27
  • 38. Practical BN Learning with Discrete and Continuous Variables Experiment 2 (1) X; Y ; Z N(0; 1). (2)(3)(4) X;U N(0; 1), Y = X + √ 1 2U, Z N(0; 1). (5)(6)(7) X;U; V N(0; 1), Y = aX + √ 1 2a U, Y = x + √ 1 2 bU. (8)(9)(10) X;U N(0; 1), Y = aX + √ 1 2a U, Z = bX + √ 1 2 bV. (11) X;U; V N(0; 1), Y = aX + √ 1 2a U, Z = bX + cY + √ 1 2 b 2c V. Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 24 / 27
  • 39. Practical BN Learning with Discrete and Continuous Variables true differential n = 100 n = 200 n = 500 n = 1000 structure entropy score error score error score error score error (1) 4.256816 4.875 0.28 4.645 0.02 4.480 0.00 4.417 0.00 (2)(3)(4) 4.033672 4.699 0.42 4.573 0.12 4.434 0.10 4.350 0.02 (5)(6)(7) 3.810528 4.732 0.34 4.565 0.14 4.385 0.10 4.289 0.02 (8)(9)(10) 3.810528 4.710 0.32 4.498 0.12 4.370 0.06 4.282 0.00 (11) 3.766401 4.731 0.14 4.5431 0.06 4.335 0.02 4.261 0.00 Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 25 / 27
  • 40. Practical BN Learning with Discrete and Continuous Variables Experiment 3 For each R data set, evaluate the exec time: data.frame N data.type n time (sec) time (sec)=2N faithful 2 c,d 272 6.08 3.04 quakes 5 c,c,d,d,c 1000 60.77 1.90 attitude 7 d,d,d,d,d,d,d 30 27.66 0.216 longley 7 c,c,c,c,c,c,d 16 44.63 0.349 USJudgeRatings 12 c,c,c,c,c,c,c,c,c,c,c,c 43 1946.63 1.90 The large N grows, the large computation become is the same for discrete and continuous variables. Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 26 / 27
  • 41. Conclusion Conclusion . Establish BN Structure Learning without assuming either Discrete or Continuous . . Theoretical Analysis w.r.t. n;N;K (K: quantization depth) Realistic Computation using R   Insight: The computation is proportional to K O(M(N)) O(nK2N) if n;K are constant   Future Works: Optimal K w.r.t. n;N Exponential Memory w.r.t. K R Package Publication Joe Suzuki (Osaka University) Learning BNs with Discrete and Continuous Variables PGM 2014 @Utrecht 27 / 27