SlideShare a Scribd company logo
1 of 106
Prepared by:
A M S thilAr. M. Senthil
Wavelength
The distance, measured in the direction of 
propagation of a wave, from any point to the 
next point of corresponding phase.
Transverse and longitudinal wavesTransverse and longitudinal waves
• In case of solids, these 
simple harmonicsimple harmonic 
vibrations(air particles 
vibration) produce 
transverse waves in which 
the motion of thethe motion of the 
individual particles are at 
right angles to the motion 
of the waves.
f l d d• In case of liquids and gases 
, the waves produced are 
longitudinal  in which the 
motion of the individual 
i l ll l hparticles are parallel to the 
motion of the waves.
Simple harmonic motionSimple harmonic motion
• In a simple harmonic wave motion 
of sound, whether it is longitudinal 
or transverse, particle repeatedly 
attain maximum displacement in 
iti d ti di ti tpositive and negative directions at 
periodic distances.
• The number of times each particle 
k th t d f timakes the to‐and‐fro motion 
about its mean position is called 
frequency, f, and the time taken 
for one such motion is called thefor one such motion is called the 
period ,t.
• Frequency f = 1 / t
Velocity of sound wavesVelocity of sound waves
• In case of a solid bar the velocity of theIn case of a solid bar , the velocity of the 
sound v is given by v = E/ p
• Where E= Modulus of Elasticity• Where E= Modulus of Elasticity
• P = density of the material
Wave Characteristics
Wave Fronts
• One –Dimensional wave frontOne  Dimensional wave front
• Two‐ Dimensional wave front
• Three‐Dimensional wave front
Wave Surfaces
Crests, Troughs, Condensation and Rarefactions
In a transverse wave motion the maximum and minimumIn a transverse wave motion, the maximum and minimum 
displacements are called the crest and the trough in a 
longitudinal wave motion the corresponding points of 
maximum and minimum displacements are calledmaximum and minimum displacements are called 
compressions and rarefactions  
Properties of soundProperties of sound
• Characteristics of soundCharacteristics of sound
• Behaviour of sound in enclosures
fl i f d• Reflection of sound
• Echoes
• Dispersion
• Sound shadowsSound shadows
Characteristics of sound
The three characteristics of sound are
1. The Intensity(I) of sound: which refers to its y( )
loudness and depends on the amplitude of 
the sound wave, Iα A².,
2. The Pitch of sound: which depends on the 
frequency of the sound wavefrequency of the sound wave.
3. The Quality of sound: which distinguishes the 
sound produced by one source from anothersound produced by one source from another.
Characteristics of sound
Sound travels in air with a velocity of 336 m/s atSound travels in air with a velocity of 336 m/s at 
normal temperature and pressure.
There are two scales of measurement of soundThere are two scales of measurement of sound 
level
1. Phone: It is a scale which takes into account the1. Phone: It is a scale which takes into account the 
varying sensitivity of the ear to sounds of 
different frequencies
2. Sones: It is a scale which gives the proportional 
apparent loudness of sounds.
Behaviour of sound in enclosures
• When sound generated in a room it is reflected, absorbed 
and transmitted in various proportions in accordance with 
h f i Th f h b h ithe nature of construction. These aspects of the behavior 
of sound are very important from the acoustical point of 
view.
Reflection of sound
• Sound waves reflected at a convex surface areSound waves reflected at a convex surface are 
bigger.
• Sound waves reflected at a concave surface• Sound waves reflected at a concave surface 
are smaller.
Echoes
• Echoes can be distinguished when reflectedEchoes can be distinguished when reflected 
sound is heard about one‐fifteenth of a 
second or more after the direct soundsecond or more after the direct sound.
Dispersion
• Sound striking a modelled surface is broken upSound striking a modelled surface is broken up 
into a number of small and weak waves. This 
scattering effect can be used to preventscattering effect can be used to prevent 
echoes.
Sound shadows
• When a sound wave is interrupted by an 
obstruction, a sound shadow is formed behind it, , ,
similar to light shadows.
• Sound shadows are the areas of poor audibility. p y
Common Indoor and Outdoor Noise Levels
Permissible Noise Level Exposure
Background Noise level:
Usually, sounds which do not contain any meaningful information are 
referred to as background noise (e.g. noise from air conditioning or g ( g g
traffic). The background noise level is measured in dB.
Sono meterSono meter
• A Sonometer is an apparatus made of a hollow box having two holes. A 
string is attached to it by which the transverse vibrations of strings can be 
studied. One  end of the string is fixed and the other end it is attached to a 
pulley with a weight holder below the pulley .
• Weights can be added to the holder to produce tension in the wire.
• A sonometer demonstrates the relationship between  frequency of 
the sound produced by a plucked string, and the tension, length and mass 
per unit length of the string. These relationships are usually 
called Mersenne’s laws after Marin Mersenne(1588–1648), who 
investigated and codified them . 
SonometerSonometer
For small amplitude vibration, the frequency is proportional to:
• The square root of the tension of the string,
• The reciprocal of the square root of the linear density of the string,
• The reciprocal of the length of the string
Sound Absorption coefficient(α)Sound Absorption coefficient(α)
• The sound absorption coefficient α describes the property of a material to 
convert incident sound into other forms of energy – e.g. thermal or kinetic 
energy – and thus to absorb it.
• The sound absorption coefficient α of a material indicates the amount of 
the absorbed portion of the total incident sound. α = 0 means that no 
absorption occurs; the entire incident sound is reflected. If α = 0.5, 50 % of 
the sound energy is absorbed and 50 % is reflected. If α = 1, the entire 
incident sound is absorbed, there is no longer any reflection.
Absorption coefficientAbsorption coefficient
• The sound absorption coefficient of a material is α = (1 − r), where r, the sound 
energy reflection coefficient, is the ratio of sound energy reflected from the 
f f h i l h i id isurface of the material to that incident upon it.
Resonance Absorber
Resonance Absorber: This term comprises allResonance Absorber: This term comprises all 
types of absorbers using a resonance 
mechanism such as an enclosed air volume ormechanism such as an enclosed air volume or 
a vibrating surface. Resonance absorbers are 
mainly suitable for absorbing sound ofmainly suitable for absorbing sound of 
medium to low frequencies.
Reverberation time 
• The reverberation time is the basis for ratings of room acoustic quality.
The following table provides an overview of the typical reverberation times of 
different room types.
Reverberation time 
• The reverberation time depends mainly on three factors:
‐ the volume of the room,
‐ the surfaces of the room andthe surfaces of the room and
‐ the furniture in the room.
• A room usually becomes more reverberant with increasing height. 
Absorbing surfaces – such as carpets, curtains and sound absorbing bso b g su aces suc as ca pe s, cu a s a d sou d abso b g
ceilings, but also furniture or people present in the room – reduce the 
reverberation time.
• The reverberation time of a room can be derived from the calculated total 
equivalent sound absorption area using the Sabine formula.
• Sabine formula: T= 0.163 X V/A
T – Reverberation time
V – Volume of the room
A – Total equivalent sound absorption area
NoiseNoise
Every day we encounter sounds that annoy us, that interfere with our
hearing and communication, or that may be hazardous to our
health. Any such unwanted sounds are called noise.This can be observed in 
i t ll i ki i tprivate as well as in working environments.
Types of NoiseTypes of Noise
There are four types of noise:e e a e ou types o o se:
❑ Continuous :Noise is continuous if the 
magnitude of the noise does not vary over time.g y
❑ Intermittent :Noise is intermittent if the noise 
stops and starts at intervals.
❑ Impulsive :Noise is impulsive if the noise is large 
in magnitude but short in duration.
❑ Varying: Noise is varying if the magnitude of the 
noise changes over time.
Noise TransmissionNoise Transmission
• When a sound wave impacts upon the surface of a solid body, p p y,
some portion of it's energy will be reflected, some absorbed 
and the rest transmitted through the body. The relative 
proportion of each depends on the nature of the materialproportion of each depends on the nature of the material 
impacted.
Transmission of NoiseTransmission of Noise
Noise emitted from a source is transmitted through many complicated paths, g y p p ,
sometimes through a conductor and sometimes as radiation. When it reaches a 
device or equipment, that equipment is exposed to noise.
Transmission Loss (TL)Transmission Loss (TL)
• Transmission Loss
• If we consider the transmission of sound through a partition, we 
can actually measure the sound energy on both the source side 
(Wsrc) and the receiving side (Wrec) to determine exactly what 
fraction of the sound is transmitted through We can thusfraction of the sound is transmitted through. We can thus 
determine the transmission coefficient (t) for that partition as 
follows:
• t =  Wreceiver/Wsource
• The term Transmission Loss (TL), or more commonly Sound ( ), y
Reduction Index (SRI) are used to describe the reduction in sound 
level resulting from transmission through a material. This is given 
by:
• SRI 10 log (Wsource / Wreceiver) 10 log (1/t) 10 log (t)• SRI = 10 log (Wsource / Wreceiver) = 10 log (1/t) = ‐10 log (t)
Transmission Loss (TL)
A measurement of how much
sound energy is reduced in
transmission through materials.
Sound Transmission Loss of some 
typical Building Elementstypical Building Elements
Noise controlNoise control
To approach the solution to any specific noise problem, we 
need to:
1. Understand the basic physics of acoustics and how noise —
unwanted sound — is produced, how it propagates, and 
how it is controlled.
2. Learn the basics of noise control, and how to approach the 
problem from three standpoints: the source of noise, the 
path it travels, and the point of reception.
3. Become familiar with, and discover how to apply in both 
new and remodeling construction, the acoustical products g p
and systems that control noise — products that contribute 
to the creation of acoustically comfortable, productive, and 
healthful environments.
Noise controlNoise control
Three ways to control noise
There are only three basic ways to attenuate or reduce sound, whether at the source, 
at the listener’s location, or along the path it travels from the source to the 
receiver:
1 R l th d ith i t1. Replace the sound source with a quieter one.
2. Block the sound with a solid, heavy material that resists the transmission of sound 
waves.
3 Absorb the sound with a light porous material that soaks up sound waves3. Absorb the sound with a light, porous material that soaks up sound waves.
Controlling noise at the source
Before designing acoustical treatment to attenuate noise at the source, 
consider the following measuresconsider the following measures:
1. Moving the source to a more distant location or to another area, where its 
noise will not reach an
objectionable level at the listener’s place.j p
2. Adjusting or modifying the source for quieter operation. If for example the 
source of noise is a mechanism such as a fan or motor, it may be operated 
at a lower speed.
3 Repairing or servicing the noise source It may be as simple a matter as3. Repairing or servicing the noise source. It may be as simple a matter as 
lubricating gears, tensioning drive belts, or tightening loose and vibrating 
screws or bolts.
4. Mounting the noise source on a resilient base (such as springs or soft pads) 
i l ib i d h d h b d i ito isolate vibration and thus reduce the structure borne sound arriving at 
the listener’s location.
5. Replacing the noise source with a quieter one. Modern appliances, for 
example, generally operate much more quietly than older models.p , g y p q y
Controlling noise along its pathControlling noise along its path
• Reflected sound may be reduced by placing sound absorbing y y p g g
materials on surfaces from which sound will be reflected.
Controlling noise at the receiverControlling noise at the receiver
• If source control is not practical, another approach would be to treat the 
problem at the receiver.
• “Temporary” sound control: Direct ear protection (earplugs or earmuffs) 
is often used to protect workers’ hearing when source and path noise
control are not practical or possible.
Acoustics 
Fundamentals
Acoustics
is usually very broadly defined as "the science of
sound."
Room Acoustics
The shaping and equipping of an enclosed space top g q pp g p
obtain the best possible conditions for faithful hearing
of wanted sound and the direction and the reduction of
unwanted soundunwanted sound.
Room Acoustics deal primarily with the control of sound
which originates within a single enclosure, rather than
its transmission between rooms.
frequency;frequency; 
vibration cycles per second
amplitude
wave length:
distance between identical points on a wave
Speaker
diameter
(cm)
Frequencies
(Hz)
cutoff
ka(cm) (Hz) ka
Woofer 30 20-2,000 5.5
mid-mid
range
12 2,000-5,000 5.5
tweeter 6
5,000-
5 5tweeter 6
10,000
5.5
super-
tweeter
3
10,000-
20 000
5.5
The human ear can detect sounds between
tweeter 20,000
The human ear can detect sounds between
20 HZ and 20,000 HZ.
Most sensitive in the range of 100HZ to 5000HZMost sensitive in the range of 100HZ to 5000HZ
Hear it: http://www.surendranath.org/Applets.html , then select: menu/ new 
applets/new menu/ waves/ hear the beats. 
The length of a sound wave
20,000 HZ    ‐ 11/16”
20 HZ – 56 ½ feet
Velocityy
Rate at which sound travels through a conductor
Air:
Wood:
Steel:
Velocityy
Rate at which sound travels through a conductor
Air: 1128 feet per second
Wood: 11,700 feet per second
Steel: 18,000 feet per second
Sound Pressure/
Amplitude
The Mobility of Sound
Direct Sound
Since sound travels in all directions from the source,
each listener will hear just the segment if the overall
d th t i t li i di t li t hisound wave that is traveling in a direct line to his
hear (in a space free from reflecting surfaces). As the
distance from the source increases, the sound,
pressure at the listener's ear will decrease
proportionately.
(Example: good Headphones)
Reflection
DiffusionDiffusion
Diffraction: The Sound Squeezes Through
Sound waves are not always reflected or absorbed.
When an obstacle is the same size as the wavelength
or less the sound can bend around obstacles or flowor less, the sound can bend around obstacles or flow
through small openings, and continue onward. This is
called diffraction. This action is more likely for deeper
d ( f l f d h h lsounds (of low frequency, and this with longer
waveforms).
ReverberationReverberation
The perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after the
source has ceased is calledsource has ceased is called reverberationreverberation. The time interval. The time interval
between reflections is usually so short that distinct echoesbetween reflections is usually so short that distinct echoes
are not heard Instead this series of reflections will blendare not heard Instead this series of reflections will blendare not heard. Instead, this series of reflections will blendare not heard. Instead, this series of reflections will blend
with the direct sound to add "depth". Reverberation is awith the direct sound to add "depth". Reverberation is a
basic acoustic property of a room. It can enrich speech andbasic acoustic property of a room. It can enrich speech and
i i lli i ll it l h d tit l h d tmusic in all areasmusic in all areas ---- or it can slur speech and generateor it can slur speech and generate
higher noise levels throughout a room, depending upon thehigher noise levels throughout a room, depending upon the
room volume, timing, and absorption.room volume, timing, and absorption.
Room Acoustics  Volume
Shape
MaterialsMaterials
Room Acoustics
Reflect
Room Acoustics 
Reflect
Absorb
Sound re‐enforcement
Th h fThe shape of a space 
determines the sound 
path within the space 
Room Acoustics 
C
B
AAAA
Reverberation
P ll l fl tiParallel reflective 
surfaces generates g
unwanted 
b ireverberation
Reverberation time must 
match room functionmatch room function
•Pure speech requires short 
reverberation time
•Symphony blends notes with long•Symphony blends notes with long 
reverberation time
Studies based on the audibility of speech and music
l th t th t d i bl b tireveal that the most desirable reverberation
times generally fall within the ranges shown below.
These values are based on a sound frequency of 500
H ( i t it h f l h)Hz (approximate pitch of male speech).
Reverberation time in seconds
Speech
ffSmall offices 0.50 to 0.75
Classrooms/lecture rooms 0.75 to 1.00
Work rooms 1.00 to 2.00
Music
Rehearsal rooms 0.80 to 1.00
Chamber music 1.00 to 1.50
Orchestral/Choral/
Average church music 1.50 to 2.00g
Large organ/liturgical choir 2.00 to 2.25
Absorbing Materials
•Carpet
•Soft ceiling tile•Soft ceiling tile
•Rigid foam
•people 
R fl ti M t i lReflecting Materials
•Masonry•Masonry
•Wood – smooth panels
•Smooth concrete
•Glass 
Live
Auditoriums, theaters
(for music)
Obtain proper reverberation time to enhance musical
quality.quality.
Provide reflective surfaces near source to reinforce
sound; absorptive surfaces toward rear.
Medium Live
Conference and board rooms
Normal speech must be heard over distances up to about
35 ft.
Allow middle section of ceiling to act as a reinforcingAllow middle section of ceiling to act as a reinforcing
sound-reflector. Apply absorbent to periphery of ceiling or
to wall surfaces (not both). Additional treatment will
t ib t littl t i d ticontribute little to noise reduction.
MediumMedium
Cafeterias (school or office)
R d ll i l lReduce overall noise level.
Use highly sound-absorptive ceiling; also use quiet
equipment such as rubberized dish trays.q p y
Gymnasiums
Instructor must be heard over background noiseInstructor must be heard over background noise
Use acoustical material over entire ceiling to reduce
noise; walls remain untreated to permit some
fl t d dreflected sound.
Medium DeadMedium Dead
Elementary-grade classrooms
Teacher must be heard distinctly; reduce noise levelTeacher must be heard distinctly; reduce noise level
produced by children.
Acoustical ceiling essential. Supplementary acoustical
space units on upper rear and side walls are desirablespace units on upper rear and side walls are desirable.
Music rehearsal rooms
Unlike music hall instructor must hear individual notesUnlike music hall, instructor must hear individual notes
distinctly; minimum reverberation desired.
Entire ceiling, sidewalls, and wall facing musicians would
b t t d ll b hi d i i b l ft dbe treated; wall behind musicians may be left sound-
reflective for proper hearing. Room should be located
away from normal use rooms.
Dead
Kindergarten
Maximum noise reduction.
Maximum acoustical treatment on ceiling; space unitsg; p
on available wall surfaces.
Vocational classrooms and shopsVocational classrooms and shops
Maximum noise reduction.
Acoustical tile or lay-in panel ceiling, plus acoustical
f il bl ll ltreatment of available upper wall areas; locate away
from normal use rooms.
Reverberation time (in seconds) =Reverberation time (in seconds) =
.05 x volume of room
______________________________
bisabins
Sabin
The amount of sound absorbed is measured in
sabins One sabin is equal to the soundsabins. One sabin is equal to the sound
absorption of one square foot of perfectly
absorptive surface. The sound absorptionp p
equivalent to an open window of one square
foot. (theoretical, since no such surface exists).
Measuring Absorption:g p
Sound Absorption Coefficient
The fraction of the energy absorbed (at a
specific frequency) during each reflection is
represented by the sound absorptionrepresented by the sound absorption
coefficient of the reflecting/absorbing surface.
In the building industry, this is a meaningfulIn the building industry, this is a meaningful
and widely accepted quantitative measuring
of sound absorption, and applies to all
surfaces -- whether they be of reflective or
absorptive materials.
Reflective SurfacesReflective Surfaces
Hard, massive, non-porous surfaces, such as, , p ,
plaster, masonry, glass and concrete, absorb
generally less than 5% of the energy of
iki d d fl hstriking sound waves and reflect the rest.
Such materials heaver absorption coefficients
of 05 or lessof .05 or less.
Absorptive Surfaces:
Porous materials such as acoustical tile,
carpets draperies and furniture are primarilycarpets, draperies and furniture are primarily
absorptive. They permit the penetration of
sound waves and are capable of absorbingp g
most of the sound energy. These materials
may have absorption coefficients approaching
1 00 (one sabin per sq ft )1.00 (one sabin per sq. ft.).
Poor acoustical characteristics in this lecture room.
Reflective surfaces near the speaker.Reflective surfaces near the speaker.
In lecture rooms more than 40 feet long, the rear wall
should be absorptive to prevent echoes.
Background NoiseBackground Noise
Acceptable Background Noise Levelsp g
As a rule, we can tolerate, and even welcome, a
certain amount of continuous sound before itcertain amount of continuous sound before it
becomes noise. An "acceptable" level neither disturbs
room occupants nor interferes with the
communication of wanted sound.
Recommended category classification and suggestedRecommended category classification and suggested
noise criteria range for steady background noise as
heard in various indoor functional activity areas as
indicated in the Preferred Noise Criterion
(PNC)Curves.
Type of Space (and acoustical requirements)
PNC curve
Concert halls opera houses and recital halls (for listening toConcert halls, opera houses, and recital halls (for listening to
faint musical sounds)
10 to 20 db
Large auditoriums, large drama theaters, and churches (forLarge auditoriums, large drama theaters, and churches (for
excellent listening conditions)
Not to exceed 20 db
Broadcast, television, and recording studios (close microphone
pickup only)
Not to exceed 25 db
Small auditoriums, small theaters, small churches, musical
h l l ti d f (frehearsal rooms, large meeting and conference rooms (for
good listening), or executive offices and conference rooms for
50 people (no amplification)
Not to exceed 35 dbNot to exceed 35 db
Bedrooms, sleeping quarters, hospitals, residences,
apartments, hotels, motels, etc. (for sleeping resting, relaxing)
25 to 40 db25 to 40 db
Private or semiprivate offices, small conference rooms,
classrooms, libraries, etc. (for good listening conditions)
30 to 40 db
Type of Space (and acoustical requirements)
PNC curve
Living rooms and similar spaces in dwellings (for
conversing or listening to radio and TV)
30 to 40 db30 to 40 db
Large offices, reception areas, retail shops and stores,
cafeterias, restaurants, etc. (for moderately good listening
conditions)conditions)
35 to 45 db
Lobbies, laboratory work spaces, drafting and engineering
rooms, general secretarial areas (for fair listening, g ( g
conditions)
40 to 50 db
Light maintenance shops, office and computer equipment
rooms, kitchens and laundries (for moderately fair listening
conditions)
45 to 55 db
L l b PNC 60 t d d f ffiLevels above PNC-60 are not recommended for any office
or communication situation.
Minimize Background Noise Level - Overallg
noise levels which may interfere with wanted communication should
always be anticipated and corrected. To provide maximum quiet,
typical methods include the following:yp g
1. Elimination of outside noise by sound attenuation in walls,
ceilings, and floor
2. Use of quiet mechanical equipment wherever possible.
3 Control of remaining noise by absorption carpeting upholstery3 .Control of remaining noise by absorption -- carpeting, upholstery,
and acoustical treatment placed above and behind audience.
4 Individual handling of unusual noise sources -- for example4. Individual handling of unusual noise sources -- for example,
isolation of a noisy movie projector.
5. Electronic amplification of the wanted sound level above the5. Electronic amplification of the wanted sound level above the
background noise level -- usually done as a last resort.
Masking:
Creating Background "Noise“
When an undesirable background sound can't be
reduced or eliminated, it can sometimes be masked
(made less objectionable by introducing a different
sound). For example, piped-in music in restaurants can
mask the din of dish clatter and multiple conversation.p
At the other extreme, a masking sound may be
introduced to correct an oppressively quiet room. For
example, a telephone ring or a slight cough can bep , p g g g
distracting in a very "dead" room, and speech privacy
would be impossible. In many cases the heating and
air conditioning systems will provide a sufficientair conditioning systems will provide a sufficient
amount of masking noise.
Sound IsolationSound Isolation
The control of intruding sound ideally begins with the initial building
concept and continues to be a consideration through the life of the
building Total sound conditioning affectsbuilding. Total sound conditioning affects
1. site selection
2 b ildi i i h i2. building orientation on the site
3. room orientation within the building
4. design, detailing, specification
5. construction5. construction
6. inspection.
Predictable sound attenuation can be achieved by careful attention toPredictable sound attenuation can be achieved by careful attention to
detail during all phases of planning and construction.
Site Selection for Sound Control
Orientation
Room Arrangement
1. What is the STC rating of the outside kitchen exterior wall?
sound barrier
Sound BarriersSound Barriers
If the noise source is intense and no natural sound
barrier exists, a man-made sound barrier should be
considered as part of the design. A solid fence-type
barrier may remove from 10 to 20 db from the noise
level High-frequency sounds will be reduce morelevel. High frequency sounds will be reduce more
than low frequency sounds. The cost of an outside
barrier may be less than the cost of reducing the
d t i i i th t tisound transmission in the construction.
This type of sound barrier must completely shield the
building from the noise source. It should be placedg p
as close to the sound source as possible to obtain the
greatest sound-shadow angle. If a fence or wall is
used no louvers or openings should be permittedused, no louvers or openings should be permitted.
Acoustical Zoning
Airborne Sound
Airborne sound includes conversation, outdoor
noises, music and machine noises (machines usually
also produce impact sound) It is the major sourcealso produce impact sound). It is the major source
of intruding sound from rooms on the same floor
and from the outdoors. It is controlled by:
( i h )1. Mass (weight),
2. Isolation (decoupling),
3. Absorption3. Absorption
4. Limpness of Construction.
Th t b bi d ith i ti ht li dThese must be combined with airtight sealing and
the elimination of flanking paths (routes by which
the sound travels around a partition rather thanp
being stopped by it).
AbsorptionThe amount of sound energy dissipated depends on the thickness of the
material its density (which determines the amount of difficulty that thematerial, its density (which determines the amount of difficulty that the
sound encounters in traveling through), and it's resiliency (flexibility with the
ability to spring back to its original shape). Mineral wool insulation because
of its porous yet dense character, is highly effective in this application. Sound
bl k f d h h h d h h lattenuation blankets are manufactured with higher density than thermal
insulating blankets to obtain optimum attenuation. Mineral fiber sound
attenuation blankets, placed between the studs in a resilient partition with
resilient channels, retard movement of the air column and convertresilient channels, retard movement of the air column and convert
considerable sound energy into heat. However, if the diaphragms are directly
connected to rigid studs, the partition will act as a single diaphragm,
rendering the wool ineffective in dissipating sound energy.
Flanking Paths
Some of the most common flanking paths are
supplied bysupplied by
plumbing pipes,
air ducts and
electrical conduit rigidly connected between
the floor and ceiling.
Continuous walls between floors, columns or
any other continuous structural elements will
fl ki h f i d I fact as flanking paths for impact sound. In fact,
any rigid connection between the two
diaphragms will effectively transmit impactdiaphragms will effectively transmit impact
sound.
Flanking Paths
Architectural AcousticsArchitectural Acoustics
• Factors Affecting Architectural Acousticsg
1. Reverberation Time
• When the reverberation time is too high, the sound produced byWhen the reverberation time is too high, the sound produced by 
the speaker will persist for a long period of time.
• Similarly ,when the reverberation time is low, sound dies quickly 
and becomes inaudible in a short amount of timeand becomes inaudible in a short amount of time.
• In order to improve the sound, reverberation time of a hall should 
be increased to an optimum value.
Remedies :‐
• Decreasing total absorption coefficient of the wall
• Placing sound reflection boards inside a hall• Placing sound reflection boards inside a hall
2. Loudness
• Reverberation time of a hall is directly proportional to loudness.
• Low loudness results in existence of sound for a shorter period 
hil hi h l d lt i i t f d f lwhile high loudness results in existence of sound for a longer 
period.
• Therefore sound produced by the speaker should be within 
audible range.
Remedies :‐
• Placing sound absorbing boards to reduce loundness• Placing sound absorbing boards to reduce loundness
• Placing sound reflecting boards to increase loudness
3. Echelon Effect
• Unwanted sounds are produced when people walk on 
staircase or floors or hard paved paths due to poor finishing 
f h fl f l ffof the floor surface, structural effects, etc.
• The above mentioned unwanted sound are termed as 
‘echelon effect’ .echelon effect  .
Remedies :‐
• Finishing the floors or stairs very finely.
• Using carpet to caver floors and stairs.
4. Structure‐Borne Sound
• Sound waves generated inside a hall are known as structure‐borne 
sound.
Th d d d t t ti f b h &• They are produced due to apparent motion of benches & 
footsteps & propagated through walls and floors.
Remedies :‐
• Using rigid structures so as to rest the vibrations.
• Introducing discontinuities in the path of sound.
C ti fl d ili ith it bl d b bi• Converting floor and ceilings with suitable sound absorbing 
materials & anti‐vibration mouths. 
5 Echo5. Echo
• If the time interval between direct sound and reflected 
sound is less than 1/15 of a second, the reflected sound is 
helpful in incresing loudness.
• But if the time interval is less than that, then the sound 
arrives later and will cause confusionarrives later and will cause confusion.
Remedies :‐
• To prevent unnecessary reflection of sound.To prevent unnecessary reflection of sound.
• Covering long distance walls and ceilings with suitable sound 
absorbing materials.
6. Focusing due to walls and ceilings
• Sound produced by speaker undergoes multiple reflections at• Sound produced by speaker undergoes multiple reflections at 
ceilings and walls. 
• Reflected sounds from ceilings and walls should not be focused on 
particular point, rather it should be distributed throughout a hall.
• Generally a plane surface reflects sound uniformly but a curved 
surface does not. So reflection of sound from a curved surface 
produces a harmful effect.
Remedies :‐
R di f t f ili h ld b k t t i th h i ht f• Radius of curvature of ceilimg should be kept twice the height of 
the building
• Distribution of sound waves from a concave surface should be 
made uniform
7 Resonance within a building7. Resonance within a building
• Sound waves get amplifies when the  frequency of vibration 
of air particles matches with the hall’s natural frequency of 
vibration.
• Thus, it results in an unwanted sound effect in side a hall.
R diRemedies :‐
• Model‐Hall or a model auditoriun should be kept inside a 
vessel which contains water.vessel which contains water.
• The water‐wave particle movememnts are studies and are 
used for the construction of actual hall or auditorium.
ACOUSTICALACOUSTICALACOUSTICALACOUSTICAL
MATERIALSMATERIALSMATERIALSMATERIALS
TYPES OF MATERIALSTYPES OF MATERIALS
• SOUND ABSORBERS
• SOUND DIFFUSERS
• NOISE BARRIERS
• SOUND REFLECTORS
SOUND ABSORBERSSOUND ABSORBERS
• These sound absorbing acoustical panels and soundproofing
materials are used to eliminate sound reflections to improve speech
i t lli ibilit d t di d t b filt iintelligibility, reduce standing waves and prevent comb filtering.
• Typical materials are open cell polyurethane foam, cellular
melamine, fiberglass, fluffy fabrics and other porous materials. A
wide variety of materials can be applied to walls and ceilings
depending on your application and environmentdepending on your application and environment.
• These materials vary in thickness and in shape to achieve different
absorption ratings depending on the specific sound requirements.
TYPES –
Acoustical foam panels
White paintable acoustical wall panels
Fabric wrapped panels
Acoustical wall coverings
Ceiling tiles
Baffles and banners for ceiling
Fibre glass blankets and roll
ACOUSTICAL FOAM PANELSACOUSTICAL FOAM PANELS
• These acoustical foam sound absorbers are used in a wide variety of applications ranging
from Recording and Broadcast Studios to Commercial and Industrial Facilities. Available in
Polyurethane or in a Class 1 Fire Rated foam These products can be applied directly toPolyurethane or in a Class 1 Fire Rated foam. These products can be applied directly to
walls, hung as baffles or used as freestanding absorbers.
Design enables you to
i thi k i kl
Anechoic wedges are
ideal for controlling
l f d
STACKABLE FOAM
increase thickness quickly
by nesting layers
Standard patterns include
wedge, pyramid, max
d f l f ANECHOIC WEDGE
low frequency sound
to create a room that
is perceptually devoid
of sound.
STACKABLE FOAM
wedge for low frequency
absorption, ceiling baffles,
bermuda triangle traps for
corners, sounds cylinders
f di b b
Absorbers are lightweight
open cell foams used when a
Class 1 fire rated foam is
ANECHOIC WEDGE
CUTTING WEDGE
Installs to create seamless absorptive walls,
STANDARD POLYURETHANE FOAM PATTERNS
free standing absorbers Class 1 fire rated foam is
required. Standard patterns
include Wedge, Pyramid,
Max Wedge, Ceiling Baffles
and more These can easilyp
and enhance imaging by reducing
unwanted reflections. Available in 1'x1' or
2'x4' sheets.
and more. These can easily
mount to walls or ceilings.
FIRE RATED
FOAM
WHITE PAINTABLE PANELS
• It is a white acoustical wall panel with a soft textured appearance. The two foot by one foot
dimension provides installers flexibility to mount acoustical panels around existing objects.
In addition to reducing echo and reverberation, these acoustical panels are used to create
i d i d tt Th l fib i f d ith i t bl i Thiunique designs and patterns. The glass fiber core is faced with a paintable covering. This
allows you to match or complement existing wall colors by applying a light coat of flat or
matte spray paint. To customize the look even further, many local printing companies now
have the capability to produce an image directly to the face of these panels.
∞ Quick & Easy acoustical solution∞ Quick & Easy acoustical solution
∞ Soft drywall texture appearance
∞ Create unique patterns
∞ Panel size allows for flexible mounting options
∞ Paintable & Printable finish
Construction: 1 " Fiberglass 6 PCF
acoustical core + molded fiberboard
+ paintable facing. Resin hardened
d P i t bl fi i h
Sustainability
This product bears the
M tisquare edges. Paintable finish covers
face and exposed edges.
Class A rating per ASTM E 84
Panel Size: 2' x 1' (24 inches by 12
i h )
This product bears the
Green Cross label for
recycled content. The
acoustical substrate is
certified on average to
t i t l t 35%
Mounting
Installs using standard impaling clip
method. (adhesive by others) Other
mounting options shown below.
inches)
Thickness: 1-1/8"
Quantity per box: 10 panels
contain at least 35%
recycled glass, with 9%
post-consumer and 26%
pre-consumer content.
MOUNT IN CORNERS USING
CORNER CLIPS.
MOUNT ON TWO INCH STAND
OFF CLIPS
FABRIC WRAPPED PANELS
• Acoustical sound panels utilize 6-7 PCF glass fiber material for maximum absorption.
Available as wall panels, ceiling tiles, hanging baffles, acoustical clouds and bass traps, with
more than 50 standard colors to choose from, these materials will look as good as they
sound. The standard sizes and configurations best maximize raw materials, however, manyg y
of these products can be customized to meet specific requirements should you need material
sized to fit or other finishes or coverings.
•Ceiling clouds reduce reflected sound in areas such as
th t t t h i ll
CEILING CLOUDS
theaters, restaurants, arenas, shopping malls,
convention centers, recording and broadcast rooms, or
anywhere absorption is required.
•All surface faces and edges of the
glass fiber core are wrapped in
• Used to reduce echo and
reverberation in applications,
small and large These panels
WALL PANELS
CEILING BAFFLES
glass fiber core are wrapped in
fabric to match or accentuate
room décor . Ceiling Baffles
absorb sound on all sides and
edgessmall and large. These panels
are manufactured from a
rigid high density (6-7 PCF)
glass fiber acoustical board
and covered with an
CEILING TILES
• Ceiling Tiles are an
excellent choice for
many ceiling grid
edges.
•Sculptured sound absorbing
modular units used for walls, as
corner traps, bass traps andand covered with an
acoustically transparent
fabric.
many ceiling grid
applications requiring
high absorption.
BROADBAND ABSORBER
ceiling applications. Available in
half-rounds or quarter-rounds.
WALL COVERINGS
• Acoustical wall fabric is a dimensional fabric that offers excellent acoustical properties,
unmatched fade resistance, and a fire/smoke retardant class A rating. Sound channels is
resistant to moisture, mildew, rot, bacteria, and is non-allergenic. Produced with no voc’s
(volatile organic compounds) ods’s (ozone depleting substances) heavy metals or(volatile organic compounds), ods s (ozone depleting substances), heavy metals or
formaldehyde, it's the perfect acoustic fabric for offices, classrooms, conference centers or
any area where speech intelligibility is a critical factor.
Installation:
•This material is not factory trimmed. It is necessary
for the installer to cut a straight vertical edge
•Following the ribbed pattern. All edges must be butt
joined. Do not overcut edges. Cut material to
Features:
•Lightweight Acoustic Fabric
Applications:
•Conference Rooms
•Desired lengths, allowing for top and bottom
trimming. Wall carpet should be hung
•Straight up. Do not alternately reverse strips.
•Apply a premixed heavy duty adhesive directly to
•Lightweight Acoustic Fabric
•Easy to install
•Class A
•Passes Corner Burn Test
•Available in Many Colors
•Conference Rooms
•Theaters
•Hospitals
•Municipal
•Office Partitions
the wall, allowing it to dry to its maximum tackability
•Without it being overly dry. (Important!!! Adhesives
are ready mixed. Do not dilute)
•Adhesive and do not apply adhesive to the back of
•Available in Many Colors
•Durable / Abuse Resistant
•Improves Speech Intelligibility
•Office Partitions
•Schools
•Hallways
•and more...
the wall covering).
•Please be sure to follow instructions as provided by
the adhesive manufacturer.
CEILING TILES
• Cloudscape® Ceiling Tiles absorb noise and block sound transmission. These ceiling tiles
are designed to fit into existing 2' x 2' suspended drop tile ceiling grid systems. They may
also retrofit in a 2' x 4' ceiling grid by installing cross tees. Cloudscape® ceiling tiles may
also be ordered as a full 24" x 24" size un backed for adhesive mounting directly to walls oralso be ordered as a full 24 x 24 size, un-backed for adhesive mounting directly to walls or
ceilings.
• Ordinary ceilings take on new levels of visual excitement with these sculptured tiles. They
are available in five different patterns plus a non-patterned look to enable you to "mix and
t h" f d imatch" for your own designs.
Available Sizes:
24" x 24" (nominal)( )
Specify grid when ordering:
9/16 or 15/16
BAFFLES AND BANNERS
• Baffles and Banners are designed to solve acoustical problems economically in any large
cubic volume space such as arenas, gymnasiums, theaters, restaurants, and auditoriums.
Reverberation times that range from 4 to 9 seconds can be reduced to 1/2 to 2 seconds.
Speech intelligibility is greatly improved and sound intensity levels are reducedSpeech intelligibility is greatly improved and sound intensity levels are reduced
simultaneously by 3 to 12 decibels.
BAFFLES:
• Baffles are an economical way to
d d l l d l
BANNERS:
•Speech intelligibility is greatly
improved and sound intensity levelsreduce sound pressure levels and lower
reverberation times in large spaces
such as gymnasiums, theaters,
restaurants, health and fitness clubs,
t R b ti ti b l d
improved and sound intensity levels
can be simultaneously reduced by 3 to
12 decibels.
•Banners are suspended from ceilings,
bar joists or pre-engineeredetc. Reverberation times can be lowered
from a RT60 of 4 - 9 seconds down to a
RT60 of 0.5 - 2 seconds. Speech
intelligibility is greatly improved and
d i t it l l
bar joists or pre engineered
suspension systems. They are designed
to hang in a horizontal or in a
catenary fashion using edge stiffeners
or deck mounted flat with washersound intensity levels can
be simultaneously reduced by 3 to 12
decibels.
•These baffles are easily suspended from existing open truss and pre-
or deck mounted flat with washer
plates
y p g p p
engineered suspension systems. They are designed to hang in a
vertical fashion, allowing free flow of air and integrate exceptionally
well with existing sprinklers, lighting and HVAC systems.
SOUND DIFFUSERS
• These devices reduce the intensity of sound by scattering it over an expanded area rather• These devices reduce the intensity of sound by scattering it over an expanded area, rather
than eliminating the sound reflections as an absorber would. Traditional spatial diffusers,
such as the polycylindrical (barrel) shapes also double as low frequency traps. Temporal
diffusers, such as binary arrays and quadratics, scatter sound in a manner similar to
diffraction of light where the timing of reflections from an uneven surface of varyingdiffraction of light, where the timing of reflections from an uneven surface of varying
depths causes interference which spreads the sound.
QUADRA PYRAMID DIFFUSER
•This diffuser generates a uniform
PYRAMIDAL DIFFUSER
•This traditional industry
kh di dpolar response over a broad frequency
range using a pre-rotated pyramidal
pattern to create 16 angles of
reflection.
workhorse disperses sound
uniformly over a broad frequency
range. A quick solution to reduce
flutter echo.
DOUBLE DUTY DIFFUSER
Th P l li d i l
QUADRATIC DIFFUSER
A true quadratic•These Polycylindrical
Diffusers do twice the
work. They scatter sound
and function as a bass
t
A true quadratic
residue diffuser
designed for uniform
broadband scattering
and reducing High-Qtrap. and reducing High-Q
reflections.
NOISE BARRIERS
BARRIERS
These materials range from dense materials to block the transmission of airborne sound to
devices and compounds used to isolate structures from one another and reduce impact noise.
COMPOSITES
•Sound barrier materials are used
to reduce the transmission of
airborne sound. The BlockAid®
d l d h
•Composite materials are manufactured
from combinations of various materials
from open and closed celled foams to
quilted fiberglass and barrier Theseseries of products include the
standard one pound per square
foot non reinforced barrier,
transparent material when
b i i i i
quilted fiberglass and barrier. These
products are used to block and absorb
sound for machine enclosures as well as
blocking airborne sound and impact noise.
Some of these products include Compositeobservation or supervision is
required, reinforced vinyl to create
a hanging barrier partition.
Some of these products include Composite
Foams, StratiQuilt Blankets and Floor
Underlayment.
VIBRATION CONTROLVIBRATION CONTROL
•Vibration control products are used to absorb vibration energy and
prevent structural noise transmission. These include vibration damping
compounds and vibration pads, isolation hangers, and resilient clips. They
improve sound transmission loss.
FABRICS
• Acoustical fabrics are typically used to either absorb sound or as a cover for acoustical
panels. Some fabrics can also be used as a speaker grill cloth or as a finish on other types of
materials.
SOUND CHANNELS WALL FABRICS GUILFORD OF MAINESOUND CHANNELS WALL FABRICS
•Acoustical wall fabric is a dimensional fabric
that offers excellent acoustical properties,
unmatched fade resistance, and a fire/smoke
d l d h l
GUILFORD OF MAINE
•Guilford of Maine® Fabric is and
acoustically transparent fabric used to
cover many of our products including
retardant class A rating. Sound channels® is
resistant to moisture, mildew, rot, bacteria, and is
non-allergenic. Produced with no voc’s (volatile
organic compounds), ods’s (ozone depleting
b h l f ld h d i
y p g
acoustical wall panels, diffusers, and
corner traps. Fabric is also sold separately
as speaker grill cloth, wall covering and
for other field applications.
substances), heavy metals or formaldehyde, it's
the perfect acoustic fabric for offices, classrooms,
conference centers or any area where speech
intelligibility is a critical factor.
pp

More Related Content

What's hot

Architectural acoustics
Architectural acousticsArchitectural acoustics
Architectural acousticsRavi Sharma
 
Auditorium Acoustics
Auditorium Acoustics Auditorium Acoustics
Auditorium Acoustics mominzaki
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Reportjisunfoo
 
Acoustical materials
Acoustical materialsAcoustical materials
Acoustical materialsshahzeb163
 
AUDITORIUM DESIGN(1).pdf
AUDITORIUM DESIGN(1).pdfAUDITORIUM DESIGN(1).pdf
AUDITORIUM DESIGN(1).pdfAr Gouripur
 
Acoustic material market survey.pdf
Acoustic material market survey.pdfAcoustic material market survey.pdf
Acoustic material market survey.pdfNehaRanade2
 
Auditorium Literature Study & Design Considerations
Auditorium Literature Study & Design ConsiderationsAuditorium Literature Study & Design Considerations
Auditorium Literature Study & Design ConsiderationsVartika Sharma
 
Convention hall interior acoustics
Convention hall  interior acoustics Convention hall  interior acoustics
Convention hall interior acoustics Shourya Puri
 
Structure borne
Structure borneStructure borne
Structure borneYNam Ho
 
Intro to auditorium design
Intro to auditorium designIntro to auditorium design
Intro to auditorium designDivya Kothari
 
Auditorium Architecture planning
Auditorium Architecture planningAuditorium Architecture planning
Auditorium Architecture planningDanishPathan7
 
Sound absorption and sound absorbers
Sound absorption and sound absorbersSound absorption and sound absorbers
Sound absorption and sound absorbersRohit Bhatt
 

What's hot (20)

Pioneers in acoustics
Pioneers in acousticsPioneers in acoustics
Pioneers in acoustics
 
Architectural acoustics
Architectural acousticsArchitectural acoustics
Architectural acoustics
 
Acoustic material
Acoustic materialAcoustic material
Acoustic material
 
Architectural acoustic notes
Architectural acoustic notesArchitectural acoustic notes
Architectural acoustic notes
 
Sounds In Architecture
Sounds In Architecture Sounds In Architecture
Sounds In Architecture
 
Auditorium Acoustics
Auditorium Acoustics Auditorium Acoustics
Auditorium Acoustics
 
Auditorium ACOUSTICS
Auditorium ACOUSTICSAuditorium ACOUSTICS
Auditorium ACOUSTICS
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Report
 
Acoustical materials
Acoustical materialsAcoustical materials
Acoustical materials
 
AUDITORIUM DESIGN(1).pdf
AUDITORIUM DESIGN(1).pdfAUDITORIUM DESIGN(1).pdf
AUDITORIUM DESIGN(1).pdf
 
Acoustic materials
Acoustic materialsAcoustic materials
Acoustic materials
 
Acoustic material market survey.pdf
Acoustic material market survey.pdfAcoustic material market survey.pdf
Acoustic material market survey.pdf
 
Auditorium acoustics
Auditorium acousticsAuditorium acoustics
Auditorium acoustics
 
Auditorium Literature Study & Design Considerations
Auditorium Literature Study & Design ConsiderationsAuditorium Literature Study & Design Considerations
Auditorium Literature Study & Design Considerations
 
Convention hall interior acoustics
Convention hall  interior acoustics Convention hall  interior acoustics
Convention hall interior acoustics
 
Structure borne
Structure borneStructure borne
Structure borne
 
Intro to auditorium design
Intro to auditorium designIntro to auditorium design
Intro to auditorium design
 
Auditorium Architecture planning
Auditorium Architecture planningAuditorium Architecture planning
Auditorium Architecture planning
 
Sound absorption and sound absorbers
Sound absorption and sound absorbersSound absorption and sound absorbers
Sound absorption and sound absorbers
 
Room acoustics
Room acousticsRoom acoustics
Room acoustics
 

Viewers also liked

Building service.ppt of neeru and aprajeeta
Building service.ppt of neeru and aprajeetaBuilding service.ppt of neeru and aprajeeta
Building service.ppt of neeru and aprajeetativar rose
 
Detailed understanding of the master plan ar. m. senthil
Detailed understanding of the master plan  ar. m. senthilDetailed understanding of the master plan  ar. m. senthil
Detailed understanding of the master plan ar. m. senthilAr. M. Senthil [ senthilmani ]
 

Viewers also liked (19)

Building service.ppt of neeru and aprajeeta
Building service.ppt of neeru and aprajeetaBuilding service.ppt of neeru and aprajeeta
Building service.ppt of neeru and aprajeeta
 
State Museum Bhopal
State Museum BhopalState Museum Bhopal
State Museum Bhopal
 
Bhurj khalifa _Net Case Study
Bhurj khalifa _Net Case StudyBhurj khalifa _Net Case Study
Bhurj khalifa _Net Case Study
 
Literature study kanchanchunga apts
Literature study   kanchanchunga aptsLiterature study   kanchanchunga apts
Literature study kanchanchunga apts
 
GSW Head quarters, berlin case study
GSW Head quarters, berlin  case studyGSW Head quarters, berlin  case study
GSW Head quarters, berlin case study
 
University of Madras Campus Photos in details
University of Madras Campus Photos in detailsUniversity of Madras Campus Photos in details
University of Madras Campus Photos in details
 
Kalakshetra chennai
Kalakshetra chennaiKalakshetra chennai
Kalakshetra chennai
 
Building construction r.c.c. sheets
Building construction r.c.c. sheetsBuilding construction r.c.c. sheets
Building construction r.c.c. sheets
 
Auckland art gallery
Auckland art galleryAuckland art gallery
Auckland art gallery
 
1 Fire safety design principles
1  Fire safety design principles1  Fire safety design principles
1 Fire safety design principles
 
Detailed understanding of the master plan ar. m. senthil
Detailed understanding of the master plan  ar. m. senthilDetailed understanding of the master plan  ar. m. senthil
Detailed understanding of the master plan ar. m. senthil
 
Akshardham newdelhi
Akshardham newdelhiAkshardham newdelhi
Akshardham newdelhi
 
Regional science centre, bhopal
Regional science centre, bhopalRegional science centre, bhopal
Regional science centre, bhopal
 
Robert fellow chisholm works
Robert fellow chisholm worksRobert fellow chisholm works
Robert fellow chisholm works
 
Kolumba museum presentation
Kolumba museum presentationKolumba museum presentation
Kolumba museum presentation
 
Bharat Bhavan, Bhopal by charless correa
Bharat Bhavan, Bhopal by charless correaBharat Bhavan, Bhopal by charless correa
Bharat Bhavan, Bhopal by charless correa
 
Carlo scarpa's castel vechhio museum
Carlo scarpa's castel vechhio museum Carlo scarpa's castel vechhio museum
Carlo scarpa's castel vechhio museum
 
Principles and elements of landscape design
Principles and elements of landscape designPrinciples and elements of landscape design
Principles and elements of landscape design
 
Art gallery proposal
Art gallery proposalArt gallery proposal
Art gallery proposal
 

Similar to Wavelength and Sound Properties

Similar to Wavelength and Sound Properties (20)

physics - SOUND - AJAY
physics - SOUND - AJAYphysics - SOUND - AJAY
physics - SOUND - AJAY
 
Preliminary Physics - World communicates 2
Preliminary Physics - World communicates 2Preliminary Physics - World communicates 2
Preliminary Physics - World communicates 2
 
Waves ch. 8
Waves ch. 8Waves ch. 8
Waves ch. 8
 
Sound
SoundSound
Sound
 
Ch5 wave motions and sound
Ch5 wave motions and soundCh5 wave motions and sound
Ch5 wave motions and sound
 
Sound resounance
Sound resounanceSound resounance
Sound resounance
 
Sound Waves
Sound WavesSound Waves
Sound Waves
 
Programmed learning material
Programmed learning materialProgrammed learning material
Programmed learning material
 
Programmed learning material
Programmed learning materialProgrammed learning material
Programmed learning material
 
CLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptxCLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptx
 
homework 449872.pptx
homework 449872.pptxhomework 449872.pptx
homework 449872.pptx
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
12 sound
12 sound12 sound
12 sound
 
soundautosaved-200819071112 (1).pptx
soundautosaved-200819071112 (1).pptxsoundautosaved-200819071112 (1).pptx
soundautosaved-200819071112 (1).pptx
 
Wavesppt
WavespptWavesppt
Wavesppt
 
12sound (1)
12sound (1)12sound (1)
12sound (1)
 
sound
soundsound
sound
 
04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx
 
12sound
12sound12sound
12sound
 
physics ppt.pptx
physics ppt.pptxphysics ppt.pptx
physics ppt.pptx
 

More from Ar. M. Senthil [ senthilmani ]

Masters Thesis Report _ Skyscraper _ High rise Mixed use Development
Masters Thesis Report _ Skyscraper _ High rise Mixed use DevelopmentMasters Thesis Report _ Skyscraper _ High rise Mixed use Development
Masters Thesis Report _ Skyscraper _ High rise Mixed use DevelopmentAr. M. Senthil [ senthilmani ]
 

More from Ar. M. Senthil [ senthilmani ] (18)

Edu-Archs - Youtube Channel
Edu-Archs - Youtube Channel Edu-Archs - Youtube Channel
Edu-Archs - Youtube Channel
 
Corporate office planning guidelines
Corporate office planning guidelinesCorporate office planning guidelines
Corporate office planning guidelines
 
Guide to Thesis
Guide to ThesisGuide to Thesis
Guide to Thesis
 
Aadhya midas year book - 2019
Aadhya  midas year book - 2019Aadhya  midas year book - 2019
Aadhya midas year book - 2019
 
B.arch regulation 2017 _ Anna University
B.arch regulation 2017 _ Anna UniversityB.arch regulation 2017 _ Anna University
B.arch regulation 2017 _ Anna University
 
Design studio check list
Design studio check listDesign studio check list
Design studio check list
 
Building Materials and construction I - AR8222
Building Materials and construction I - AR8222Building Materials and construction I - AR8222
Building Materials and construction I - AR8222
 
Urban Open spaces
Urban Open spacesUrban Open spaces
Urban Open spaces
 
Planning analysis and design of museum building
Planning analysis and design of museum buildingPlanning analysis and design of museum building
Planning analysis and design of museum building
 
TDR - TRANSFER OF DEVELOPMENT RIGHTS
TDR - TRANSFER OF DEVELOPMENT RIGHTSTDR - TRANSFER OF DEVELOPMENT RIGHTS
TDR - TRANSFER OF DEVELOPMENT RIGHTS
 
Site area requirement reference
Site area requirement referenceSite area requirement reference
Site area requirement reference
 
medicity - hospital thesis synopsis
medicity - hospital thesis synopsis medicity - hospital thesis synopsis
medicity - hospital thesis synopsis
 
BhurJ khalifa , DUBAI _ CASE STUDY PRESENTATION
BhurJ khalifa , DUBAI _ CASE STUDY PRESENTATIONBhurJ khalifa , DUBAI _ CASE STUDY PRESENTATION
BhurJ khalifa , DUBAI _ CASE STUDY PRESENTATION
 
Special study: green skyscrapers
Special study: green skyscrapersSpecial study: green skyscrapers
Special study: green skyscrapers
 
urban morphology
 urban morphology  urban morphology
urban morphology
 
Masters Thesis Report _ Skyscraper _ High rise Mixed use Development
Masters Thesis Report _ Skyscraper _ High rise Mixed use DevelopmentMasters Thesis Report _ Skyscraper _ High rise Mixed use Development
Masters Thesis Report _ Skyscraper _ High rise Mixed use Development
 
Dissertation _ Museum
Dissertation _ MuseumDissertation _ Museum
Dissertation _ Museum
 
Museum Case Studies
Museum Case StudiesMuseum Case Studies
Museum Case Studies
 

Recently uploaded

Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxElton John Embodo
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 

Recently uploaded (20)

Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 

Wavelength and Sound Properties

  • 1. Prepared by: A M S thilAr. M. Senthil
  • 2.
  • 4. Transverse and longitudinal wavesTransverse and longitudinal waves • In case of solids, these  simple harmonicsimple harmonic  vibrations(air particles  vibration) produce  transverse waves in which  the motion of thethe motion of the  individual particles are at  right angles to the motion  of the waves. f l d d• In case of liquids and gases  , the waves produced are  longitudinal  in which the  motion of the individual  i l ll l hparticles are parallel to the  motion of the waves.
  • 5. Simple harmonic motionSimple harmonic motion • In a simple harmonic wave motion  of sound, whether it is longitudinal  or transverse, particle repeatedly  attain maximum displacement in  iti d ti di ti tpositive and negative directions at  periodic distances. • The number of times each particle  k th t d f timakes the to‐and‐fro motion  about its mean position is called  frequency, f, and the time taken  for one such motion is called thefor one such motion is called the  period ,t. • Frequency f = 1 / t
  • 6. Velocity of sound wavesVelocity of sound waves • In case of a solid bar the velocity of theIn case of a solid bar , the velocity of the  sound v is given by v = E/ p • Where E= Modulus of Elasticity• Where E= Modulus of Elasticity • P = density of the material
  • 7. Wave Characteristics Wave Fronts • One –Dimensional wave frontOne  Dimensional wave front • Two‐ Dimensional wave front • Three‐Dimensional wave front Wave Surfaces Crests, Troughs, Condensation and Rarefactions In a transverse wave motion the maximum and minimumIn a transverse wave motion, the maximum and minimum  displacements are called the crest and the trough in a  longitudinal wave motion the corresponding points of  maximum and minimum displacements are calledmaximum and minimum displacements are called  compressions and rarefactions  
  • 8. Properties of soundProperties of sound • Characteristics of soundCharacteristics of sound • Behaviour of sound in enclosures fl i f d• Reflection of sound • Echoes • Dispersion • Sound shadowsSound shadows
  • 9. Characteristics of sound The three characteristics of sound are 1. The Intensity(I) of sound: which refers to its y( ) loudness and depends on the amplitude of  the sound wave, Iα A²., 2. The Pitch of sound: which depends on the  frequency of the sound wavefrequency of the sound wave. 3. The Quality of sound: which distinguishes the  sound produced by one source from anothersound produced by one source from another.
  • 10. Characteristics of sound Sound travels in air with a velocity of 336 m/s atSound travels in air with a velocity of 336 m/s at  normal temperature and pressure. There are two scales of measurement of soundThere are two scales of measurement of sound  level 1. Phone: It is a scale which takes into account the1. Phone: It is a scale which takes into account the  varying sensitivity of the ear to sounds of  different frequencies 2. Sones: It is a scale which gives the proportional  apparent loudness of sounds.
  • 11. Behaviour of sound in enclosures • When sound generated in a room it is reflected, absorbed  and transmitted in various proportions in accordance with  h f i Th f h b h ithe nature of construction. These aspects of the behavior  of sound are very important from the acoustical point of  view.
  • 12. Reflection of sound • Sound waves reflected at a convex surface areSound waves reflected at a convex surface are  bigger. • Sound waves reflected at a concave surface• Sound waves reflected at a concave surface  are smaller.
  • 13. Echoes • Echoes can be distinguished when reflectedEchoes can be distinguished when reflected  sound is heard about one‐fifteenth of a  second or more after the direct soundsecond or more after the direct sound.
  • 14. Dispersion • Sound striking a modelled surface is broken upSound striking a modelled surface is broken up  into a number of small and weak waves. This  scattering effect can be used to preventscattering effect can be used to prevent  echoes.
  • 18. Sono meterSono meter • A Sonometer is an apparatus made of a hollow box having two holes. A  string is attached to it by which the transverse vibrations of strings can be  studied. One  end of the string is fixed and the other end it is attached to a  pulley with a weight holder below the pulley . • Weights can be added to the holder to produce tension in the wire. • A sonometer demonstrates the relationship between  frequency of  the sound produced by a plucked string, and the tension, length and mass  per unit length of the string. These relationships are usually  called Mersenne’s laws after Marin Mersenne(1588–1648), who  investigated and codified them . 
  • 20. Sound Absorption coefficient(α)Sound Absorption coefficient(α) • The sound absorption coefficient α describes the property of a material to  convert incident sound into other forms of energy – e.g. thermal or kinetic  energy – and thus to absorb it. • The sound absorption coefficient α of a material indicates the amount of  the absorbed portion of the total incident sound. α = 0 means that no  absorption occurs; the entire incident sound is reflected. If α = 0.5, 50 % of  the sound energy is absorbed and 50 % is reflected. If α = 1, the entire  incident sound is absorbed, there is no longer any reflection.
  • 21. Absorption coefficientAbsorption coefficient • The sound absorption coefficient of a material is α = (1 − r), where r, the sound  energy reflection coefficient, is the ratio of sound energy reflected from the  f f h i l h i id isurface of the material to that incident upon it.
  • 22. Resonance Absorber Resonance Absorber: This term comprises allResonance Absorber: This term comprises all  types of absorbers using a resonance  mechanism such as an enclosed air volume ormechanism such as an enclosed air volume or  a vibrating surface. Resonance absorbers are  mainly suitable for absorbing sound ofmainly suitable for absorbing sound of  medium to low frequencies.
  • 24. Reverberation time  • The reverberation time depends mainly on three factors: ‐ the volume of the room, ‐ the surfaces of the room andthe surfaces of the room and ‐ the furniture in the room. • A room usually becomes more reverberant with increasing height.  Absorbing surfaces – such as carpets, curtains and sound absorbing bso b g su aces suc as ca pe s, cu a s a d sou d abso b g ceilings, but also furniture or people present in the room – reduce the  reverberation time. • The reverberation time of a room can be derived from the calculated total  equivalent sound absorption area using the Sabine formula. • Sabine formula: T= 0.163 X V/A T – Reverberation time V – Volume of the room A – Total equivalent sound absorption area
  • 26. Types of NoiseTypes of Noise There are four types of noise:e e a e ou types o o se: ❑ Continuous :Noise is continuous if the  magnitude of the noise does not vary over time.g y ❑ Intermittent :Noise is intermittent if the noise  stops and starts at intervals. ❑ Impulsive :Noise is impulsive if the noise is large  in magnitude but short in duration. ❑ Varying: Noise is varying if the magnitude of the  noise changes over time.
  • 27. Noise TransmissionNoise Transmission • When a sound wave impacts upon the surface of a solid body, p p y, some portion of it's energy will be reflected, some absorbed  and the rest transmitted through the body. The relative  proportion of each depends on the nature of the materialproportion of each depends on the nature of the material  impacted.
  • 28. Transmission of NoiseTransmission of Noise Noise emitted from a source is transmitted through many complicated paths, g y p p , sometimes through a conductor and sometimes as radiation. When it reaches a  device or equipment, that equipment is exposed to noise.
  • 29. Transmission Loss (TL)Transmission Loss (TL) • Transmission Loss • If we consider the transmission of sound through a partition, we  can actually measure the sound energy on both the source side  (Wsrc) and the receiving side (Wrec) to determine exactly what  fraction of the sound is transmitted through We can thusfraction of the sound is transmitted through. We can thus  determine the transmission coefficient (t) for that partition as  follows: • t =  Wreceiver/Wsource • The term Transmission Loss (TL), or more commonly Sound ( ), y Reduction Index (SRI) are used to describe the reduction in sound  level resulting from transmission through a material. This is given  by: • SRI 10 log (Wsource / Wreceiver) 10 log (1/t) 10 log (t)• SRI = 10 log (Wsource / Wreceiver) = 10 log (1/t) = ‐10 log (t)
  • 33. Noise controlNoise control Three ways to control noise There are only three basic ways to attenuate or reduce sound, whether at the source,  at the listener’s location, or along the path it travels from the source to the  receiver: 1 R l th d ith i t1. Replace the sound source with a quieter one. 2. Block the sound with a solid, heavy material that resists the transmission of sound  waves. 3 Absorb the sound with a light porous material that soaks up sound waves3. Absorb the sound with a light, porous material that soaks up sound waves.
  • 34. Controlling noise at the source Before designing acoustical treatment to attenuate noise at the source,  consider the following measuresconsider the following measures: 1. Moving the source to a more distant location or to another area, where its  noise will not reach an objectionable level at the listener’s place.j p 2. Adjusting or modifying the source for quieter operation. If for example the  source of noise is a mechanism such as a fan or motor, it may be operated  at a lower speed. 3 Repairing or servicing the noise source It may be as simple a matter as3. Repairing or servicing the noise source. It may be as simple a matter as  lubricating gears, tensioning drive belts, or tightening loose and vibrating  screws or bolts. 4. Mounting the noise source on a resilient base (such as springs or soft pads)  i l ib i d h d h b d i ito isolate vibration and thus reduce the structure borne sound arriving at  the listener’s location. 5. Replacing the noise source with a quieter one. Modern appliances, for  example, generally operate much more quietly than older models.p , g y p q y
  • 35. Controlling noise along its pathControlling noise along its path • Reflected sound may be reduced by placing sound absorbing y y p g g materials on surfaces from which sound will be reflected.
  • 36. Controlling noise at the receiverControlling noise at the receiver • If source control is not practical, another approach would be to treat the  problem at the receiver. • “Temporary” sound control: Direct ear protection (earplugs or earmuffs)  is often used to protect workers’ hearing when source and path noise control are not practical or possible.
  • 38. Acoustics is usually very broadly defined as "the science of sound." Room Acoustics The shaping and equipping of an enclosed space top g q pp g p obtain the best possible conditions for faithful hearing of wanted sound and the direction and the reduction of unwanted soundunwanted sound. Room Acoustics deal primarily with the control of sound which originates within a single enclosure, rather than its transmission between rooms.
  • 40. Speaker diameter (cm) Frequencies (Hz) cutoff ka(cm) (Hz) ka Woofer 30 20-2,000 5.5 mid-mid range 12 2,000-5,000 5.5 tweeter 6 5,000- 5 5tweeter 6 10,000 5.5 super- tweeter 3 10,000- 20 000 5.5 The human ear can detect sounds between tweeter 20,000 The human ear can detect sounds between 20 HZ and 20,000 HZ. Most sensitive in the range of 100HZ to 5000HZMost sensitive in the range of 100HZ to 5000HZ Hear it: http://www.surendranath.org/Applets.html , then select: menu/ new  applets/new menu/ waves/ hear the beats. 
  • 42. Velocityy Rate at which sound travels through a conductor Air: Wood: Steel:
  • 43. Velocityy Rate at which sound travels through a conductor Air: 1128 feet per second Wood: 11,700 feet per second Steel: 18,000 feet per second
  • 46. Direct Sound Since sound travels in all directions from the source, each listener will hear just the segment if the overall d th t i t li i di t li t hisound wave that is traveling in a direct line to his hear (in a space free from reflecting surfaces). As the distance from the source increases, the sound, pressure at the listener's ear will decrease proportionately. (Example: good Headphones)
  • 49. Diffraction: The Sound Squeezes Through Sound waves are not always reflected or absorbed. When an obstacle is the same size as the wavelength or less the sound can bend around obstacles or flowor less, the sound can bend around obstacles or flow through small openings, and continue onward. This is called diffraction. This action is more likely for deeper d ( f l f d h h lsounds (of low frequency, and this with longer waveforms).
  • 50. ReverberationReverberation The perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after theThe perpetuation of reflected sound within a space after the source has ceased is calledsource has ceased is called reverberationreverberation. The time interval. The time interval between reflections is usually so short that distinct echoesbetween reflections is usually so short that distinct echoes are not heard Instead this series of reflections will blendare not heard Instead this series of reflections will blendare not heard. Instead, this series of reflections will blendare not heard. Instead, this series of reflections will blend with the direct sound to add "depth". Reverberation is awith the direct sound to add "depth". Reverberation is a basic acoustic property of a room. It can enrich speech andbasic acoustic property of a room. It can enrich speech and i i lli i ll it l h d tit l h d tmusic in all areasmusic in all areas ---- or it can slur speech and generateor it can slur speech and generate higher noise levels throughout a room, depending upon thehigher noise levels throughout a room, depending upon the room volume, timing, and absorption.room volume, timing, and absorption.
  • 55. P ll l fl tiParallel reflective  surfaces generates g unwanted  b ireverberation
  • 57. Studies based on the audibility of speech and music l th t th t d i bl b tireveal that the most desirable reverberation times generally fall within the ranges shown below. These values are based on a sound frequency of 500 H ( i t it h f l h)Hz (approximate pitch of male speech). Reverberation time in seconds Speech ffSmall offices 0.50 to 0.75 Classrooms/lecture rooms 0.75 to 1.00 Work rooms 1.00 to 2.00 Music Rehearsal rooms 0.80 to 1.00 Chamber music 1.00 to 1.50 Orchestral/Choral/ Average church music 1.50 to 2.00g Large organ/liturgical choir 2.00 to 2.25
  • 59. R fl ti M t i lReflecting Materials •Masonry•Masonry •Wood – smooth panels •Smooth concrete •Glass 
  • 60. Live Auditoriums, theaters (for music) Obtain proper reverberation time to enhance musical quality.quality. Provide reflective surfaces near source to reinforce sound; absorptive surfaces toward rear. Medium Live Conference and board rooms Normal speech must be heard over distances up to about 35 ft. Allow middle section of ceiling to act as a reinforcingAllow middle section of ceiling to act as a reinforcing sound-reflector. Apply absorbent to periphery of ceiling or to wall surfaces (not both). Additional treatment will t ib t littl t i d ticontribute little to noise reduction.
  • 61. MediumMedium Cafeterias (school or office) R d ll i l lReduce overall noise level. Use highly sound-absorptive ceiling; also use quiet equipment such as rubberized dish trays.q p y Gymnasiums Instructor must be heard over background noiseInstructor must be heard over background noise Use acoustical material over entire ceiling to reduce noise; walls remain untreated to permit some fl t d dreflected sound.
  • 62. Medium DeadMedium Dead Elementary-grade classrooms Teacher must be heard distinctly; reduce noise levelTeacher must be heard distinctly; reduce noise level produced by children. Acoustical ceiling essential. Supplementary acoustical space units on upper rear and side walls are desirablespace units on upper rear and side walls are desirable. Music rehearsal rooms Unlike music hall instructor must hear individual notesUnlike music hall, instructor must hear individual notes distinctly; minimum reverberation desired. Entire ceiling, sidewalls, and wall facing musicians would b t t d ll b hi d i i b l ft dbe treated; wall behind musicians may be left sound- reflective for proper hearing. Room should be located away from normal use rooms.
  • 63. Dead Kindergarten Maximum noise reduction. Maximum acoustical treatment on ceiling; space unitsg; p on available wall surfaces. Vocational classrooms and shopsVocational classrooms and shops Maximum noise reduction. Acoustical tile or lay-in panel ceiling, plus acoustical f il bl ll ltreatment of available upper wall areas; locate away from normal use rooms.
  • 64. Reverberation time (in seconds) =Reverberation time (in seconds) = .05 x volume of room ______________________________ bisabins
  • 65. Sabin The amount of sound absorbed is measured in sabins One sabin is equal to the soundsabins. One sabin is equal to the sound absorption of one square foot of perfectly absorptive surface. The sound absorptionp p equivalent to an open window of one square foot. (theoretical, since no such surface exists).
  • 66. Measuring Absorption:g p Sound Absorption Coefficient The fraction of the energy absorbed (at a specific frequency) during each reflection is represented by the sound absorptionrepresented by the sound absorption coefficient of the reflecting/absorbing surface. In the building industry, this is a meaningfulIn the building industry, this is a meaningful and widely accepted quantitative measuring of sound absorption, and applies to all surfaces -- whether they be of reflective or absorptive materials.
  • 67. Reflective SurfacesReflective Surfaces Hard, massive, non-porous surfaces, such as, , p , plaster, masonry, glass and concrete, absorb generally less than 5% of the energy of iki d d fl hstriking sound waves and reflect the rest. Such materials heaver absorption coefficients of 05 or lessof .05 or less.
  • 68. Absorptive Surfaces: Porous materials such as acoustical tile, carpets draperies and furniture are primarilycarpets, draperies and furniture are primarily absorptive. They permit the penetration of sound waves and are capable of absorbingp g most of the sound energy. These materials may have absorption coefficients approaching 1 00 (one sabin per sq ft )1.00 (one sabin per sq. ft.).
  • 69. Poor acoustical characteristics in this lecture room.
  • 70. Reflective surfaces near the speaker.Reflective surfaces near the speaker. In lecture rooms more than 40 feet long, the rear wall should be absorptive to prevent echoes.
  • 72. Acceptable Background Noise Levelsp g As a rule, we can tolerate, and even welcome, a certain amount of continuous sound before itcertain amount of continuous sound before it becomes noise. An "acceptable" level neither disturbs room occupants nor interferes with the communication of wanted sound. Recommended category classification and suggestedRecommended category classification and suggested noise criteria range for steady background noise as heard in various indoor functional activity areas as indicated in the Preferred Noise Criterion (PNC)Curves.
  • 73. Type of Space (and acoustical requirements) PNC curve Concert halls opera houses and recital halls (for listening toConcert halls, opera houses, and recital halls (for listening to faint musical sounds) 10 to 20 db Large auditoriums, large drama theaters, and churches (forLarge auditoriums, large drama theaters, and churches (for excellent listening conditions) Not to exceed 20 db Broadcast, television, and recording studios (close microphone pickup only) Not to exceed 25 db Small auditoriums, small theaters, small churches, musical h l l ti d f (frehearsal rooms, large meeting and conference rooms (for good listening), or executive offices and conference rooms for 50 people (no amplification) Not to exceed 35 dbNot to exceed 35 db Bedrooms, sleeping quarters, hospitals, residences, apartments, hotels, motels, etc. (for sleeping resting, relaxing) 25 to 40 db25 to 40 db Private or semiprivate offices, small conference rooms, classrooms, libraries, etc. (for good listening conditions) 30 to 40 db
  • 74. Type of Space (and acoustical requirements) PNC curve Living rooms and similar spaces in dwellings (for conversing or listening to radio and TV) 30 to 40 db30 to 40 db Large offices, reception areas, retail shops and stores, cafeterias, restaurants, etc. (for moderately good listening conditions)conditions) 35 to 45 db Lobbies, laboratory work spaces, drafting and engineering rooms, general secretarial areas (for fair listening, g ( g conditions) 40 to 50 db Light maintenance shops, office and computer equipment rooms, kitchens and laundries (for moderately fair listening conditions) 45 to 55 db L l b PNC 60 t d d f ffiLevels above PNC-60 are not recommended for any office or communication situation.
  • 75. Minimize Background Noise Level - Overallg noise levels which may interfere with wanted communication should always be anticipated and corrected. To provide maximum quiet, typical methods include the following:yp g 1. Elimination of outside noise by sound attenuation in walls, ceilings, and floor 2. Use of quiet mechanical equipment wherever possible. 3 Control of remaining noise by absorption carpeting upholstery3 .Control of remaining noise by absorption -- carpeting, upholstery, and acoustical treatment placed above and behind audience. 4 Individual handling of unusual noise sources -- for example4. Individual handling of unusual noise sources -- for example, isolation of a noisy movie projector. 5. Electronic amplification of the wanted sound level above the5. Electronic amplification of the wanted sound level above the background noise level -- usually done as a last resort.
  • 76. Masking: Creating Background "Noise“ When an undesirable background sound can't be reduced or eliminated, it can sometimes be masked (made less objectionable by introducing a different sound). For example, piped-in music in restaurants can mask the din of dish clatter and multiple conversation.p At the other extreme, a masking sound may be introduced to correct an oppressively quiet room. For example, a telephone ring or a slight cough can bep , p g g g distracting in a very "dead" room, and speech privacy would be impossible. In many cases the heating and air conditioning systems will provide a sufficientair conditioning systems will provide a sufficient amount of masking noise.
  • 78. The control of intruding sound ideally begins with the initial building concept and continues to be a consideration through the life of the building Total sound conditioning affectsbuilding. Total sound conditioning affects 1. site selection 2 b ildi i i h i2. building orientation on the site 3. room orientation within the building 4. design, detailing, specification 5. construction5. construction 6. inspection. Predictable sound attenuation can be achieved by careful attention toPredictable sound attenuation can be achieved by careful attention to detail during all phases of planning and construction.
  • 79. Site Selection for Sound Control Orientation
  • 82. Sound BarriersSound Barriers If the noise source is intense and no natural sound barrier exists, a man-made sound barrier should be considered as part of the design. A solid fence-type barrier may remove from 10 to 20 db from the noise level High-frequency sounds will be reduce morelevel. High frequency sounds will be reduce more than low frequency sounds. The cost of an outside barrier may be less than the cost of reducing the d t i i i th t tisound transmission in the construction. This type of sound barrier must completely shield the building from the noise source. It should be placedg p as close to the sound source as possible to obtain the greatest sound-shadow angle. If a fence or wall is used no louvers or openings should be permittedused, no louvers or openings should be permitted.
  • 84. Airborne Sound Airborne sound includes conversation, outdoor noises, music and machine noises (machines usually also produce impact sound) It is the major sourcealso produce impact sound). It is the major source of intruding sound from rooms on the same floor and from the outdoors. It is controlled by: ( i h )1. Mass (weight), 2. Isolation (decoupling), 3. Absorption3. Absorption 4. Limpness of Construction. Th t b bi d ith i ti ht li dThese must be combined with airtight sealing and the elimination of flanking paths (routes by which the sound travels around a partition rather thanp being stopped by it).
  • 85. AbsorptionThe amount of sound energy dissipated depends on the thickness of the material its density (which determines the amount of difficulty that thematerial, its density (which determines the amount of difficulty that the sound encounters in traveling through), and it's resiliency (flexibility with the ability to spring back to its original shape). Mineral wool insulation because of its porous yet dense character, is highly effective in this application. Sound bl k f d h h h d h h lattenuation blankets are manufactured with higher density than thermal insulating blankets to obtain optimum attenuation. Mineral fiber sound attenuation blankets, placed between the studs in a resilient partition with resilient channels, retard movement of the air column and convertresilient channels, retard movement of the air column and convert considerable sound energy into heat. However, if the diaphragms are directly connected to rigid studs, the partition will act as a single diaphragm, rendering the wool ineffective in dissipating sound energy.
  • 86. Flanking Paths Some of the most common flanking paths are supplied bysupplied by plumbing pipes, air ducts and electrical conduit rigidly connected between the floor and ceiling. Continuous walls between floors, columns or any other continuous structural elements will fl ki h f i d I fact as flanking paths for impact sound. In fact, any rigid connection between the two diaphragms will effectively transmit impactdiaphragms will effectively transmit impact sound.
  • 88. Architectural AcousticsArchitectural Acoustics • Factors Affecting Architectural Acousticsg 1. Reverberation Time • When the reverberation time is too high, the sound produced byWhen the reverberation time is too high, the sound produced by  the speaker will persist for a long period of time. • Similarly ,when the reverberation time is low, sound dies quickly  and becomes inaudible in a short amount of timeand becomes inaudible in a short amount of time. • In order to improve the sound, reverberation time of a hall should  be increased to an optimum value. Remedies :‐ • Decreasing total absorption coefficient of the wall • Placing sound reflection boards inside a hall• Placing sound reflection boards inside a hall
  • 89. 2. Loudness • Reverberation time of a hall is directly proportional to loudness. • Low loudness results in existence of sound for a shorter period  hil hi h l d lt i i t f d f lwhile high loudness results in existence of sound for a longer  period. • Therefore sound produced by the speaker should be within  audible range. Remedies :‐ • Placing sound absorbing boards to reduce loundness• Placing sound absorbing boards to reduce loundness • Placing sound reflecting boards to increase loudness
  • 90. 3. Echelon Effect • Unwanted sounds are produced when people walk on  staircase or floors or hard paved paths due to poor finishing  f h fl f l ffof the floor surface, structural effects, etc. • The above mentioned unwanted sound are termed as  ‘echelon effect’ .echelon effect  . Remedies :‐ • Finishing the floors or stairs very finely. • Using carpet to caver floors and stairs.
  • 91. 4. Structure‐Borne Sound • Sound waves generated inside a hall are known as structure‐borne  sound. Th d d d t t ti f b h &• They are produced due to apparent motion of benches &  footsteps & propagated through walls and floors. Remedies :‐ • Using rigid structures so as to rest the vibrations. • Introducing discontinuities in the path of sound. C ti fl d ili ith it bl d b bi• Converting floor and ceilings with suitable sound absorbing  materials & anti‐vibration mouths. 
  • 92. 5 Echo5. Echo • If the time interval between direct sound and reflected  sound is less than 1/15 of a second, the reflected sound is  helpful in incresing loudness. • But if the time interval is less than that, then the sound  arrives later and will cause confusionarrives later and will cause confusion. Remedies :‐ • To prevent unnecessary reflection of sound.To prevent unnecessary reflection of sound. • Covering long distance walls and ceilings with suitable sound  absorbing materials.
  • 93. 6. Focusing due to walls and ceilings • Sound produced by speaker undergoes multiple reflections at• Sound produced by speaker undergoes multiple reflections at  ceilings and walls.  • Reflected sounds from ceilings and walls should not be focused on  particular point, rather it should be distributed throughout a hall. • Generally a plane surface reflects sound uniformly but a curved  surface does not. So reflection of sound from a curved surface  produces a harmful effect. Remedies :‐ R di f t f ili h ld b k t t i th h i ht f• Radius of curvature of ceilimg should be kept twice the height of  the building • Distribution of sound waves from a concave surface should be  made uniform
  • 94. 7 Resonance within a building7. Resonance within a building • Sound waves get amplifies when the  frequency of vibration  of air particles matches with the hall’s natural frequency of  vibration. • Thus, it results in an unwanted sound effect in side a hall. R diRemedies :‐ • Model‐Hall or a model auditoriun should be kept inside a  vessel which contains water.vessel which contains water. • The water‐wave particle movememnts are studies and are  used for the construction of actual hall or auditorium.
  • 96. TYPES OF MATERIALSTYPES OF MATERIALS • SOUND ABSORBERS • SOUND DIFFUSERS • NOISE BARRIERS • SOUND REFLECTORS
  • 97. SOUND ABSORBERSSOUND ABSORBERS • These sound absorbing acoustical panels and soundproofing materials are used to eliminate sound reflections to improve speech i t lli ibilit d t di d t b filt iintelligibility, reduce standing waves and prevent comb filtering. • Typical materials are open cell polyurethane foam, cellular melamine, fiberglass, fluffy fabrics and other porous materials. A wide variety of materials can be applied to walls and ceilings depending on your application and environmentdepending on your application and environment. • These materials vary in thickness and in shape to achieve different absorption ratings depending on the specific sound requirements. TYPES – Acoustical foam panels White paintable acoustical wall panels Fabric wrapped panels Acoustical wall coverings Ceiling tiles Baffles and banners for ceiling Fibre glass blankets and roll
  • 98. ACOUSTICAL FOAM PANELSACOUSTICAL FOAM PANELS • These acoustical foam sound absorbers are used in a wide variety of applications ranging from Recording and Broadcast Studios to Commercial and Industrial Facilities. Available in Polyurethane or in a Class 1 Fire Rated foam These products can be applied directly toPolyurethane or in a Class 1 Fire Rated foam. These products can be applied directly to walls, hung as baffles or used as freestanding absorbers. Design enables you to i thi k i kl Anechoic wedges are ideal for controlling l f d STACKABLE FOAM increase thickness quickly by nesting layers Standard patterns include wedge, pyramid, max d f l f ANECHOIC WEDGE low frequency sound to create a room that is perceptually devoid of sound. STACKABLE FOAM wedge for low frequency absorption, ceiling baffles, bermuda triangle traps for corners, sounds cylinders f di b b Absorbers are lightweight open cell foams used when a Class 1 fire rated foam is ANECHOIC WEDGE CUTTING WEDGE Installs to create seamless absorptive walls, STANDARD POLYURETHANE FOAM PATTERNS free standing absorbers Class 1 fire rated foam is required. Standard patterns include Wedge, Pyramid, Max Wedge, Ceiling Baffles and more These can easilyp and enhance imaging by reducing unwanted reflections. Available in 1'x1' or 2'x4' sheets. and more. These can easily mount to walls or ceilings. FIRE RATED FOAM
  • 99. WHITE PAINTABLE PANELS • It is a white acoustical wall panel with a soft textured appearance. The two foot by one foot dimension provides installers flexibility to mount acoustical panels around existing objects. In addition to reducing echo and reverberation, these acoustical panels are used to create i d i d tt Th l fib i f d ith i t bl i Thiunique designs and patterns. The glass fiber core is faced with a paintable covering. This allows you to match or complement existing wall colors by applying a light coat of flat or matte spray paint. To customize the look even further, many local printing companies now have the capability to produce an image directly to the face of these panels. ∞ Quick & Easy acoustical solution∞ Quick & Easy acoustical solution ∞ Soft drywall texture appearance ∞ Create unique patterns ∞ Panel size allows for flexible mounting options ∞ Paintable & Printable finish Construction: 1 " Fiberglass 6 PCF acoustical core + molded fiberboard + paintable facing. Resin hardened d P i t bl fi i h Sustainability This product bears the M tisquare edges. Paintable finish covers face and exposed edges. Class A rating per ASTM E 84 Panel Size: 2' x 1' (24 inches by 12 i h ) This product bears the Green Cross label for recycled content. The acoustical substrate is certified on average to t i t l t 35% Mounting Installs using standard impaling clip method. (adhesive by others) Other mounting options shown below. inches) Thickness: 1-1/8" Quantity per box: 10 panels contain at least 35% recycled glass, with 9% post-consumer and 26% pre-consumer content. MOUNT IN CORNERS USING CORNER CLIPS. MOUNT ON TWO INCH STAND OFF CLIPS
  • 100. FABRIC WRAPPED PANELS • Acoustical sound panels utilize 6-7 PCF glass fiber material for maximum absorption. Available as wall panels, ceiling tiles, hanging baffles, acoustical clouds and bass traps, with more than 50 standard colors to choose from, these materials will look as good as they sound. The standard sizes and configurations best maximize raw materials, however, manyg y of these products can be customized to meet specific requirements should you need material sized to fit or other finishes or coverings. •Ceiling clouds reduce reflected sound in areas such as th t t t h i ll CEILING CLOUDS theaters, restaurants, arenas, shopping malls, convention centers, recording and broadcast rooms, or anywhere absorption is required. •All surface faces and edges of the glass fiber core are wrapped in • Used to reduce echo and reverberation in applications, small and large These panels WALL PANELS CEILING BAFFLES glass fiber core are wrapped in fabric to match or accentuate room décor . Ceiling Baffles absorb sound on all sides and edgessmall and large. These panels are manufactured from a rigid high density (6-7 PCF) glass fiber acoustical board and covered with an CEILING TILES • Ceiling Tiles are an excellent choice for many ceiling grid edges. •Sculptured sound absorbing modular units used for walls, as corner traps, bass traps andand covered with an acoustically transparent fabric. many ceiling grid applications requiring high absorption. BROADBAND ABSORBER ceiling applications. Available in half-rounds or quarter-rounds.
  • 101. WALL COVERINGS • Acoustical wall fabric is a dimensional fabric that offers excellent acoustical properties, unmatched fade resistance, and a fire/smoke retardant class A rating. Sound channels is resistant to moisture, mildew, rot, bacteria, and is non-allergenic. Produced with no voc’s (volatile organic compounds) ods’s (ozone depleting substances) heavy metals or(volatile organic compounds), ods s (ozone depleting substances), heavy metals or formaldehyde, it's the perfect acoustic fabric for offices, classrooms, conference centers or any area where speech intelligibility is a critical factor. Installation: •This material is not factory trimmed. It is necessary for the installer to cut a straight vertical edge •Following the ribbed pattern. All edges must be butt joined. Do not overcut edges. Cut material to Features: •Lightweight Acoustic Fabric Applications: •Conference Rooms •Desired lengths, allowing for top and bottom trimming. Wall carpet should be hung •Straight up. Do not alternately reverse strips. •Apply a premixed heavy duty adhesive directly to •Lightweight Acoustic Fabric •Easy to install •Class A •Passes Corner Burn Test •Available in Many Colors •Conference Rooms •Theaters •Hospitals •Municipal •Office Partitions the wall, allowing it to dry to its maximum tackability •Without it being overly dry. (Important!!! Adhesives are ready mixed. Do not dilute) •Adhesive and do not apply adhesive to the back of •Available in Many Colors •Durable / Abuse Resistant •Improves Speech Intelligibility •Office Partitions •Schools •Hallways •and more... the wall covering). •Please be sure to follow instructions as provided by the adhesive manufacturer.
  • 102. CEILING TILES • Cloudscape® Ceiling Tiles absorb noise and block sound transmission. These ceiling tiles are designed to fit into existing 2' x 2' suspended drop tile ceiling grid systems. They may also retrofit in a 2' x 4' ceiling grid by installing cross tees. Cloudscape® ceiling tiles may also be ordered as a full 24" x 24" size un backed for adhesive mounting directly to walls oralso be ordered as a full 24 x 24 size, un-backed for adhesive mounting directly to walls or ceilings. • Ordinary ceilings take on new levels of visual excitement with these sculptured tiles. They are available in five different patterns plus a non-patterned look to enable you to "mix and t h" f d imatch" for your own designs. Available Sizes: 24" x 24" (nominal)( ) Specify grid when ordering: 9/16 or 15/16
  • 103. BAFFLES AND BANNERS • Baffles and Banners are designed to solve acoustical problems economically in any large cubic volume space such as arenas, gymnasiums, theaters, restaurants, and auditoriums. Reverberation times that range from 4 to 9 seconds can be reduced to 1/2 to 2 seconds. Speech intelligibility is greatly improved and sound intensity levels are reducedSpeech intelligibility is greatly improved and sound intensity levels are reduced simultaneously by 3 to 12 decibels. BAFFLES: • Baffles are an economical way to d d l l d l BANNERS: •Speech intelligibility is greatly improved and sound intensity levelsreduce sound pressure levels and lower reverberation times in large spaces such as gymnasiums, theaters, restaurants, health and fitness clubs, t R b ti ti b l d improved and sound intensity levels can be simultaneously reduced by 3 to 12 decibels. •Banners are suspended from ceilings, bar joists or pre-engineeredetc. Reverberation times can be lowered from a RT60 of 4 - 9 seconds down to a RT60 of 0.5 - 2 seconds. Speech intelligibility is greatly improved and d i t it l l bar joists or pre engineered suspension systems. They are designed to hang in a horizontal or in a catenary fashion using edge stiffeners or deck mounted flat with washersound intensity levels can be simultaneously reduced by 3 to 12 decibels. •These baffles are easily suspended from existing open truss and pre- or deck mounted flat with washer plates y p g p p engineered suspension systems. They are designed to hang in a vertical fashion, allowing free flow of air and integrate exceptionally well with existing sprinklers, lighting and HVAC systems.
  • 104. SOUND DIFFUSERS • These devices reduce the intensity of sound by scattering it over an expanded area rather• These devices reduce the intensity of sound by scattering it over an expanded area, rather than eliminating the sound reflections as an absorber would. Traditional spatial diffusers, such as the polycylindrical (barrel) shapes also double as low frequency traps. Temporal diffusers, such as binary arrays and quadratics, scatter sound in a manner similar to diffraction of light where the timing of reflections from an uneven surface of varyingdiffraction of light, where the timing of reflections from an uneven surface of varying depths causes interference which spreads the sound. QUADRA PYRAMID DIFFUSER •This diffuser generates a uniform PYRAMIDAL DIFFUSER •This traditional industry kh di dpolar response over a broad frequency range using a pre-rotated pyramidal pattern to create 16 angles of reflection. workhorse disperses sound uniformly over a broad frequency range. A quick solution to reduce flutter echo. DOUBLE DUTY DIFFUSER Th P l li d i l QUADRATIC DIFFUSER A true quadratic•These Polycylindrical Diffusers do twice the work. They scatter sound and function as a bass t A true quadratic residue diffuser designed for uniform broadband scattering and reducing High-Qtrap. and reducing High-Q reflections.
  • 105. NOISE BARRIERS BARRIERS These materials range from dense materials to block the transmission of airborne sound to devices and compounds used to isolate structures from one another and reduce impact noise. COMPOSITES •Sound barrier materials are used to reduce the transmission of airborne sound. The BlockAid® d l d h •Composite materials are manufactured from combinations of various materials from open and closed celled foams to quilted fiberglass and barrier Theseseries of products include the standard one pound per square foot non reinforced barrier, transparent material when b i i i i quilted fiberglass and barrier. These products are used to block and absorb sound for machine enclosures as well as blocking airborne sound and impact noise. Some of these products include Compositeobservation or supervision is required, reinforced vinyl to create a hanging barrier partition. Some of these products include Composite Foams, StratiQuilt Blankets and Floor Underlayment. VIBRATION CONTROLVIBRATION CONTROL •Vibration control products are used to absorb vibration energy and prevent structural noise transmission. These include vibration damping compounds and vibration pads, isolation hangers, and resilient clips. They improve sound transmission loss.
  • 106. FABRICS • Acoustical fabrics are typically used to either absorb sound or as a cover for acoustical panels. Some fabrics can also be used as a speaker grill cloth or as a finish on other types of materials. SOUND CHANNELS WALL FABRICS GUILFORD OF MAINESOUND CHANNELS WALL FABRICS •Acoustical wall fabric is a dimensional fabric that offers excellent acoustical properties, unmatched fade resistance, and a fire/smoke d l d h l GUILFORD OF MAINE •Guilford of Maine® Fabric is and acoustically transparent fabric used to cover many of our products including retardant class A rating. Sound channels® is resistant to moisture, mildew, rot, bacteria, and is non-allergenic. Produced with no voc’s (volatile organic compounds), ods’s (ozone depleting b h l f ld h d i y p g acoustical wall panels, diffusers, and corner traps. Fabric is also sold separately as speaker grill cloth, wall covering and for other field applications. substances), heavy metals or formaldehyde, it's the perfect acoustic fabric for offices, classrooms, conference centers or any area where speech intelligibility is a critical factor. pp