SlideShare a Scribd company logo
1 of 14
02. 2-D Systems and
             Matrix
   Tati R. Mengko
Notation and Definitions
•   1-D continuous signal will be represented as a function of one
    variable: f(x), u(x), s(t).
•   1-D sampled signals will be written as single index sequence:
    un, u(n).
•   A continuous image will be represented as a function of two
    independent variables:u(x,y), v(x,y), f(x,y).
•   A sampled image will be represented as a two- (or more)
    dimensional sequence of real numbers umn, v(m,n).
•   The symbol j will represent (√-1).
•   The complex conjugate of a complex variable such as z, will be
    denoted by z*.


                                                                     2
Some Special Functions
• Dirac Delta:
             δ ( x, y ) = δ ( x ) δ ( y )
                 ∞   ∞
             ∫ ∫ f ( x ', y ')δ ( x − x ', y − y ') dx ' dy ' = f ( x, y )
                 −∞ −∞
                  ε ε
             lim ∫ ∫ δ ( x, y )dxdy = 1
             ε     ε ε
                 →0 −     −


• Kronecker Delta:
             δ ( m, n ) = δ ( m ) δ ( n )
                                ∞       ∞
             x ( m, n ) =      ∑ ∑ x ( m ', n ')δ ( m − m ', n − n ')
                              m ' =−∞ n ' =∞
                 ∞   ∞

                 ∑ ∑ δ ( m, n ) = 1
             m =−∞ n =∞
                                                                             3
Some Special Functions
• Rectangle
                              1 x ≤ 1 2 dan y ≤
                                                   1
              rect ( x, y ) = 
                                                        2

                              0 lainnya
                              

• Sinc 2-D
                              sin π x sin π y
              sinc ( x, y ) =
                                πx πy
• Comb
                                   ∞       ∞
              comb ( k , l ) =    ∑ ∑ δ ( k − k ', l − l ')
                                 k ' =−∞ l ' =∞

                                                              4
2-D Linear System

             x(m,n)                       y(m,n) = H [x(m,n)]
                                          y(m,n)
                             H [.]
• Linear system criterion:
          H [a1x1(m,n) + a2x2(m,n)] = a1H [x1(m,n)] + a2H [x2(m,n)]
                                   = a1 y1(m,n) + a2 y2(m,n)
• Impulse response:
   System response (output) given a delta kronecker input:
                       h(m,n; m’,n’) ≡ H [δ(m - m’, n - n’)]
    – PSF (point spread function) → impulse response whose inputs
      and outputs represent a positive quantity, such as intensity.
                                                                      5
The Fourier Transform
• 2-D Fourier/ Inverse Fourier Transform Formulations:
                      ∞       ∞
   F (ξ1 ,ξ 2 ) = ∫       ∫       f ( x, y ) exp  − j 2π ( xξ1 + yξ 2 )  dxdy
                                                                        
                     −∞ −∞
                    ∞ ∞
   f ( x, y ) = ∫     ∫       F (ξ1 ,ξ 2 ) exp  j 2π ( xξ1 + yξ 2 )  dξ1dξ 2
                                                                    
                −∞ −∞


               f(x,y)                                       F(ξ1, ξ2)
               δ(x,y)                                           1
         δ(x ± x0, y ± y0)                      exp(±j2πx0ξ1). exp(±j2πy0ξ2)
  exp(±j2πx0η1). exp(±j2πy0 η2)                       δ(ξ1 -+ η1, ξ2 -+ η2)
         exp[-π(x2 + y2 )]                             exp[-π(ξ12 + ξ22 )]
             rect(x, y)                                    sinc(ξ1, ξ2)
              tri(x, y)                                   sinc2(ξ1, ξ2)
            comb(x, y)                                    comb(ξ1, ξ2)
                                                                                  6
Properties of the Fourier Transform
 1.   Spatial Frequencies
      If f(x,y) is luminance and (x,y) is the spatial coordinates, then ξ1, ξ2 are the
      spatial frequencies that represent luminance changes with respect to spatial
      distances.
 2.   Uniqueness
      Since for continuous functions f(x,y) and F(ξ1,ξ2) are unique with respect to
      one another, Fourier transform of these functions does not cause any loss in
      signal information.
 3.   Separability
      By definition, the Fourier transform kernel is separable, so that it can be
      viewed as a separable transformation in x and y.
             F (ξ 1 , ξ 2 ) =
                                 ∞
                                      ∞ f ( x , y ) exp (− j 2π x ξ )dx  exp (− j 2π y ξ )dy
                                ∫− ∞  ∫− ∞
                                                                   1    
                                                                                         2


 4.   Frequency response and eigenfunctions
         •     Frequency response → fourier transform of a shift-invariant system impulse
               response.
         •     Eigenfunctions of a linear shift-invariant system is a complex-exponential
               function.
                                                                                                 7
Properties of the Fourier Tranform
 5.   Convolution theorem
      The Fourier transform of the convolution of two functions is the product
      of their Fourier transform:

               g(x,y) = h(x,y)⊗f(x,y) ⇔ G(ξ1,ξ2) = H(ξ1,ξ2)F(ξ1,ξ2)


 6.   Spatial correlation
      Spatial correlation of two signals can be defined as:
                            C(ξ1,ξ2) = H(-ξ1,-ξ2)F(ξ1,ξ2)

 7.   Parseval Formula
                            ∫∫ |f(x,y)|2dxdy = ∫∫ |F(ξ1,ξ2)|2 dξ1dξ2

 8.   Hankel Transform
      The Fourier transform of a circularly symmetric is also circularly
      symmetric.
                                                                                 8
2-D Fourier Transform
• The Fourier transform pair of a 2-D sequence x(m,n) is defined as:

                               ∞       ∞
       X (ω1 ,ω 2 ) ≡      ∑ ∑ x ( m, n ) exp − j ( mω
                           m =−∞ n =−∞
                                                           1   + nω 2 ) 
                                                                         

                       1           π   π
       x ( m, n ) =            ∫ π ∫ π X (ω ,ω ) exp − j ( mω
                                                                   + nω 2 ) 
                                                                             
                      4π   2               1   2                1
                               −       −



• H(ω1,ω2), the Fourier transform of the shift invariant system
  impulse response, is called the frequency response.




                                                                                 9
Matrix Theory
• One- and two-dimensional sequence will be represented by vectors
  and matrices.
                    u (1)                         a (1,1)   a (1, 2 )    ...    a (1, N ) 
                    u (2 )                        a (2 ,1)  a (2 , 2 )   ...    a (2 , N ) 
    u ≡ {u (n )} =            A ≡ {a (m , n )} =                                           
                    ...                           ...          ...       ...       ...     
                                                                                           
                    u (n )                        a (M ,1) a (M , 2 )    ...   a (M , N )


•   Transpose: AT = {a(m,n)}T = {a(n,m)}
•   Transposition and Conjugation Rules
                 1. A*T = [AT]*
                 2. [AB] = BTAT
                 3. [A-1]T = [AT]-1
                 4. [AB]* = A*B*
                                                                                              10
Toeplitz and Circulant Matrices
• A Toeplitz matrix T is a matrix that has constant elements along the
  main diagonal and the subdiagonals.
• A matrix C is called circulant if each of its rows (or columns) is a
  circular shift of the previous row (or columns)

          t0       t −1   ...    ...   t − N +1     c0     c1    c2     ...     c N −1 
          t        t0     t −1   ...   t− N +2     c       c0    c1     ...     cN −2 
          1                                         N −1                               
     T =  t2                     ...      ...  C =  ...    ...   ...    ...      ... 
                                                                                       
          ...      ...    ...    ...      ...       c2     ...   ...    ...      ... 
         
          t N −1   ...    t2     t1       t0       c1
                                                             c2    ...   c N −1    cN   

 •      Note that C is also Toeplitz and:
              c(m,n) = c((m,n) modulo N)
                                                                                          11
Example
    •    A LSI (linear shift invariant) system      y (− 1) − 1 0 0 0 0 
         h(n)=n, -1≤n≤1 with input x(n) which is    y (0 )   0 − 1 0 0 0   x(0 )
         zero outside 0≤n≤4, is given by the                               
                                                                                      
                                                    y (1)   1 0 − 1 0 0   x(1) 
         convolution:                                       =  0 1 0 − 1 0   x(2 )
                                                    y (2 )                 
                                                                                      
               y(n) = h(n)⊗x(n)= Σ0~4h(n-k)x(k).    y (3)   0 0 1 0 − 1  x(3)
                                                    y (4 )                 
                                                               0 0 0 1 0   x(4 )
                                                                                      
                                                    y (5)   0 0 0 0 1 
                                                                           
•       If two convolving sequences are
        periodic, then their convolution is also
        periodic and can be represented as         y (0 )  3   2   1   0   x (0 )
                                                   y (1)   0   3   2   1   x (1) 
        y(n) = Σ0~(N-1) h(n-k)x(k), 0 ≤n≤N-1             =                       
                                                   y (2 )  1   0   3   2   x (2 )
        where h(-n) = h(N-4) and N is the period.  y (3 )  2
                                                               1   0
                                                                                    
                                                                          3   x (3 )
        Let N=4 and h(n)=n+3 (modulo 4). In
        vector notation this gives
                                                                                      12
Orthogonal and Unitary Matrices
 • An orthogonal matrix is such that its inverse is equal to
   its transpose, A is orthogonal if :
        A-1 = AT or ATA = AAT = I
 • A matrix is called unitary if its inverse is equal to its
   conjugate transpose:
        A-1 = A*T      or     AA*T = A*TA = I
 • Orthogonality and unitary characteristics indicate the
   transform energy conservation properties.



                                                               13
Thank you




            14

More Related Content

What's hot

13 fourierfiltrationen
13 fourierfiltrationen13 fourierfiltrationen
13 fourierfiltrationenhoailinhtinh
 
Lecture 12 (Image transformation)
Lecture 12 (Image transformation)Lecture 12 (Image transformation)
Lecture 12 (Image transformation)VARUN KUMAR
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier TransformAbhishek Choksi
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptronESCOM
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transformop205
 
Fft presentation
Fft presentationFft presentation
Fft presentationilker Şin
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformationzertux
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Tomoya Murata
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transformMOHAMMAD AKRAM
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibilityketan gajjar
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformAttaporn Ninsuwan
 

What's hot (20)

13 fourierfiltrationen
13 fourierfiltrationen13 fourierfiltrationen
13 fourierfiltrationen
 
Lecture 12 (Image transformation)
Lecture 12 (Image transformation)Lecture 12 (Image transformation)
Lecture 12 (Image transformation)
 
Image transforms
Image transformsImage transforms
Image transforms
 
Ch13
Ch13Ch13
Ch13
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 
Dsp lecture vol 2 dft & fft
Dsp lecture vol 2 dft & fftDsp lecture vol 2 dft & fft
Dsp lecture vol 2 dft & fft
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptron
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
Fft presentation
Fft presentationFft presentation
Fft presentation
 
Tables
TablesTables
Tables
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformation
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transform
 
The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier Transform
 
Dft
DftDft
Dft
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 

Viewers also liked

01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysisRumah Belajar
 
Mikrokontroler pertemuan 3
Mikrokontroler pertemuan 3Mikrokontroler pertemuan 3
Mikrokontroler pertemuan 3Rumah Belajar
 
Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Rumah Belajar
 
Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2 Rumah Belajar
 
Image segmentation 3 morphology
Image segmentation 3 morphologyImage segmentation 3 morphology
Image segmentation 3 morphologyRumah Belajar
 
Nne pharmaplan serialization_newspaper
Nne pharmaplan serialization_newspaperNne pharmaplan serialization_newspaper
Nne pharmaplan serialization_newspaperLars Olsen
 
Global Serialization & Trends
Global Serialization & TrendsGlobal Serialization & Trends
Global Serialization & TrendsLars Olsen
 
A Closer Look At Brazil’s New Serialization Regulation
A Closer Look At Brazil’s New Serialization RegulationA Closer Look At Brazil’s New Serialization Regulation
A Closer Look At Brazil’s New Serialization RegulationShari Popovich
 
Block Truncation Coding
Block Truncation CodingBlock Truncation Coding
Block Truncation Codingriyagam
 
Mikrokontroler dan Antar Muka (14)
Mikrokontroler dan Antar Muka (14)Mikrokontroler dan Antar Muka (14)
Mikrokontroler dan Antar Muka (14)jayamartha
 
15. ide pata dan sata
15. ide pata dan sata15. ide pata dan sata
15. ide pata dan sataRumah Belajar
 
Mikrokontroler pertemuan 6
Mikrokontroler pertemuan 6Mikrokontroler pertemuan 6
Mikrokontroler pertemuan 6Rumah Belajar
 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13Yasser Ahmed
 
06 object measurement
06 object measurement06 object measurement
06 object measurementRumah Belajar
 
Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Rumah Belajar
 
Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Rumah Belajar
 
Mikrokontroler pertemuan 4
Mikrokontroler pertemuan 4Mikrokontroler pertemuan 4
Mikrokontroler pertemuan 4Rumah Belajar
 
Mikrokontroler pertemuan 2
Mikrokontroler pertemuan 2Mikrokontroler pertemuan 2
Mikrokontroler pertemuan 2Rumah Belajar
 

Viewers also liked (20)

01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysis
 
Mikrokontroler pertemuan 3
Mikrokontroler pertemuan 3Mikrokontroler pertemuan 3
Mikrokontroler pertemuan 3
 
Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5
 
point processing
point processingpoint processing
point processing
 
Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2
 
Image segmentation 3 morphology
Image segmentation 3 morphologyImage segmentation 3 morphology
Image segmentation 3 morphology
 
Nne pharmaplan serialization_newspaper
Nne pharmaplan serialization_newspaperNne pharmaplan serialization_newspaper
Nne pharmaplan serialization_newspaper
 
CPS0400-1600_en
CPS0400-1600_enCPS0400-1600_en
CPS0400-1600_en
 
Global Serialization & Trends
Global Serialization & TrendsGlobal Serialization & Trends
Global Serialization & Trends
 
A Closer Look At Brazil’s New Serialization Regulation
A Closer Look At Brazil’s New Serialization RegulationA Closer Look At Brazil’s New Serialization Regulation
A Closer Look At Brazil’s New Serialization Regulation
 
Block Truncation Coding
Block Truncation CodingBlock Truncation Coding
Block Truncation Coding
 
Mikrokontroler dan Antar Muka (14)
Mikrokontroler dan Antar Muka (14)Mikrokontroler dan Antar Muka (14)
Mikrokontroler dan Antar Muka (14)
 
15. ide pata dan sata
15. ide pata dan sata15. ide pata dan sata
15. ide pata dan sata
 
Mikrokontroler pertemuan 6
Mikrokontroler pertemuan 6Mikrokontroler pertemuan 6
Mikrokontroler pertemuan 6
 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13
 
06 object measurement
06 object measurement06 object measurement
06 object measurement
 
Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8
 
Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7
 
Mikrokontroler pertemuan 4
Mikrokontroler pertemuan 4Mikrokontroler pertemuan 4
Mikrokontroler pertemuan 4
 
Mikrokontroler pertemuan 2
Mikrokontroler pertemuan 2Mikrokontroler pertemuan 2
Mikrokontroler pertemuan 2
 

Similar to 02 2d systems matrix

Similar to 02 2d systems matrix (20)

Math report
Math reportMath report
Math report
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fdtd
FdtdFdtd
Fdtd
 
Fdtd
FdtdFdtd
Fdtd
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
z transforms
z transformsz transforms
z transforms
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
some thoughts on divergent series
some thoughts on divergent seriessome thoughts on divergent series
some thoughts on divergent series
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIES
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Dsp3
Dsp3Dsp3
Dsp3
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 

More from Rumah Belajar

04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detectionRumah Belajar
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanRumah Belajar
 
Bab 10 spring arif hary
Bab 10 spring  arif hary Bab 10 spring  arif hary
Bab 10 spring arif hary Rumah Belajar
 
Bab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahBab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahRumah Belajar
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasRumah Belajar
 
Bab 08 screws, fasteners and connection syarif
Bab 08 screws, fasteners and connection  syarif Bab 08 screws, fasteners and connection  syarif
Bab 08 screws, fasteners and connection syarif Rumah Belajar
 
Bab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyBab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyRumah Belajar
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Rumah Belajar
 
Bab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiBab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiRumah Belajar
 
Bab 03 load analysis
Bab 03 load analysisBab 03 load analysis
Bab 03 load analysisRumah Belajar
 
Bab 02 material dan proses
Bab 02 material dan prosesBab 02 material dan proses
Bab 02 material dan prosesRumah Belajar
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanRumah Belajar
 
Mikrokontroler pertemuan 1
Mikrokontroler pertemuan 1Mikrokontroler pertemuan 1
Mikrokontroler pertemuan 1Rumah Belajar
 
13. peripheral component interconnect (pci)
13. peripheral component interconnect (pci)13. peripheral component interconnect (pci)
13. peripheral component interconnect (pci)Rumah Belajar
 
11. motherboard (interface)
11. motherboard (interface)11. motherboard (interface)
11. motherboard (interface)Rumah Belajar
 

More from Rumah Belajar (16)

04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detection
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasan
 
Bab 10 spring arif hary
Bab 10 spring  arif hary Bab 10 spring  arif hary
Bab 10 spring arif hary
 
Bab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahBab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelah
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan las
 
Bab 08 screws, fasteners and connection syarif
Bab 08 screws, fasteners and connection  syarif Bab 08 screws, fasteners and connection  syarif
Bab 08 screws, fasteners and connection syarif
 
Bab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyBab 07 poros dan aksesoriny
Bab 07 poros dan aksesoriny
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1
 
Bab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiBab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksi
 
Bab 03 load analysis
Bab 03 load analysisBab 03 load analysis
Bab 03 load analysis
 
Bab 02 material dan proses
Bab 02 material dan prosesBab 02 material dan proses
Bab 02 material dan proses
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasan
 
Mikrokontroler pertemuan 1
Mikrokontroler pertemuan 1Mikrokontroler pertemuan 1
Mikrokontroler pertemuan 1
 
13. peripheral component interconnect (pci)
13. peripheral component interconnect (pci)13. peripheral component interconnect (pci)
13. peripheral component interconnect (pci)
 
12. komunikasi data
12. komunikasi data12. komunikasi data
12. komunikasi data
 
11. motherboard (interface)
11. motherboard (interface)11. motherboard (interface)
11. motherboard (interface)
 

Recently uploaded

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Recently uploaded (20)

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 

02 2d systems matrix

  • 1. 02. 2-D Systems and Matrix Tati R. Mengko
  • 2. Notation and Definitions • 1-D continuous signal will be represented as a function of one variable: f(x), u(x), s(t). • 1-D sampled signals will be written as single index sequence: un, u(n). • A continuous image will be represented as a function of two independent variables:u(x,y), v(x,y), f(x,y). • A sampled image will be represented as a two- (or more) dimensional sequence of real numbers umn, v(m,n). • The symbol j will represent (√-1). • The complex conjugate of a complex variable such as z, will be denoted by z*. 2
  • 3. Some Special Functions • Dirac Delta: δ ( x, y ) = δ ( x ) δ ( y ) ∞ ∞ ∫ ∫ f ( x ', y ')δ ( x − x ', y − y ') dx ' dy ' = f ( x, y ) −∞ −∞ ε ε lim ∫ ∫ δ ( x, y )dxdy = 1 ε ε ε →0 − − • Kronecker Delta: δ ( m, n ) = δ ( m ) δ ( n ) ∞ ∞ x ( m, n ) = ∑ ∑ x ( m ', n ')δ ( m − m ', n − n ') m ' =−∞ n ' =∞ ∞ ∞ ∑ ∑ δ ( m, n ) = 1 m =−∞ n =∞ 3
  • 4. Some Special Functions • Rectangle 1 x ≤ 1 2 dan y ≤  1 rect ( x, y ) =  2 0 lainnya  • Sinc 2-D sin π x sin π y sinc ( x, y ) = πx πy • Comb ∞ ∞ comb ( k , l ) = ∑ ∑ δ ( k − k ', l − l ') k ' =−∞ l ' =∞ 4
  • 5. 2-D Linear System x(m,n) y(m,n) = H [x(m,n)] y(m,n) H [.] • Linear system criterion: H [a1x1(m,n) + a2x2(m,n)] = a1H [x1(m,n)] + a2H [x2(m,n)] = a1 y1(m,n) + a2 y2(m,n) • Impulse response: System response (output) given a delta kronecker input: h(m,n; m’,n’) ≡ H [δ(m - m’, n - n’)] – PSF (point spread function) → impulse response whose inputs and outputs represent a positive quantity, such as intensity. 5
  • 6. The Fourier Transform • 2-D Fourier/ Inverse Fourier Transform Formulations: ∞ ∞ F (ξ1 ,ξ 2 ) = ∫ ∫ f ( x, y ) exp  − j 2π ( xξ1 + yξ 2 )  dxdy   −∞ −∞ ∞ ∞ f ( x, y ) = ∫ ∫ F (ξ1 ,ξ 2 ) exp  j 2π ( xξ1 + yξ 2 )  dξ1dξ 2   −∞ −∞ f(x,y) F(ξ1, ξ2) δ(x,y) 1 δ(x ± x0, y ± y0) exp(±j2πx0ξ1). exp(±j2πy0ξ2) exp(±j2πx0η1). exp(±j2πy0 η2) δ(ξ1 -+ η1, ξ2 -+ η2) exp[-π(x2 + y2 )] exp[-π(ξ12 + ξ22 )] rect(x, y) sinc(ξ1, ξ2) tri(x, y) sinc2(ξ1, ξ2) comb(x, y) comb(ξ1, ξ2) 6
  • 7. Properties of the Fourier Transform 1. Spatial Frequencies If f(x,y) is luminance and (x,y) is the spatial coordinates, then ξ1, ξ2 are the spatial frequencies that represent luminance changes with respect to spatial distances. 2. Uniqueness Since for continuous functions f(x,y) and F(ξ1,ξ2) are unique with respect to one another, Fourier transform of these functions does not cause any loss in signal information. 3. Separability By definition, the Fourier transform kernel is separable, so that it can be viewed as a separable transformation in x and y. F (ξ 1 , ξ 2 ) = ∞  ∞ f ( x , y ) exp (− j 2π x ξ )dx  exp (− j 2π y ξ )dy ∫− ∞  ∫− ∞  1   2 4. Frequency response and eigenfunctions • Frequency response → fourier transform of a shift-invariant system impulse response. • Eigenfunctions of a linear shift-invariant system is a complex-exponential function. 7
  • 8. Properties of the Fourier Tranform 5. Convolution theorem The Fourier transform of the convolution of two functions is the product of their Fourier transform: g(x,y) = h(x,y)⊗f(x,y) ⇔ G(ξ1,ξ2) = H(ξ1,ξ2)F(ξ1,ξ2) 6. Spatial correlation Spatial correlation of two signals can be defined as: C(ξ1,ξ2) = H(-ξ1,-ξ2)F(ξ1,ξ2) 7. Parseval Formula ∫∫ |f(x,y)|2dxdy = ∫∫ |F(ξ1,ξ2)|2 dξ1dξ2 8. Hankel Transform The Fourier transform of a circularly symmetric is also circularly symmetric. 8
  • 9. 2-D Fourier Transform • The Fourier transform pair of a 2-D sequence x(m,n) is defined as: ∞ ∞ X (ω1 ,ω 2 ) ≡ ∑ ∑ x ( m, n ) exp − j ( mω m =−∞ n =−∞  1 + nω 2 )   1 π π x ( m, n ) = ∫ π ∫ π X (ω ,ω ) exp − j ( mω  + nω 2 )   4π 2 1 2 1 − − • H(ω1,ω2), the Fourier transform of the shift invariant system impulse response, is called the frequency response. 9
  • 10. Matrix Theory • One- and two-dimensional sequence will be represented by vectors and matrices.  u (1)   a (1,1) a (1, 2 ) ... a (1, N )   u (2 )  a (2 ,1) a (2 , 2 ) ... a (2 , N )  u ≡ {u (n )} =   A ≡ {a (m , n )} =    ...   ... ... ... ...       u (n )  a (M ,1) a (M , 2 ) ... a (M , N ) • Transpose: AT = {a(m,n)}T = {a(n,m)} • Transposition and Conjugation Rules 1. A*T = [AT]* 2. [AB] = BTAT 3. [A-1]T = [AT]-1 4. [AB]* = A*B* 10
  • 11. Toeplitz and Circulant Matrices • A Toeplitz matrix T is a matrix that has constant elements along the main diagonal and the subdiagonals. • A matrix C is called circulant if each of its rows (or columns) is a circular shift of the previous row (or columns)  t0 t −1 ... ... t − N +1   c0 c1 c2 ... c N −1   t t0 t −1 ... t− N +2  c c0 c1 ... cN −2   1   N −1  T =  t2 ... ...  C =  ... ... ... ... ...       ... ... ... ... ...   c2 ... ... ... ...    t N −1 ... t2 t1 t0    c1  c2 ... c N −1 cN   • Note that C is also Toeplitz and: c(m,n) = c((m,n) modulo N) 11
  • 12. Example • A LSI (linear shift invariant) system  y (− 1) − 1 0 0 0 0  h(n)=n, -1≤n≤1 with input x(n) which is  y (0 )   0 − 1 0 0 0   x(0 ) zero outside 0≤n≤4, is given by the        y (1)   1 0 − 1 0 0   x(1)  convolution:   =  0 1 0 − 1 0   x(2 )  y (2 )      y(n) = h(n)⊗x(n)= Σ0~4h(n-k)x(k).  y (3)   0 0 1 0 − 1  x(3)  y (4 )       0 0 0 1 0   x(4 )    y (5)   0 0 0 0 1      • If two convolving sequences are periodic, then their convolution is also periodic and can be represented as  y (0 )  3 2 1 0   x (0 )  y (1)   0 3 2 1   x (1)  y(n) = Σ0~(N-1) h(n-k)x(k), 0 ≤n≤N-1  =    y (2 )  1 0 3 2   x (2 ) where h(-n) = h(N-4) and N is the period.  y (3 )  2    1 0   3   x (3 ) Let N=4 and h(n)=n+3 (modulo 4). In vector notation this gives 12
  • 13. Orthogonal and Unitary Matrices • An orthogonal matrix is such that its inverse is equal to its transpose, A is orthogonal if : A-1 = AT or ATA = AAT = I • A matrix is called unitary if its inverse is equal to its conjugate transpose: A-1 = A*T or AA*T = A*TA = I • Orthogonality and unitary characteristics indicate the transform energy conservation properties. 13
  • 14. Thank you 14