SlideShare a Scribd company logo
1 of 35
Topics
• spatial encoding - part 2
Slice Selection
ββ
z
y
x
0
imaging plane
ββ++
ββ−−
ββ00
z gradientz gradient
Slice Selection
slice thickness is determined by gradient strength
β
β0
ω
ω0
RF bandwidth
1
3
2
ΖΖ
tt11
tt22
tt33
Slice Selection
Selection of an axial
slice is accomplished
by the z gradient.
zz gradient directiongradient direction
ω = ω0
graph of the z magnetic gradient
z-axis
β β = β0
β > β0
β < β0
Slice Selection
slice location is determined by the null point of the z gradient
β
β0
ω
ω0
RF bandwidth
slice 1
ΖΖ
slice 2 slice 3
Ζ1 Ζ2 Ζ3
Frequency Encoding
• Within the imaging plane, a small gradient is
applied left to right to allow for spatial
encoding in the x direction.
• Tissues on the left will have a slightly higher
resonance frequency than tissues on the right.
• The superposition of an x gradient on the
patient is called frequency encoding.
• Frequency encoding enables spatial localization
in the L-R direction only.
Frequency Encoding
z
y
x
x gradientx gradient
higher frequency
lower frequency
LR
Frequency Encoding
RF signalRF signal
fromfrom entireentire sliceslice
A/D conversion, 256 pointsA/D conversion, 256 points 1 line of
k-space
Phase Encoding
• An additional gradient is applied in the
y direction to encode the image in the
remaining direction.
• Because the x gradient alters the
frequencies in the received signal according
to spatial location, the y gradient must alter
the phase of the signal.
• Thus, the points of k-space are revealed by
recording the digitized RF signal after a
phase encoding gradient application.
Phase Encoding
• The technique of phase encoding the second
dimension in the imaging plane is
sometimes referred to as spin warping.
• The phase encoding gradient is “stepped”
during the acquisition of image data for a
single slice. Each step provides a unique
phase encoding.
• For a 256 x 256 square image matrix, 256
unique phase encodings must be performed
for each image slice. The second 256 points
in the x direction are obtained by A to D
conversion of the received signal.
Phase Encoding
z
y
x
yy gradient,gradient,
phase step #192phase step #192
yy gradient,gradient,
phase step #64phase step #64
Phase Encoding
2D k-space matrix
gradient strength +128
RF in RF outRF out A/D conversion
gradient strength N
RF in RF outRF out A/D conversion
gradient strength -128
RF in RF outRF out A/D conversion
                 






END
BEGIN
line 128
line N
line -128
                 
                 
Spin Echo Imaging
RF
z gradient
echo
90°180°
echo
90°180°
echo
90°180°
y gradient
x gradient
slice select
phase
readout
Spin Echo Imaging
view -128
view -55
view 40
                 
                 
                 
k-space
256 x 256 points
row 40
row -55
row -128
A/D, 256 points
kx = frequency
ky = phase
• Acquisition of spatially encoded data as
described allows for reconstruction of the
MR image.
• The frequency and phase data are acquired
and form points in a 2D array .
• Reconstruction of the image is provided by
2D inverse Fourier transform of the
2D array.
• This method of spatially encoding the MR
image is called 2D FT imaging.
MR Image Reconstruction
Discrete Fourier Transform
F(kx,ky) is the 2D discrete Fourier transform of the
image f(x,y)
f x y
N
F k k e
xk yk
kk
x y
j
N
x j
N
yNN
yx
( , ) ( , )=
+






=
−
=
−
∑∑
1
2
2 2
0
1
0
1 π π
x
y
f(x,y)
kx
ky
ℑ
k-space
F(kx,ky)
MR image
Image Resolution and Phase Encoding
• Resolution is always maximum in the
frequency encoding direction because the MR
signal is always digitized into 256 points.
• Resolution can vary in the phase encoding
direction depending on the number of phase
steps used to acquire the image.
• Because each phase encoding requires a
separate 90 and 180 degree pulse, image
acquisition time is proportional to the number
of phase encode steps.
Image Acquisition Time
( )TR number phase encodings NEXmsec∗ ∗
60,000
• Example, TR 2000, 192 phase steps, 1 NEX
imaging time = 6.4 minutes
• At this rate, it would take 128 minutes to do
an average 20 slice exam.
• Because TR is typically much longer than
TE, we can acquire the data for the other
slices between the 90 degree RF pulses.
Image Acquisition Time
Multi-slice Imaging
echo
90°180°
echo
90°180°
echo
90°180°
echo
90°180°
slice 1
slice 2
slice 3
TRTR
TETE
• The maximum number of slices that
can be obtained in a single acquisition
is calculated as follows:
Multi-slice Imaging
( )
TR
TE
msec
msec + C
C msec= −10 20
k-space Traversal
• The most important phase encoding
information is centered around the
middle of k-space.
• Typically, k-space is filled in an orderly
manner, beginning with the returned
echos obtained at the maximum negative
y gradient strength and continuing to the
maximum positive value.
• For images obtained with less than
256 views, the number of phase
encodings is evenly divided between
positive and negative values centered
around zero.
• Images reconstructed with less than
256 phase encodings have less detail in
the phase encoding direction.
k-space Traversal
kx
ky
256
2
5
6
256
1
2
8
256
1
2
8
decreased resolution
• Because k-space is symmetrical, one
half of the space can be determined
from knowledge of the other half.
• Imaging time can be reduced by a
factor of 2 by collecting either the
positive or the negative phase
encodings and filling the remainder of
k-space with the mirrored data.
Half Fourier Imaging
Half Fourier Imaging
kx
ky
256
2
5
6
kx
ky
256
1
2
8
full resolution
• This technique is sometimes referred
to as ‘half NEX’ imaging or ‘PCS’
(phase conjugate symmetry).
• Penalty: reduced signal decreases the
signal to noise ratio, typically by a
factor of 0.71.
Half Fourier Imaging
• The frequency half of k-space can also
be mirrored.
• This technique is called fractional
echo or ‘RCS’ (read conjugate
symmetry).
• Decreased read time enables more
slices per acquisition at the expense of
reduced signal.
Half Fourier Imaging
Half Fourier Imaging
kx
ky
256
2
5
6
256
kx
ky
1
2
8
normal phase symmetry
kx
ky
128
2
5
6
read symmetry
kx
ky
128
1
2
8 ??
128
kx
ky
2
5
6
128
kx
ky
1
9
2
128
kx
ky
1
2
8
3D Acquisition
• 3D is an extension of the 2D technique.
advantages:
true contiguous slices
very thin slices (< 1 mm)
no partial volume effects
volume data acquisition
disadvantages:
gradient echo imaging only
(3D FSE now available)
motion sensitive
3D Acquisition
• no slice select gradient
• entire volume of tissue is excited
• second phase encoding gradient
replaces the slice select gradient
• after the intial RF pulse (α), both y
and z gradients are applied, followed
by application of the x gradient
during readout (echo)
• the z gradient is changed only after all
of the y gradient phase encodes have
generated an echo, then the z gradient
is stepped and the y gradient phase
encodes are repeated
3D Acquisition
( ) ( )TR number phase encodings number phase encodings NEXmsec∗ ° ∗ ° ∗1 2
60,000
3D Imaging
RF
z gradient
echo
α
echo
α
echo
α
y gradient
x gradient
slice select
phase
readout
3D Imaging
kx
ky
256
2
5
6

z step 1
z step 4
z step N
3D k-space3D k-space

More Related Content

What's hot

Fast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
Fast Sparse 2-D DFT Computation using Sparse-Graph Alias CodesFast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
Fast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
Frank Ong
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3
Vin Voro
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
Asaad Drake
 
Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
aicdesign
 

What's hot (20)

RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Fast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
Fast Sparse 2-D DFT Computation using Sparse-Graph Alias CodesFast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
Fast Sparse 2-D DFT Computation using Sparse-Graph Alias Codes
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Filter_Designs
Filter_DesignsFilter_Designs
Filter_Designs
 
Non coh rcr
Non coh rcrNon coh rcr
Non coh rcr
 
continuos phase frequency shift keying(cpfsk)
continuos phase frequency shift keying(cpfsk)continuos phase frequency shift keying(cpfsk)
continuos phase frequency shift keying(cpfsk)
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Gmsk
GmskGmsk
Gmsk
 
Pr057 mask rcnn
Pr057 mask rcnnPr057 mask rcnn
Pr057 mask rcnn
 
Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 

Viewers also liked

091 vascular dysfunction in hypercholesterolemic rabbits
091 vascular dysfunction in hypercholesterolemic rabbits091 vascular dysfunction in hypercholesterolemic rabbits
091 vascular dysfunction in hypercholesterolemic rabbits
SHAPE Society
 
183 postulated mechanisms of insulin resistance
183 postulated mechanisms of insulin resistance183 postulated mechanisms of insulin resistance
183 postulated mechanisms of insulin resistance
SHAPE Society
 
181 cholesterol independent therapeutic effects of hdl
181 cholesterol independent therapeutic effects of hdl181 cholesterol independent therapeutic effects of hdl
181 cholesterol independent therapeutic effects of hdl
SHAPE Society
 

Viewers also liked (20)

4th vulnerable plaque symposium
4th vulnerable plaque symposium4th vulnerable plaque symposium
4th vulnerable plaque symposium
 
094 spectroscopic fiber optic catheter
094 spectroscopic fiber optic catheter094 spectroscopic fiber optic catheter
094 spectroscopic fiber optic catheter
 
Braunwald
BraunwaldBraunwald
Braunwald
 
Acc 2002 mehran for print
Acc 2002  mehran for printAcc 2002  mehran for print
Acc 2002 mehran for print
 
101205 shape aha 2005 f
101205 shape aha 2005 f101205 shape aha 2005 f
101205 shape aha 2005 f
 
174 multicontrast mri
174 multicontrast mri174 multicontrast mri
174 multicontrast mri
 
197 reducing atherosclerosis in mice
197 reducing atherosclerosis in mice197 reducing atherosclerosis in mice
197 reducing atherosclerosis in mice
 
189 hsp 65
189 hsp 65189 hsp 65
189 hsp 65
 
171 mm ps the dirty dozen
171 mm ps the dirty dozen171 mm ps the dirty dozen
171 mm ps the dirty dozen
 
254 nanotechnology
254 nanotechnology254 nanotechnology
254 nanotechnology
 
050 periadventitial fat
050 periadventitial fat050 periadventitial fat
050 periadventitial fat
 
091 vascular dysfunction in hypercholesterolemic rabbits
091 vascular dysfunction in hypercholesterolemic rabbits091 vascular dysfunction in hypercholesterolemic rabbits
091 vascular dysfunction in hypercholesterolemic rabbits
 
200 is coated stent the answer
200 is coated stent the answer200 is coated stent the answer
200 is coated stent the answer
 
183 postulated mechanisms of insulin resistance
183 postulated mechanisms of insulin resistance183 postulated mechanisms of insulin resistance
183 postulated mechanisms of insulin resistance
 
Acc presentation (1)
Acc presentation (1)Acc presentation (1)
Acc presentation (1)
 
105 nir spectroscopy studies
105 nir spectroscopy studies105 nir spectroscopy studies
105 nir spectroscopy studies
 
075 immune modulation
075 immune modulation075 immune modulation
075 immune modulation
 
181 cholesterol independent therapeutic effects of hdl
181 cholesterol independent therapeutic effects of hdl181 cholesterol independent therapeutic effects of hdl
181 cholesterol independent therapeutic effects of hdl
 
148 the erythrocyte
148 the erythrocyte148 the erythrocyte
148 the erythrocyte
 
Acc presentation lipid coated(2)
Acc presentation lipid coated(2)Acc presentation lipid coated(2)
Acc presentation lipid coated(2)
 

Similar to 256 spatial encoding part 2

Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
Vin Voro
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apal
Arpan Pal
 

Similar to 256 spatial encoding part 2 (20)

Principles of MRI Physics and Engineering.ppt
Principles of MRI Physics and Engineering.pptPrinciples of MRI Physics and Engineering.ppt
Principles of MRI Physics and Engineering.ppt
 
W4 physics 2003
W4 physics 2003W4 physics 2003
W4 physics 2003
 
Echo Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaEcho Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh Shrestha
 
US_pres.pptx
US_pres.pptxUS_pres.pptx
US_pres.pptx
 
Encoding and image formation
Encoding and image formationEncoding and image formation
Encoding and image formation
 
PresentationSAR
PresentationSARPresentationSAR
PresentationSAR
 
240 spatial encoding
240 spatial encoding240 spatial encoding
240 spatial encoding
 
240 spatial encoding
240 spatial encoding240 spatial encoding
240 spatial encoding
 
Gps signals
Gps signalsGps signals
Gps signals
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
Lec11.ppt
Lec11.pptLec11.ppt
Lec11.ppt
 
The_Role_of_Raised_Cosine.pdf
The_Role_of_Raised_Cosine.pdfThe_Role_of_Raised_Cosine.pdf
The_Role_of_Raised_Cosine.pdf
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Ncc2004 ofdm tutorial part ii-apal
Ncc2004 ofdm tutorial   part ii-apalNcc2004 ofdm tutorial   part ii-apal
Ncc2004 ofdm tutorial part ii-apal
 
GPS Signals (1)
GPS Signals (1)GPS Signals (1)
GPS Signals (1)
 
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
 
Poster_final
Poster_finalPoster_final
Poster_final
 
射頻期中整理.pptx
射頻期中整理.pptx射頻期中整理.pptx
射頻期中整理.pptx
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 

More from SHAPE Society (20)

Barth imt
Barth imtBarth imt
Barth imt
 
Acc vp-org 3-02 stone
Acc vp-org 3-02 stoneAcc vp-org 3-02 stone
Acc vp-org 3-02 stone
 
Acc v porg becker
Acc v porg beckerAcc v porg becker
Acc v porg becker
 
Acc 2005-1, v pl-vp
Acc 2005-1, v pl-vpAcc 2005-1, v pl-vp
Acc 2005-1, v pl-vp
 
Acc presentation macrophage (1)
Acc presentation macrophage (1)Acc presentation macrophage (1)
Acc presentation macrophage (1)
 
Acc v porg
Acc v porgAcc v porg
Acc v porg
 
Ac cculprit
Ac cculpritAc cculprit
Ac cculprit
 
Acc 2002 microarray mehran for print
Acc 2002 microarray mehran for printAcc 2002 microarray mehran for print
Acc 2002 microarray mehran for print
 
Acc booth inventory
Acc booth inventoryAcc booth inventory
Acc booth inventory
 
Acc 04 vuln pt
Acc 04 vuln ptAcc 04 vuln pt
Acc 04 vuln pt
 
Acc2002 thermography
Acc2002 thermographyAcc2002 thermography
Acc2002 thermography
 
A20 gene
A20 geneA20 gene
A20 gene
 
#1 killer of human beings in the 21st century
#1 killer of human beings in the 21st century#1 killer of human beings in the 21st century
#1 killer of human beings in the 21st century
 
A20 is an atherosclerosis
A20 is an atherosclerosisA20 is an atherosclerosis
A20 is an atherosclerosis
 
103100
103100103100
103100
 
259 crp as a risk factor
259 crp as a risk factor259 crp as a risk factor
259 crp as a risk factor
 
511 first steps towards understanding
511 first steps towards understanding511 first steps towards understanding
511 first steps towards understanding
 
1688 azadpour 3 12 02
1688 azadpour 3 12 021688 azadpour 3 12 02
1688 azadpour 3 12 02
 
1031 talk2
1031 talk21031 talk2
1031 talk2
 
510 does lxr links lipid metabolism to inflammation, or ppar
510 does lxr links lipid metabolism to inflammation, or ppar510 does lxr links lipid metabolism to inflammation, or ppar
510 does lxr links lipid metabolism to inflammation, or ppar
 

Recently uploaded

Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan 087776558899
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Sheetaleventcompany
 
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
amritaverma53
 

Recently uploaded (20)

Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
 
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
 
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
 
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
 
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
 
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kathua Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
Call Girl In Chandigarh 📞9809698092📞 Just📲 Call Inaaya Chandigarh Call Girls ...
 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
 
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
 
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
Call Girl in Chennai | Whatsapp No 📞 7427069034 📞 VIP Escorts Service Availab...
 
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
 
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
 
Low Cost Call Girls Bangalore {9179660964} ❤️VVIP NISHA Call Girls in Bangalo...
Low Cost Call Girls Bangalore {9179660964} ❤️VVIP NISHA Call Girls in Bangalo...Low Cost Call Girls Bangalore {9179660964} ❤️VVIP NISHA Call Girls in Bangalo...
Low Cost Call Girls Bangalore {9179660964} ❤️VVIP NISHA Call Girls in Bangalo...
 

256 spatial encoding part 2

  • 3. Slice Selection slice thickness is determined by gradient strength β β0 ω ω0 RF bandwidth 1 3 2 ΖΖ tt11 tt22 tt33
  • 4. Slice Selection Selection of an axial slice is accomplished by the z gradient. zz gradient directiongradient direction ω = ω0 graph of the z magnetic gradient z-axis β β = β0 β > β0 β < β0
  • 5. Slice Selection slice location is determined by the null point of the z gradient β β0 ω ω0 RF bandwidth slice 1 ΖΖ slice 2 slice 3 Ζ1 Ζ2 Ζ3
  • 6. Frequency Encoding • Within the imaging plane, a small gradient is applied left to right to allow for spatial encoding in the x direction. • Tissues on the left will have a slightly higher resonance frequency than tissues on the right. • The superposition of an x gradient on the patient is called frequency encoding. • Frequency encoding enables spatial localization in the L-R direction only.
  • 7. Frequency Encoding z y x x gradientx gradient higher frequency lower frequency LR
  • 8. Frequency Encoding RF signalRF signal fromfrom entireentire sliceslice A/D conversion, 256 pointsA/D conversion, 256 points 1 line of k-space
  • 9. Phase Encoding • An additional gradient is applied in the y direction to encode the image in the remaining direction. • Because the x gradient alters the frequencies in the received signal according to spatial location, the y gradient must alter the phase of the signal. • Thus, the points of k-space are revealed by recording the digitized RF signal after a phase encoding gradient application.
  • 10. Phase Encoding • The technique of phase encoding the second dimension in the imaging plane is sometimes referred to as spin warping. • The phase encoding gradient is “stepped” during the acquisition of image data for a single slice. Each step provides a unique phase encoding. • For a 256 x 256 square image matrix, 256 unique phase encodings must be performed for each image slice. The second 256 points in the x direction are obtained by A to D conversion of the received signal.
  • 11. Phase Encoding z y x yy gradient,gradient, phase step #192phase step #192 yy gradient,gradient, phase step #64phase step #64
  • 12. Phase Encoding 2D k-space matrix gradient strength +128 RF in RF outRF out A/D conversion gradient strength N RF in RF outRF out A/D conversion gradient strength -128 RF in RF outRF out A/D conversion                         END BEGIN line 128 line N line -128                                    
  • 13. Spin Echo Imaging RF z gradient echo 90°180° echo 90°180° echo 90°180° y gradient x gradient slice select phase readout
  • 14. Spin Echo Imaging view -128 view -55 view 40                                                       k-space 256 x 256 points row 40 row -55 row -128 A/D, 256 points kx = frequency ky = phase
  • 15. • Acquisition of spatially encoded data as described allows for reconstruction of the MR image. • The frequency and phase data are acquired and form points in a 2D array . • Reconstruction of the image is provided by 2D inverse Fourier transform of the 2D array. • This method of spatially encoding the MR image is called 2D FT imaging. MR Image Reconstruction
  • 16. Discrete Fourier Transform F(kx,ky) is the 2D discrete Fourier transform of the image f(x,y) f x y N F k k e xk yk kk x y j N x j N yNN yx ( , ) ( , )= +       = − = − ∑∑ 1 2 2 2 0 1 0 1 π π x y f(x,y) kx ky ℑ k-space F(kx,ky) MR image
  • 17. Image Resolution and Phase Encoding • Resolution is always maximum in the frequency encoding direction because the MR signal is always digitized into 256 points. • Resolution can vary in the phase encoding direction depending on the number of phase steps used to acquire the image. • Because each phase encoding requires a separate 90 and 180 degree pulse, image acquisition time is proportional to the number of phase encode steps.
  • 18. Image Acquisition Time ( )TR number phase encodings NEXmsec∗ ∗ 60,000
  • 19. • Example, TR 2000, 192 phase steps, 1 NEX imaging time = 6.4 minutes • At this rate, it would take 128 minutes to do an average 20 slice exam. • Because TR is typically much longer than TE, we can acquire the data for the other slices between the 90 degree RF pulses. Image Acquisition Time
  • 21. • The maximum number of slices that can be obtained in a single acquisition is calculated as follows: Multi-slice Imaging ( ) TR TE msec msec + C C msec= −10 20
  • 22. k-space Traversal • The most important phase encoding information is centered around the middle of k-space. • Typically, k-space is filled in an orderly manner, beginning with the returned echos obtained at the maximum negative y gradient strength and continuing to the maximum positive value.
  • 23. • For images obtained with less than 256 views, the number of phase encodings is evenly divided between positive and negative values centered around zero. • Images reconstructed with less than 256 phase encodings have less detail in the phase encoding direction. k-space Traversal
  • 25. • Because k-space is symmetrical, one half of the space can be determined from knowledge of the other half. • Imaging time can be reduced by a factor of 2 by collecting either the positive or the negative phase encodings and filling the remainder of k-space with the mirrored data. Half Fourier Imaging
  • 27. • This technique is sometimes referred to as ‘half NEX’ imaging or ‘PCS’ (phase conjugate symmetry). • Penalty: reduced signal decreases the signal to noise ratio, typically by a factor of 0.71. Half Fourier Imaging
  • 28. • The frequency half of k-space can also be mirrored. • This technique is called fractional echo or ‘RCS’ (read conjugate symmetry). • Decreased read time enables more slices per acquisition at the expense of reduced signal. Half Fourier Imaging
  • 29. Half Fourier Imaging kx ky 256 2 5 6 256 kx ky 1 2 8 normal phase symmetry kx ky 128 2 5 6 read symmetry
  • 31. 3D Acquisition • 3D is an extension of the 2D technique. advantages: true contiguous slices very thin slices (< 1 mm) no partial volume effects volume data acquisition disadvantages: gradient echo imaging only (3D FSE now available) motion sensitive
  • 32. 3D Acquisition • no slice select gradient • entire volume of tissue is excited • second phase encoding gradient replaces the slice select gradient • after the intial RF pulse (α), both y and z gradients are applied, followed by application of the x gradient during readout (echo)
  • 33. • the z gradient is changed only after all of the y gradient phase encodes have generated an echo, then the z gradient is stepped and the y gradient phase encodes are repeated 3D Acquisition ( ) ( )TR number phase encodings number phase encodings NEXmsec∗ ° ∗ ° ∗1 2 60,000
  • 34. 3D Imaging RF z gradient echo α echo α echo α y gradient x gradient slice select phase readout
  • 35. 3D Imaging kx ky 256 2 5 6  z step 1 z step 4 z step N 3D k-space3D k-space