SlideShare a Scribd company logo
1 of 26
03. Image Transforms


     Tati R. Mengko
2-D Orthogonal and Unitary Transforms
• Image transforms → refers to a class of unitary matrices which serves
                      as a basis for representing digital images.
    – Unitary matrices : fullfills AA*T = ATA* = I
    – Basis images     : a discrete set of basis arrays that expands an image.

• For a N×N image, unitary transform of u(m, n) is given by:
                         N −1 N −1
         u (m, n ) =    ∑ ∑ v (k , l ) a * (m, n )
                         k =0 l =0
                                        k ,l         0 ≤ m, n ≤ N − 1

                        N − 1 N −1
         v (k , l ) =   ∑ ∑ u (m, n ) a (m, n )
                        m =0 n=0
                                        k ,l         0 ≤ k,l ≤ N −1

    v(k, l)        → transform coefficients
    V ≡ {v(k, l)} → the transformed image
    {ak,l (m, n)} → a set of complete orthonormal discrete basis functions
                    satisfying the properties: orthonormality and completeness.
2-D Orthogonal and Unitary Transforms
                              N −1 N −1

ORTHONORMALITY:               ∑∑ a ( m, n ) a * ( m, n ) = δ ( k − k ', l − l ')
                              m=0 n =0
                                          k ,l           k ',l '



                              N −1 N −1

COMPLETENESS :                ∑∑ a ( m, n ) a * ( m ', n ') = δ ( m − m ', n − n ')
                              k =0 l =0
                                          k ,l           k ,l



• The orthonormality properties assures that any truncated series
  expansion of the form:
                      P −1 Q −1
     u P ,Q ( m, n ) ≡ ∑∑ v ( k , l ) a *k ,l ( m, n )             P ≤ N, Q ≤ N
                      k =0 l =0
                                                                    N −1 N −1
                                                         σ = ∑∑ u ( m, n ) − u P ,Q ( m, n ) 
                                                            2                                     2
  will minimize the sum of squared error                    e                                
                                                                    m =0 n =0

• The completeness property assures that this error will be zero for
  P=Q=N.
Separable Unitary Transforms
• To reduce the computation order, transformation operation is desired
  to be separable.
  Separability:
             ak ,l ( m, n ) = ak ( m ) al ( n ) ≡ a ( k , m ) b ( l , n )
    {ak(m), k = 0, 1, …, N-1}
                                     1-D complete orthogonal sets of basis vectors.
    {bl(n), l = 0, 1, …, N-1}
    → Reduction of transformation computation order from O(N4) to O(N3) .

• Imposition of orthonormality and completeness on the unitary A ≡{a(k,
  m)} and B ≡ {b(l, n)}, gives the following equation for B = A :
                     N −1 N −1
           v ( k , l ) = ∑∑ a ( k , m ) u ( m, n ) a ( l , n ) ↔ V = AUAT
                     m =0 n =0
                       N −1 N −1
          u ( m, n ) = ∑∑ a * ( k , m ) v ( k , l ) a * ( l , n ) ↔ U = A*T VA*
                       k =0 l =0
Separable Unitary Transforms
• For an M×N rectangular image, the transform pair is:

               V = AMUAN        and    U = A*M V A*TN

• For separable unitary matrix, image transforms can be written as:

                       VT = AUAT = A [AU]T

  Which means transformation process can be performed by first
  transforming each column of U and then transforming each row of
  the result to obtain the rows of V.
Basis Images
• Let ak* denote the kth column of A*T. Define the matrices:
               A*k,l = a*k a*Tl
  and the matrix inner product of two N×N matrices F and G as
                            N −1 N −1
                F, G = ∑∑ f ( m, n ) g * ( m, n )
                            m =0 n =0

• Then image transform can be written as:
               N −1 N −1
          U = ∑∑ v ( k , l ) Ak ,l
                              *
                                        v ( k , l ) = U , A * ,l
                                                            k
               k =0 l =0

  The transform expresses any image U as linear combination of the
  N2 matrices A*k, l , k, l = 0, 1, … , N-1 which are called Basis Image.
• The transform coefficient v(k, l) is simply the inner product of the
  (k, l)th. It is also called the projection of the image on the (k, l)th
  basis image.
Basis Images




Cosinus        Sinus
Basis Images




Hadamard       Haar
Basis Images




Slant          KLT
Properties of Unitary Transforms
1. Energy conservation and rotation
   In a unitary transform:

       v = Au ||v||2 = ||u||2

   Thus a unitary transformation preserves the signal energy or the
   length of the vector u in the N-dimensional vector space.
   This means every unitary transformation is simply a rotation of the
   vector u in the N-dimensional vector space. [Parseval Theorem!]
   For 2-D unitary transformations, it can be proven that

              N −1 N −1                N −1 N −1

              ∑∑ u ( m, n )          = ∑∑ v ( k , l )
                                 2                      2

              m =0 n =0                k =0 l =0
Properties of Unitary Transforms
2.   Energy Compaction
     Most unitary transforms have a tendency to pack a large fraction of
     the average energy of the image into a relatively few components
     of the transform coefficients. Since the total energy is preserved,
     this means many of the transform coefficients will contain very little
     energy.
3.   Decorrelation
     When the input vector elements are highly correlated, the
     transform coefficients tend to be uncorrelated. This means the off-
     diagonal terms of the covariance matrix R, tend to become small
     compared to the diagonal elements.
4.   Other properties:
     The determinant and the eigenvalues of a unitary matrix have unity
     magnitude.
     The entropy of a random vector is preserved under a unitary
     transformation.
2-D Discrete Fourier Transform (DFT)
• 2-D DFT of an N×N image {u(m, n) } is a separable transform defined as:
                N −1 N −1
     v ( k , l ) = ∑∑ u ( m, n )WN WN n ,
                                 km l
                                                0 ≤ k, l ≤ N −1
                m =0 n =0

               − j 2π 
     WN ≡ exp         
                 N 
• The 2-D DFT inverse transform is given as:
               N −1 N −1
     v ( k , l ) = ∑∑ u ( m, n ) WN WN n ,
                                  km l
                                             0 ≤ k, l ≤ N −1
               m=0 n =0

• In matrix notation: V = FUF     and U = F*VF*
Properties of 2-D DFT
       [The N2×N2 matrix F represents the N×N 2-D unitary DFT]
• Symmetric and unitary
     F T = F and F –1 = F *
• Periodic extensions
        v(k + N, l + N) = v(k, l)                  ∀k, l
        u(m + N, n+N) = u(m, n)                    ∀m, n
• Sampled Fourier spectrum
  If u ( m, n ) = u ( m, n ) , 0 ≤ m, n ≤ N − 1 ,and u ( m, n ) = 0 otherwise,
  then:
          %  2π k , 2π l  = DFT {u ( m, n )} = v ( k , lx )
          U              
             N N 

    where      %
              U (ω1 ,ω 2 ) is the Fourier transform of u ( m, n )

•   Fast transform
    Since 2-D DFT is separable, it is equivalent to 2N 1-D unitary DFTs, each of
    which can be performed in O(N log2N) via the FFT. Hence the total number of
    operations is O(N2 log2N).
Properties of 2-D DFT
• Conjugate symmetry
           N    N           N    N               N
         v  ± k, ± l  = v *  m k, m l , 0 ≤ k,l ≤ − 1
           2    2           2    2               2
    or     v(k, l) = v*(N-k, N-l),       0 ≤ k, l ≤ N-1

• Basis Images
  The basis images are given by definition:
                              1
         A* , l = Φ k Φ T =
          k             l
                              N
                                {
                                WN (
                                 − km + ln )
                                                               }
                                             , 0 ≤ m, n ≤ N − 1 , 0 ≤ k , l ≤ N − 1

• 2-D circular convolution theorem
  The DFT of the 2-D circular convolution of two arrays is the product of
  their DFTs:

         DFT{h(m, n)⊗ u(m, n)} = DFT{h(m, n)}.DFT{ u(m, n)}
Examples of DFT

50                                    50                                50




100                                  100                                100




150                                  150                                150




200                                                                     200
                                     200



250                                                                     250
                                     250
      50   100   150   200   250                                              50   100   150   200   250
                                           50   100   150   200   250




      Original Image               Log(magnitude of DFT coeff)                Phase Image
Discrete Cosine Transform (DCT)
 • The N×N DCT matrix C = {c(k, n)}, is defined as
                    1
                    N,                    k = 0, 0 ≤ n ≤ N − 1
                   
        c (k, n) = 
                    2 cos π ( 2n + 1) k , 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1
                    N
                               2N
 •   Properties of DCT:
                                                  1 − α −α 0          0 
     1. Real and orthogonal                        −α      1              
     2. C = C* ⇒ C-1 = CT                    Qr =                         
     3. Not the real part of the unitary DFT       0            1 −α 
                                                                          
     4. Fast transform                              0     −α        1−α 
     5. Excellent energy compaction.
     6. The basis vector of the DCT (rows of C) are eigen-vectors of
         symmetric traditional matrix Qr
     7. DCT is very close to the KL (Karhunen-Loeve) transform of a first-
         order stationary Markov sequence.
Example of DCT

                                                                             50
50                                   50


                                                                            100
100                                  100



                                                                            150
150                                  150



                                                                            200
200                                  200



                                                                            250
250                                  250                                          50   100   150   200   250
      50   100   150   200   250           50   100   150   200   250


      Original image                       DCT coefficient              Log(magnitude of DCT coeff)
Discrete Sine Transform (DST)
• The N×N DST matrix Ψ = {ψ(k, n)}, is defined as

                       2       π ( k + 1)( n + 1)
        ψ ( k, n) =        sin                    , 0 ≤ k, n ≤ N −1
                      N +1           N +1

•   Properties of DST:
    1. DST is real, symmetric, and orthogonal:
                        Ψ* = Ψ = ΨT = Ψ -1
    2. DST is not the imaginary part of the unitary DFT
    3. DST is a fast transform
    4. The basis vectors of the DFT are the eigenvectors of the
       symmetric tridiagonal Toeplitz matrix Q
    5. DST is close to the KL transform of first order stationary
       Markov sequences.
    6. DST leads to a fast KL transform algorithm for Markov
       sequence, whose boundary values are given.
Examples of DST

50                                  50                                      50




100                                 100                                     100




150                                 150                                     150




200                                 200                                     200




250                                 250                                     250
       50   100   150   200   250           50   100   150   200   250            50   100   150   200   250

      Original image                      DST coefficient                Log(magnitude of DST coef.)
Hadamard Transform
•   Elements of Hadamard matrices take only the binary values ±1.
    The Hadamard transform matrices, Hn, are N×N matrices,
    where N≡2n, n ∈ I+.
•   Kronecker product recursion
         1 1 1                                1  H n −1 H n −1 
    H1 =   1 −1           H n = H n −1 ⊗ H1 =                    
          2                                    2  H n −1 −H n −1 


•   Properties of Hadamard Transform:
    – The Hadamard transform is real, symmetric, and
       orthogonal:
                 H* = H = HT = H-1
    – The Hadamard transform is a fast transform {O (N log2N )}
    – The Hadamard transform has good energy compaction
Examples of Hadamard
     Transform
Haar Transform
• The Haar functions hk(x) are defined on a continuous interval,
  x ∈[-1,1] and for k = 0, 1, …, N-1 where N=2n.
• The integer k can be uniquely decomposed as: k = 2p + q -1, where
  0≤ p ≤n-1; q=0,1 for p=0 and 1≤ q ≤2p for p≠0.
• For Example, when N = 4 (or n=2) we have
        k         0         1         2         3
        p         0         0         1         1
        q         0         1         1         2
  Representing k by (p,q), the Haar functions are defined as:
                                  1
          h0 ( x ) ≡ h0,0 ( x ) =    , x ∈ [ 0,1]
                                   N
                                      p2       q −1        q −1 2
                                      2    ,        ≤x<
                                                 2p           2p
                                     
                                  1  p 2 q −1 2               q
         hk ( x ) ≡ hp ,q ( x ) =     −2 ,             ≤x< p
                                  N              2p          2
                                     0      , daerah lain untuk x ∈ [ 0,1]
                                     
                                     
Haar Transform
• For N=2 dan N=4:
                                        1    1    1     1 
                                        2    1    −1    −1 
            1    1 1             1                       
      Hr2 =      1 −1      Hr8 =
             2                    4   2   − 2   0     0 
                                                           
                                     
                                        0    0     2   − 2

•   Properties of Haar Transform:
       1. Real and orthogonal: Hr = Hr* dan Hr -1 = HrT
       2. Very fast transform : O(N) operation on Nx1 vector.
       3. Poor energy compaction for images
Slant Transform
• The N×N Slant transform matrices are defined by the recursion
            1 0                     1         0                                  
           a b           0                               0            
            n n                    − an       bn                       S n −1 0              1    1 1 
         1  0       I ( N / 2)−2          0          I ( N / 2)− 2                       S1 =      1 −1
    Sn =                                                                                       2       
          2 1  0                   1          0                                  
            −b a         0                                0 
                                    bn         an                         0 S n −1 
            n   n                                                                
            0       I ( N / 2)−2          0          −I ( N / 2 ) − 2            
                                                                                 

  where N=2n and IM denotes an M×M identity matrix
• Parameters an dan bn are defined by the recursions:

         bn = (1 + 4a2n-1)-1/2                      a1 =1
                                                                                       1     1    1        1 
         an = 2bnan-1                          
                                                                                       3     1    −1       −3 
                                                                                                               
                                              1                                         5     5    5        5
    The 4×4 Slant transformation matrix: S 2 = 
                                                                                                            1 
•
                                              2                                        1     −1   −1
                                                                                                               
                                                                                       1     −3       3    −1 
                                                                                                              
                                                                                        5     5        5    5
Slant Transform Properties
•   Properties:
    1. Real and orthogonal: S = S* and S-1 = ST
    2. A fast transform: O(N log2N)
    3. Good energy compaction
KL Transform
• The KL transform was originally introduced as a series expansion for
  continuous random processes by Karhunen and Louve.
• For a real N×1 random vector u, the basis vectors of the KL
  transformation are given by the orthonormalized eigenvectors of its
  autocorrelation matrix R:

                Rφk = λk φk,      0≤ k ≤ N-1

•   The KL transform of u is defined as: v = Φ*Tu
                                               N −1
• And the inverse transform is:     u = Φv = ∑ v ( k ) φk
                                               k =0

More Related Content

What's hot

Chapter 9 morphological image processing
Chapter 9   morphological image processingChapter 9   morphological image processing
Chapter 9 morphological image processingAhmed Daoud
 
digital image processing
digital image processingdigital image processing
digital image processingAbinaya B
 
Predictive coding
Predictive codingPredictive coding
Predictive codingp_ayal
 
Image Representation & Descriptors
Image Representation & DescriptorsImage Representation & Descriptors
Image Representation & DescriptorsPundrikPatel
 
Lecture 1 for Digital Image Processing (2nd Edition)
Lecture 1 for Digital Image Processing (2nd Edition)Lecture 1 for Digital Image Processing (2nd Edition)
Lecture 1 for Digital Image Processing (2nd Edition)Moe Moe Myint
 
Image Filtering in the Frequency Domain
Image Filtering in the Frequency DomainImage Filtering in the Frequency Domain
Image Filtering in the Frequency DomainAmnaakhaan
 
Edge linking in image processing
Edge linking in image processingEdge linking in image processing
Edge linking in image processingVARUN KUMAR
 
Image segmentation ppt
Image segmentation pptImage segmentation ppt
Image segmentation pptGichelle Amon
 
Image restoration and degradation model
Image restoration and degradation modelImage restoration and degradation model
Image restoration and degradation modelAnupriyaDurai
 
Frequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesFrequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesDiwaker Pant
 
Discrete cosine transform
Discrete cosine transform   Discrete cosine transform
Discrete cosine transform Rashmi Karkra
 
Sharpening using frequency Domain Filter
Sharpening using frequency Domain FilterSharpening using frequency Domain Filter
Sharpening using frequency Domain Filterarulraj121
 
Image Restoration (Frequency Domain Filters):Basics
Image Restoration (Frequency Domain Filters):BasicsImage Restoration (Frequency Domain Filters):Basics
Image Restoration (Frequency Domain Filters):BasicsKalyan Acharjya
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentationasodariyabhavesh
 
5. gray level transformation
5. gray level transformation5. gray level transformation
5. gray level transformationMdFazleRabbi18
 
Morphological Image Processing
Morphological Image ProcessingMorphological Image Processing
Morphological Image Processingkumari36
 

What's hot (20)

Chapter 9 morphological image processing
Chapter 9   morphological image processingChapter 9   morphological image processing
Chapter 9 morphological image processing
 
digital image processing
digital image processingdigital image processing
digital image processing
 
Predictive coding
Predictive codingPredictive coding
Predictive coding
 
Image Representation & Descriptors
Image Representation & DescriptorsImage Representation & Descriptors
Image Representation & Descriptors
 
Lecture 1 for Digital Image Processing (2nd Edition)
Lecture 1 for Digital Image Processing (2nd Edition)Lecture 1 for Digital Image Processing (2nd Edition)
Lecture 1 for Digital Image Processing (2nd Edition)
 
Image Filtering in the Frequency Domain
Image Filtering in the Frequency DomainImage Filtering in the Frequency Domain
Image Filtering in the Frequency Domain
 
Edge linking in image processing
Edge linking in image processingEdge linking in image processing
Edge linking in image processing
 
Image segmentation ppt
Image segmentation pptImage segmentation ppt
Image segmentation ppt
 
Image restoration and degradation model
Image restoration and degradation modelImage restoration and degradation model
Image restoration and degradation model
 
Frequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement TechniquesFrequency Domain Image Enhancement Techniques
Frequency Domain Image Enhancement Techniques
 
Discrete cosine transform
Discrete cosine transform   Discrete cosine transform
Discrete cosine transform
 
IMAGE SEGMENTATION.
IMAGE SEGMENTATION.IMAGE SEGMENTATION.
IMAGE SEGMENTATION.
 
Bit plane coding
Bit plane codingBit plane coding
Bit plane coding
 
Sharpening using frequency Domain Filter
Sharpening using frequency Domain FilterSharpening using frequency Domain Filter
Sharpening using frequency Domain Filter
 
Image compression models
Image compression modelsImage compression models
Image compression models
 
Image Restoration (Frequency Domain Filters):Basics
Image Restoration (Frequency Domain Filters):BasicsImage Restoration (Frequency Domain Filters):Basics
Image Restoration (Frequency Domain Filters):Basics
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentation
 
5. gray level transformation
5. gray level transformation5. gray level transformation
5. gray level transformation
 
Morphological Image Processing
Morphological Image ProcessingMorphological Image Processing
Morphological Image Processing
 
Wiener Filter
Wiener FilterWiener Filter
Wiener Filter
 

Viewers also liked

morphological image processing
morphological image processingmorphological image processing
morphological image processingJohn Williams
 
Digital Image Processing Fundamental
Digital Image Processing FundamentalDigital Image Processing Fundamental
Digital Image Processing FundamentalThuong Nguyen Canh
 
Introduction to Digital Image Processing
Introduction to Digital Image ProcessingIntroduction to Digital Image Processing
Introduction to Digital Image ProcessingParamjeet Singh Jamwal
 
DIGITAL IMAGE PROCESSING - LECTURE NOTES
DIGITAL IMAGE PROCESSING - LECTURE NOTESDIGITAL IMAGE PROCESSING - LECTURE NOTES
DIGITAL IMAGE PROCESSING - LECTURE NOTESEzhilya venkat
 
Discrete cosine transform
Discrete cosine transformDiscrete cosine transform
Discrete cosine transformaniruddh Tyagi
 
4.intensity transformations
4.intensity transformations4.intensity transformations
4.intensity transformationsYahya Alkhaldi
 
04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detectionRumah Belajar
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processingHossain Md Shakhawat
 
The VP8 Video Codec
The VP8 Video CodecThe VP8 Video Codec
The VP8 Video Codecyeahiii
 
La Transformación Unitaria U(1)
La Transformación Unitaria U(1)La Transformación Unitaria U(1)
La Transformación Unitaria U(1)Alfredo J Saavedra
 
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...CSCJournals
 
A Fast Hadamard Transform for Signals with Sub-linear Sparsity
A Fast Hadamard Transform for Signals with Sub-linear SparsityA Fast Hadamard Transform for Signals with Sub-linear Sparsity
A Fast Hadamard Transform for Signals with Sub-linear SparsityRobin Scheibler
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Resolution enhancement of low-quality videos using a high-resolution frame
Resolution enhancement of low-quality videos using a high-resolution frameResolution enhancement of low-quality videos using a high-resolution frame
Resolution enhancement of low-quality videos using a high-resolution frameTuan Q. Pham
 
Image enhancement sharpening
Image enhancement  sharpeningImage enhancement  sharpening
Image enhancement sharpeningarulraj121
 

Viewers also liked (19)

Image transforms
Image transformsImage transforms
Image transforms
 
morphological image processing
morphological image processingmorphological image processing
morphological image processing
 
Digital Image Processing Fundamental
Digital Image Processing FundamentalDigital Image Processing Fundamental
Digital Image Processing Fundamental
 
Introduction to Digital Image Processing
Introduction to Digital Image ProcessingIntroduction to Digital Image Processing
Introduction to Digital Image Processing
 
DIGITAL IMAGE PROCESSING - LECTURE NOTES
DIGITAL IMAGE PROCESSING - LECTURE NOTESDIGITAL IMAGE PROCESSING - LECTURE NOTES
DIGITAL IMAGE PROCESSING - LECTURE NOTES
 
Discrete cosine transform
Discrete cosine transformDiscrete cosine transform
Discrete cosine transform
 
4.intensity transformations
4.intensity transformations4.intensity transformations
4.intensity transformations
 
Pixelrelationships
PixelrelationshipsPixelrelationships
Pixelrelationships
 
04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detection
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processing
 
The VP8 Video Codec
The VP8 Video CodecThe VP8 Video Codec
The VP8 Video Codec
 
La Transformación Unitaria U(1)
La Transformación Unitaria U(1)La Transformación Unitaria U(1)
La Transformación Unitaria U(1)
 
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...
Comprehensive Performance Comparison of Cosine, Walsh, Haar, Kekre, Sine, Sla...
 
Unit 1 a notes
Unit 1 a notesUnit 1 a notes
Unit 1 a notes
 
A Fast Hadamard Transform for Signals with Sub-linear Sparsity
A Fast Hadamard Transform for Signals with Sub-linear SparsityA Fast Hadamard Transform for Signals with Sub-linear Sparsity
A Fast Hadamard Transform for Signals with Sub-linear Sparsity
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Resolution enhancement of low-quality videos using a high-resolution frame
Resolution enhancement of low-quality videos using a high-resolution frameResolution enhancement of low-quality videos using a high-resolution frame
Resolution enhancement of low-quality videos using a high-resolution frame
 
Lect5 v2
Lect5 v2Lect5 v2
Lect5 v2
 
Image enhancement sharpening
Image enhancement  sharpeningImage enhancement  sharpening
Image enhancement sharpening
 

Similar to 03 image transform

Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequencySARITHA REDDY
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dftmikeproud
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloClaudio Attaccalite
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transformMOHAMMAD AKRAM
 
Iast.lect19.slides
Iast.lect19.slidesIast.lect19.slides
Iast.lect19.slidesha88ni
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valueseSAT Journals
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeeSAT Publishing House
 
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Luke Underwood
 

Similar to 03 image transform (20)

Dft
DftDft
Dft
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
Ch13
Ch13Ch13
Ch13
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transform
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
maa_talk
maa_talkmaa_talk
maa_talk
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
DFT,DCT TRANSFORMS.pdf
DFT,DCT TRANSFORMS.pdfDFT,DCT TRANSFORMS.pdf
DFT,DCT TRANSFORMS.pdf
 
Iast.lect19.slides
Iast.lect19.slidesIast.lect19.slides
Iast.lect19.slides
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer values
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relative
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
B spline
B splineB spline
B spline
 
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 

More from Rumah Belajar

Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2 Rumah Belajar
 
Image segmentation 3 morphology
Image segmentation 3 morphologyImage segmentation 3 morphology
Image segmentation 3 morphologyRumah Belajar
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysisRumah Belajar
 
06 object measurement
06 object measurement06 object measurement
06 object measurementRumah Belajar
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanRumah Belajar
 
Bab 10 spring arif hary
Bab 10 spring  arif hary Bab 10 spring  arif hary
Bab 10 spring arif hary Rumah Belajar
 
Bab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahBab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahRumah Belajar
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasRumah Belajar
 
Bab 08 screws, fasteners and connection syarif
Bab 08 screws, fasteners and connection  syarif Bab 08 screws, fasteners and connection  syarif
Bab 08 screws, fasteners and connection syarif Rumah Belajar
 
Bab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyBab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyRumah Belajar
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Rumah Belajar
 
Bab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiBab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiRumah Belajar
 
Bab 03 load analysis
Bab 03 load analysisBab 03 load analysis
Bab 03 load analysisRumah Belajar
 
Bab 02 material dan proses
Bab 02 material dan prosesBab 02 material dan proses
Bab 02 material dan prosesRumah Belajar
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanRumah Belajar
 
Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Rumah Belajar
 
Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Rumah Belajar
 
Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Rumah Belajar
 

More from Rumah Belajar (20)

Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2
 
Image segmentation 3 morphology
Image segmentation 3 morphologyImage segmentation 3 morphology
Image segmentation 3 morphology
 
point processing
point processingpoint processing
point processing
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
01 introduction image processing analysis
01 introduction image processing analysis01 introduction image processing analysis
01 introduction image processing analysis
 
06 object measurement
06 object measurement06 object measurement
06 object measurement
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasan
 
Bab 10 spring arif hary
Bab 10 spring  arif hary Bab 10 spring  arif hary
Bab 10 spring arif hary
 
Bab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelahBab 06 kriteria kegagalan lelah
Bab 06 kriteria kegagalan lelah
 
Bab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan lasBab 09 kekuatan sambungan las
Bab 09 kekuatan sambungan las
 
Bab 08 screws, fasteners and connection syarif
Bab 08 screws, fasteners and connection  syarif Bab 08 screws, fasteners and connection  syarif
Bab 08 screws, fasteners and connection syarif
 
Bab 07 poros dan aksesoriny
Bab 07 poros dan aksesorinyBab 07 poros dan aksesoriny
Bab 07 poros dan aksesoriny
 
Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1Bab 05 kriteria kegagalan 1
Bab 05 kriteria kegagalan 1
 
Bab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksiBab 04 tegangan regangan defleksi
Bab 04 tegangan regangan defleksi
 
Bab 03 load analysis
Bab 03 load analysisBab 03 load analysis
Bab 03 load analysis
 
Bab 02 material dan proses
Bab 02 material dan prosesBab 02 material dan proses
Bab 02 material dan proses
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasan
 
Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8Mikrokontroler pertemuan 8
Mikrokontroler pertemuan 8
 
Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7Mikrokontroler pertemuan 7
Mikrokontroler pertemuan 7
 
Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5Mikrokontroler pertemuan 5
Mikrokontroler pertemuan 5
 

Recently uploaded

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 

Recently uploaded (20)

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 

03 image transform

  • 1. 03. Image Transforms Tati R. Mengko
  • 2. 2-D Orthogonal and Unitary Transforms • Image transforms → refers to a class of unitary matrices which serves as a basis for representing digital images. – Unitary matrices : fullfills AA*T = ATA* = I – Basis images : a discrete set of basis arrays that expands an image. • For a N×N image, unitary transform of u(m, n) is given by: N −1 N −1 u (m, n ) = ∑ ∑ v (k , l ) a * (m, n ) k =0 l =0 k ,l 0 ≤ m, n ≤ N − 1 N − 1 N −1 v (k , l ) = ∑ ∑ u (m, n ) a (m, n ) m =0 n=0 k ,l 0 ≤ k,l ≤ N −1 v(k, l) → transform coefficients V ≡ {v(k, l)} → the transformed image {ak,l (m, n)} → a set of complete orthonormal discrete basis functions satisfying the properties: orthonormality and completeness.
  • 3. 2-D Orthogonal and Unitary Transforms N −1 N −1 ORTHONORMALITY: ∑∑ a ( m, n ) a * ( m, n ) = δ ( k − k ', l − l ') m=0 n =0 k ,l k ',l ' N −1 N −1 COMPLETENESS : ∑∑ a ( m, n ) a * ( m ', n ') = δ ( m − m ', n − n ') k =0 l =0 k ,l k ,l • The orthonormality properties assures that any truncated series expansion of the form: P −1 Q −1 u P ,Q ( m, n ) ≡ ∑∑ v ( k , l ) a *k ,l ( m, n ) P ≤ N, Q ≤ N k =0 l =0 N −1 N −1 σ = ∑∑ u ( m, n ) − u P ,Q ( m, n )  2 2 will minimize the sum of squared error e   m =0 n =0 • The completeness property assures that this error will be zero for P=Q=N.
  • 4. Separable Unitary Transforms • To reduce the computation order, transformation operation is desired to be separable. Separability: ak ,l ( m, n ) = ak ( m ) al ( n ) ≡ a ( k , m ) b ( l , n ) {ak(m), k = 0, 1, …, N-1} 1-D complete orthogonal sets of basis vectors. {bl(n), l = 0, 1, …, N-1} → Reduction of transformation computation order from O(N4) to O(N3) . • Imposition of orthonormality and completeness on the unitary A ≡{a(k, m)} and B ≡ {b(l, n)}, gives the following equation for B = A : N −1 N −1 v ( k , l ) = ∑∑ a ( k , m ) u ( m, n ) a ( l , n ) ↔ V = AUAT m =0 n =0 N −1 N −1 u ( m, n ) = ∑∑ a * ( k , m ) v ( k , l ) a * ( l , n ) ↔ U = A*T VA* k =0 l =0
  • 5. Separable Unitary Transforms • For an M×N rectangular image, the transform pair is: V = AMUAN and U = A*M V A*TN • For separable unitary matrix, image transforms can be written as: VT = AUAT = A [AU]T Which means transformation process can be performed by first transforming each column of U and then transforming each row of the result to obtain the rows of V.
  • 6. Basis Images • Let ak* denote the kth column of A*T. Define the matrices: A*k,l = a*k a*Tl and the matrix inner product of two N×N matrices F and G as N −1 N −1 F, G = ∑∑ f ( m, n ) g * ( m, n ) m =0 n =0 • Then image transform can be written as: N −1 N −1 U = ∑∑ v ( k , l ) Ak ,l * v ( k , l ) = U , A * ,l k k =0 l =0 The transform expresses any image U as linear combination of the N2 matrices A*k, l , k, l = 0, 1, … , N-1 which are called Basis Image. • The transform coefficient v(k, l) is simply the inner product of the (k, l)th. It is also called the projection of the image on the (k, l)th basis image.
  • 10. Properties of Unitary Transforms 1. Energy conservation and rotation In a unitary transform: v = Au ||v||2 = ||u||2 Thus a unitary transformation preserves the signal energy or the length of the vector u in the N-dimensional vector space. This means every unitary transformation is simply a rotation of the vector u in the N-dimensional vector space. [Parseval Theorem!] For 2-D unitary transformations, it can be proven that N −1 N −1 N −1 N −1 ∑∑ u ( m, n ) = ∑∑ v ( k , l ) 2 2 m =0 n =0 k =0 l =0
  • 11. Properties of Unitary Transforms 2. Energy Compaction Most unitary transforms have a tendency to pack a large fraction of the average energy of the image into a relatively few components of the transform coefficients. Since the total energy is preserved, this means many of the transform coefficients will contain very little energy. 3. Decorrelation When the input vector elements are highly correlated, the transform coefficients tend to be uncorrelated. This means the off- diagonal terms of the covariance matrix R, tend to become small compared to the diagonal elements. 4. Other properties: The determinant and the eigenvalues of a unitary matrix have unity magnitude. The entropy of a random vector is preserved under a unitary transformation.
  • 12. 2-D Discrete Fourier Transform (DFT) • 2-D DFT of an N×N image {u(m, n) } is a separable transform defined as: N −1 N −1 v ( k , l ) = ∑∑ u ( m, n )WN WN n , km l 0 ≤ k, l ≤ N −1 m =0 n =0  − j 2π  WN ≡ exp    N  • The 2-D DFT inverse transform is given as: N −1 N −1 v ( k , l ) = ∑∑ u ( m, n ) WN WN n , km l 0 ≤ k, l ≤ N −1 m=0 n =0 • In matrix notation: V = FUF and U = F*VF*
  • 13. Properties of 2-D DFT [The N2×N2 matrix F represents the N×N 2-D unitary DFT] • Symmetric and unitary F T = F and F –1 = F * • Periodic extensions v(k + N, l + N) = v(k, l) ∀k, l u(m + N, n+N) = u(m, n) ∀m, n • Sampled Fourier spectrum If u ( m, n ) = u ( m, n ) , 0 ≤ m, n ≤ N − 1 ,and u ( m, n ) = 0 otherwise, then: %  2π k , 2π l  = DFT {u ( m, n )} = v ( k , lx ) U   N N  where % U (ω1 ,ω 2 ) is the Fourier transform of u ( m, n ) • Fast transform Since 2-D DFT is separable, it is equivalent to 2N 1-D unitary DFTs, each of which can be performed in O(N log2N) via the FFT. Hence the total number of operations is O(N2 log2N).
  • 14. Properties of 2-D DFT • Conjugate symmetry N N  N N  N v  ± k, ± l  = v *  m k, m l , 0 ≤ k,l ≤ − 1 2 2  2 2  2 or v(k, l) = v*(N-k, N-l), 0 ≤ k, l ≤ N-1 • Basis Images The basis images are given by definition: 1 A* , l = Φ k Φ T = k l N { WN ( − km + ln ) } , 0 ≤ m, n ≤ N − 1 , 0 ≤ k , l ≤ N − 1 • 2-D circular convolution theorem The DFT of the 2-D circular convolution of two arrays is the product of their DFTs: DFT{h(m, n)⊗ u(m, n)} = DFT{h(m, n)}.DFT{ u(m, n)}
  • 15. Examples of DFT 50 50 50 100 100 100 150 150 150 200 200 200 250 250 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 Original Image Log(magnitude of DFT coeff) Phase Image
  • 16. Discrete Cosine Transform (DCT) • The N×N DCT matrix C = {c(k, n)}, is defined as  1  N, k = 0, 0 ≤ n ≤ N − 1  c (k, n) =   2 cos π ( 2n + 1) k , 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1  N  2N • Properties of DCT: 1 − α −α 0 0  1. Real and orthogonal  −α 1  2. C = C* ⇒ C-1 = CT Qr =   3. Not the real part of the unitary DFT  0 1 −α    4. Fast transform  0 −α 1−α  5. Excellent energy compaction. 6. The basis vector of the DCT (rows of C) are eigen-vectors of symmetric traditional matrix Qr 7. DCT is very close to the KL (Karhunen-Loeve) transform of a first- order stationary Markov sequence.
  • 17. Example of DCT 50 50 50 100 100 100 150 150 150 200 200 200 250 250 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 Original image DCT coefficient Log(magnitude of DCT coeff)
  • 18. Discrete Sine Transform (DST) • The N×N DST matrix Ψ = {ψ(k, n)}, is defined as 2 π ( k + 1)( n + 1) ψ ( k, n) = sin , 0 ≤ k, n ≤ N −1 N +1 N +1 • Properties of DST: 1. DST is real, symmetric, and orthogonal: Ψ* = Ψ = ΨT = Ψ -1 2. DST is not the imaginary part of the unitary DFT 3. DST is a fast transform 4. The basis vectors of the DFT are the eigenvectors of the symmetric tridiagonal Toeplitz matrix Q 5. DST is close to the KL transform of first order stationary Markov sequences. 6. DST leads to a fast KL transform algorithm for Markov sequence, whose boundary values are given.
  • 19. Examples of DST 50 50 50 100 100 100 150 150 150 200 200 200 250 250 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 Original image DST coefficient Log(magnitude of DST coef.)
  • 20. Hadamard Transform • Elements of Hadamard matrices take only the binary values ±1. The Hadamard transform matrices, Hn, are N×N matrices, where N≡2n, n ∈ I+. • Kronecker product recursion 1 1 1  1  H n −1 H n −1  H1 = 1 −1 H n = H n −1 ⊗ H1 =   2  2  H n −1 −H n −1  • Properties of Hadamard Transform: – The Hadamard transform is real, symmetric, and orthogonal: H* = H = HT = H-1 – The Hadamard transform is a fast transform {O (N log2N )} – The Hadamard transform has good energy compaction
  • 21. Examples of Hadamard Transform
  • 22. Haar Transform • The Haar functions hk(x) are defined on a continuous interval, x ∈[-1,1] and for k = 0, 1, …, N-1 where N=2n. • The integer k can be uniquely decomposed as: k = 2p + q -1, where 0≤ p ≤n-1; q=0,1 for p=0 and 1≤ q ≤2p for p≠0. • For Example, when N = 4 (or n=2) we have k 0 1 2 3 p 0 0 1 1 q 0 1 1 2 Representing k by (p,q), the Haar functions are defined as: 1 h0 ( x ) ≡ h0,0 ( x ) = , x ∈ [ 0,1] N  p2 q −1 q −1 2  2 , ≤x< 2p 2p  1  p 2 q −1 2 q hk ( x ) ≡ hp ,q ( x ) =  −2 , ≤x< p N  2p 2 0 , daerah lain untuk x ∈ [ 0,1]  
  • 23. Haar Transform • For N=2 dan N=4:  1 1 1 1   2 1 −1 −1  1 1 1  1   Hr2 = 1 −1 Hr8 = 2   4 2 − 2 0 0      0 0 2 − 2 • Properties of Haar Transform: 1. Real and orthogonal: Hr = Hr* dan Hr -1 = HrT 2. Very fast transform : O(N) operation on Nx1 vector. 3. Poor energy compaction for images
  • 24. Slant Transform • The N×N Slant transform matrices are defined by the recursion  1 0 1 0   a b 0 0   n n − an bn  S n −1 0  1 1 1  1  0 I ( N / 2)−2 0 I ( N / 2)− 2    S1 = 1 −1 Sn =    2   2 1 0 1 0    −b a 0 0  bn an  0 S n −1   n n    0 I ( N / 2)−2 0 −I ( N / 2 ) − 2       where N=2n and IM denotes an M×M identity matrix • Parameters an dan bn are defined by the recursions: bn = (1 + 4a2n-1)-1/2 a1 =1  1 1 1 1  an = 2bnan-1   3 1 −1 −3   1 5 5 5 5 The 4×4 Slant transformation matrix: S 2 =  1  • 2 1 −1 −1   1 −3 3 −1     5 5 5 5
  • 25. Slant Transform Properties • Properties: 1. Real and orthogonal: S = S* and S-1 = ST 2. A fast transform: O(N log2N) 3. Good energy compaction
  • 26. KL Transform • The KL transform was originally introduced as a series expansion for continuous random processes by Karhunen and Louve. • For a real N×1 random vector u, the basis vectors of the KL transformation are given by the orthonormalized eigenvectors of its autocorrelation matrix R: Rφk = λk φk, 0≤ k ≤ N-1 • The KL transform of u is defined as: v = Φ*Tu N −1 • And the inverse transform is: u = Φv = ∑ v ( k ) φk k =0