SlideShare a Scribd company logo
1 of 40
Download to read offline
Chapter 1-2
Transmission Line Theory
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Common Types of Transmission Lines
Two-wire line
Coaxial
Microstrip
2/40
Department of Electronic Engineering, NTUT
Transmission Line Theory
• At high frequencies, especially when the
wavelength is not longer than the dimension of
circuitry, conventional circuit theory no longer
holds.
• Circuitry perspective on electromagnetic waves.
• Transmission-line effects:
 Standing waves generated (related to position)
 Load impedance changes
 Departs from max power transmission
• Transmission-line effect is obvious as frequency
or line length increases.
3/40
Department of Electronic Engineering, NTUT
Theory
Conventional
Circuit Theory
Microwave
Engineering
Optics
4/40
Department of Electronic Engineering, NTUT
Electrical Model for Transmission Line
Source
Source
impedance
Load
impedance
• In conventional circuit theory, you can easily find the voltage
appears at load by: L
s
s L
Z
v v
Z Z


Transmission line
sv
sZ
LZ
l
• If the transmission line is not just an ideal interconnection?
5/40
Department of Electronic Engineering, NTUT
Distributed Circuit Model
• Assume that the transmission line is uniform and
the length l is divided into many identical
sections Δx.
• R: Ω/m, L: H/m, C: F/m, G: S/m
G x
L xR x
C x
sZ
sv LZ
l
dx dx dx
6/40
Department of Electronic Engineering, NTUT
A Section of the Transmission Line
• The voltages and currents along the trans-
mission line are functions of position and time.
• Input: ,
• Output: ,
• R: finite conductivity G: dielectric loss
 ,v x t
 ,i x t
R x L x
G x C x
   ,v x x t
   ,i x x t
 ,v x t  ,i x t
   ,v x x t    ,i x x t
7/40
Department of Electronic Engineering, NTUT
Transmission Line Equations (I)
• Apply Kirchhoff’s voltage law (KVL)
• Apply Kirchhoff’s current law (KCL)
         
 
      

,
, , ,
i x t
v x t v x x t R x i x t L x
t
         
   
        

,
, , ,
v x x t
i x t i x x t G x v x x t C x
t
 ,v x t
 ,i x t
R x L x
G x C x
   ,v x x t
   ,i x x t
8/40
Department of Electronic Engineering, NTUT
Transmission Line Equations (II)
 
 
  
  
 
, ,
,
v x t i x t
Ri x t L
x t
 
 
  
  
 
, ,
,
i x t v x t
Gv x t C
x t
   
 
    
 
 
, , ,
,
v x t v x x t i x t
Ri x t L
x t
   
 
      
   
 
, , ,
,
i x t i x x t v x x t
Gv x x t C
x t
• Rearrange Δx then we have:
• Assume that Δx is very small
 The partial differential equations describe the voltages and currents along
the transmissions, called transmission line, or telegrapher equation.
9/40
Department of Electronic Engineering, NTUT
Lossless Transmission Line
 
 
  
  
 
, ,
,
v x t i x t
Ri x t L
x t
 
 
  
  
 
, ,
,
i x t v x t
Gv x t C
x t
    
 
 
, ,v x t i x t
L
x t
    
 
 
, ,i x t v x t
C
x t
 ,v x t
 ,i x t
   ,v x x t
   ,i x x tL x
C x
• Of particular interest in microwave electronics is the lossless
transmission line, i.e., R=G=0.
10/40
Department of Electronic Engineering, NTUT
Sinusoidal Steady-state Analysis
f(x) and g(x) are the real functions of position, and , describe
the positional dependence of the phase.
           
     
    
 

   , cos Re Re
j t x j x j t
v x t f x t x f x e f x e e
           
     
    
 

   , cos Re Re
j t x j x j t
i x t g x t x g x e g x e e
     

j x
I x g x e
     

j x
V x f x e     
, Re j t
v x t V x e
    
, Re j t
i x t I x e
• Time-domain representation
  x   x
• Phasor-domain representation
time-domain
11/40
Department of Electronic Engineering, NTUT
Solve for the Voltage
   
 
 
   
 
V x I x
L j LI x
x t
   
 
 
   
 
I x V x
C j CV x
x t
 
  
dV x
j LI x
dx
 
  
dI x
j CV x
dx
   


V x dV x
x dx
   
     
2
2
2
d V x dI x
j L LCV x
dx dx
• Laplace equation
 
 
 
    
2 2
2 2
2 2
d V x d V x
LCV x V x
dx dx
  LC• Propagation constant
• General solution
   
 j x j x
V x Ae Be ,where A, B are complex constant
• Lossless transmission line equations
(Think that if approaches zero?)
( is also called the “phase constant” that represents the phase change per
meter for the wave traveling along the path)

12/40
Department of Electronic Engineering, NTUT
Solve for the Current
 
 
    
 
 

      
1 1 j x j xdv x
I x A j e B j e
j L dt j L
• Solve for the current
  LC
• Define
 
 
  0
L L L
Z
CLC
  
 
  
   
 
j x j x
A e B e
L L
   
 j x j x
V x Ae Be
   
 
0 0
j x j xA B
I x e e
Z Z
 
  
dV x
j LI x
dx
With and
,where
Z0 is the characteristics impedance of the transmission line, for the lossless
condition Z0 is real.
13/40
Department of Electronic Engineering, NTUT
Time-domain Results
        
       
  , Re Re
j x t j x tj t
v x t V x e Ae Be
               
   
 0 0
, Re Re
j x t j x tj t A B
i x t I x e e e
Z Z
         cos cosA x t B x t
         
0 0
cos cos
A B
x t x t
Z Z
   
 j x j x
V x Ae Be
   
 
0 0
j x j xA B
I x e e
Z Z
• Time-domain results can be easily drawn from the phasor.
 Voltage Wave
 Current Wave
14/40
Department of Electronic Engineering, NTUT
Wave Wavelength
  
 j x
V x Ae
• Consider
 Take a look on the term , the phase means how many radians
change for the wave to travel through the distance of x. If distance x is
equal to a wavelength long, i.e., :
 j x
e x

  
 2 x
x




2
 0x x
 0t t T
distance
time
phase
 0x
x 
 
 2x
x
      
 
  1 , Re cosj x j t
v x t Ae e A t x
x
For simplification, assume the
wave starts from x=0 and t=0.
15/40
Department of Electronic Engineering, NTUT
Wave Velocity
 In the vacuum,    
  7
0 4 10 Wb/A-mL
 0 8.85419 F/mC
   
 
    8
,
0 0
1
light speed 3 10 /p vacuumv c m s
 


   0
0
0
377
L
Z
C
  ,
0
p vaccumv
f
is the wavelength in vacuum
    
 
   
      
2 1
2 2
pv f
T LC
• Wave velocity can be found: ( the wave goes one wavelength long in a period of T)
is the intrinsic/characteristic
impedance of vacuum (or free-space)
16/40
Department of Electronic Engineering, NTUT
Wave Propagation in Material
 0  0r
 
    

  
8
0 0
1 3 10
/p
r r r
c
v m s
 Propagation in material with relative dielectric constant r
(non-magnetic material)
 


   0p r
g
r
c
v
f f
 Take water for an example:
 

 
8
7
,
3 10
3.32 10 /
81.5
p waterv m s

  0
, 00.11
81.5
g water
The propagation speed is slower than that in vacuum, and the wavelength
is also shorter than that in vacuum.
17/40
Department of Electronic Engineering, NTUT
Wave at a Certain Point
 
 2t T
t 


2
T
     1 , cosv x t A x t
 0x
  1 0, cosv t A t
 2
t
 
0
0t
t
A
A
  1 0, cosv t A t
 0x x l
 0x
x l
• Consider
 At position
We only pay attention to this point
18/40
Department of Electronic Engineering, NTUT
Wave at a Certain Time

 
 2x
x




2
     1 , cosv x t A x t
 0t
  1 ,0 cosv x A x
 2
x
 
0
0x
x
A
A
  1 ,0 cosv x A x
 0x x l
 0x
x l
• Consider
 At time
We now pay attention to the whole line
at any time instant (here, t=0)
19/40
Department of Electronic Engineering, NTUT
Wave Propagation versus x and t
 2 
x
A
A
t
t T
 2t T
x
x
t
20/40
Department of Electronic Engineering, NTUT
Wave at Point x=
 2 
x
A
A
t
t T
 2t T
t

 0x x l
We only pay attention to this point
x
21/40
Department of Electronic Engineering, NTUT
Terminated Transmission Line
LZ LZ0Z 0Z
 j x
Ae
j x
Be j x
Be
 j x
Ae
 0x x l  0dd l
   
 j x j x
V x Ae Be
   
 
0 0
j x j xA B
I x e e
Z Z
 IN d
   
 1 1
j d j d
V d A e B e
   
 1 1
0 0
j d j dA B
I d e e
Z Z

1
j
A Ae l 
1
j
B Be l
where and
 d xl
incident wave
reflected wave
22/40
Department of Electronic Engineering, NTUT
Reflection Coefficient
   
 1 1
j d j d
V d A e B e 
1
j
A Ae l 
1
j
B Be l
 

 


 
    2 21 1
0
1 1
j d
j d j d
IN j d
B e B
d e e
A e A
     1
0
1
0IN
B
A
where and
• Moves from the load (at d=0) toward the source (at d=l)
where is the load reflection coefficient, which is the value
of at d=0:
0
 IN d
incident wave reflected wave
23/40
Department of Electronic Engineering, NTUT
Reflection Coefficient at Load
         
      2
1 0 1 01j d j d j d j d
V d A e e A e e
         
      21 1
0 0
0 0
1j d j d j d j dA A
I d e e e e
Z Z
 
 
 
 
 


 
 
 
0
0
0
j d j d
IN j d j d
V d e e
Z d Z
I d e e
 
 
 
 
0
0
0
1
0
1
IN LZ Z Z

 

0
0
0
L
L
Z Z
Z Z
   
 1 1
j d j d
V d Ae B e
   
 1 1
0 0
j d j dA B
I d e e
Z Z
 Input impedance of the transmission line at any position d
is defined as
 Use boundary condition at load (d=0)
 0 0 when  0LZ ZProperly terminated (matched line):
LZ V d
 0dd l
 IN d
 INZ d
 I d


24/40
Department of Electronic Engineering, NTUT
Input Impedance of a Terminated Line
 
   
   
 
 


  

  
0 0
0
0 0
j d j d
L L
IN j d j d
L L
Z Z e Z Z e
Z d Z
Z Z e Z Z e
 
 



0
0
0
cos sin
cos sin
L
L
Z d jZ d
Z
Z d jZ d





0
0
0
tan
tan
L
L
Z jZ d
Z
Z jZ d

 

0
0
0
L
L
Z Z
Z Z
 
 
 
 
 


 
 
 
0
0
0
j d j d
IN j d j d
V d e e
Z d Z
I d e e
It gives the value of the input impedance at any position d along the
transmission line
At d=0   0IN LZ Z
At d=l  





0
0
0
tan
tan
L
IN
L
Z jZ
Z Z
Z jZ
l
l
l
A very important property of a transmission line is the ability to change
a load impedance to another value of impedance as its input.
25/40
Department of Electronic Engineering, NTUT
Voltage Standing-wave Ratio (VSWR)
  
   2
1 01 j d
V d A e
     1 0max
1V d A      1 0min
1V d A
 
 
 
 
 
0max
0min
1
1
V d
VSWR
V d
 The addition of the two waves traveling in opposite directions in a
transmission line produces a standing-wave pattern – that is,
a sinusoidal function of time whose amplitude is a function of position.
         
      2
1 0 1 01j d j d j d j d
V d A e e Ae e
 Magnitude of the voltage along the line:
 The voltage standing-wave ratio (VSWR):
Next we will discuss 4 important cases of the terminated line, which are
matched line, short-circuited line, open-circuited line, and quarter-wave line.
and
26/40
Department of Electronic Engineering, NTUT
Matched Line (Properly Terminated)
• Matched line: the characteristic impedance is equal to the
load impedance, i.e.,   IN LZ d Z
 0LZ Z
 0dd l
 l  0INZ Z
   0INZ d Z
0Z
 There is no reflection wave, the input impedance is at any location d,
VSWR has its minimum value of 1, i.e.,  0 0  1VSWRand
0Z
 No matter how long the line is, there is no transmission line effects .
27/40
Department of Electronic Engineering, NTUT
Short-Circuited Line
• For , it follows that , , and the
input impedance at a distance d from the load, , is
given by    0 tanscZ d jZ d
 The amplitude of the incident and reflected waves are
the same since (total reflection from the load), VSWR attains
its largest value of infinity.
 0LZ
 0dd l
 l l 0 tanINZ jZ
   0 tanscZ d jZ d
0Z
 0LZ   0 1  VSWR
 scZ d
 When
Short-circuited load is transformed to
open-circuited.
 0 1
l


4
 l  scZ
 When
Short-circuited load is still short-
circuited seen from the input.
l


2
 l  0scZ
28/40
Department of Electronic Engineering, NTUT
Open-Circuited Line
• For , it follows that , , and the
input impedance at a distance d from the load, , is
given by
 The amplitude of the incident and reflected waves are
the same since (total reflection from the load), VSWR attains
its largest value of infinity.
 LZ  0 1  VSWR
 ocZ d
 When
Open-circuited load is transformed to
short-circuited.
 0 1
l


4
 l  0ocZ
 When
Open-circuited load is still open-
circuited seen from the input.
l


2
 l  ocZ
    0 cotocZ d jZ d
 LZ
 0dd l
 l l  0 cotINZ jZ
    0 cotocZ d jZ d
0Z
29/40
Department of Electronic Engineering, NTUT
Quarter-wave Line
• Quarter-wave transformer:
  
2
0
4IN
L
Z
Z
Z
  0 4IN LZ Z Z
 In order to transform a real impedance to another real impedance
given by , a quarter-wave line with real characteristic impedance
of value
can be used.
LZ
 0d

4
d
 
 
 
2
0
4
IN
L
Z
Z
Z
0Z
l

 
4
d
LZ
  4INZ
 Example: , how to trans-
form it to at certain frequency?
 75LZ
50
      0 4 50 75 61.2IN LZ Z Z
You can simply use a transmission line
with 61.2 Ohm characteristic impedance!
 4
30/40
Department of Electronic Engineering, NTUT
Half-wave Line
• Half-wave line:
  2IN LZ Z
 No matter what the line impedance is, when a half-wave line is used
and it does not affect the impedance seen from the input.
LZ
 0d

2
d
 
 
 2
IN LZ Z
0Z
  2IN LZ Z
l

 
2
d
31/40
Department of Electronic Engineering, NTUT
Voltage on the Shorted-circuited Line
    

  1 12 sinj d j d
V d A e e j A d
    




 
 
 
  
   
  
2
1, Re Re 2 sin
j t
j t
v d t V d e A d e
 When
     1 14 2 sin 2 2V j A j A
     12 2 sin 0V j A


4
d
 When


2
d
• Voltage on the short-circuited line:
incident wave reflected wave
32/40
Department of Electronic Engineering, NTUT
Standing-wave Pattern
 

 
 
   
 
1, 2 sin cos
2
v d t A d t
 
2
3
2
2
 
 
  max
min
V d
VSWR
V d
 V d
 1 max
2A V d
  min
0 V dd
d

2

4
3
4

 In order to proceed we need to know the value of the complex constant A1.
For simplicity let us assume that A1 is real. Hence we obtain
 
2
3
2
2
 ,v d t
12A
  min
0 V dd
d

2

4
3
4

12A
  3
2
t  5
4
t
   3,
4 4
t  
2
t
  0,t
33/40
Department of Electronic Engineering, NTUT
Example(I)
  100 50sZ j
  50 50LZ j

 10 0sv
 
   
50 50
10 0 3.92 11.31
50 50 100 50
L
L s
L s
jZ
V V
Z Z j j

    
   
 Consider the circuit shown below that there is no transmission line
between the source and load, find the voltage at the terminal of the
load.
34/40
Department of Electronic Engineering, NTUT
Example(II)
 Find the load reflection coefficient, the input impedance, and the
VSWR in the transmission line shown, the length of the
transmission line is and its characteristic impedance is 50
Ohm.

 10 0sv
  100 50sZ j
  50 50LZ j
l
 
 
 
    
  
0
0
0
50 50 50
0.447 63.44
50 50 50
L
L
jZ Z
Z Z j
 
 
 
 


  
    
   
50 50 50tan45
8 50 100 50
50 50 50 tan45
IN
j j
Z j
j j
  
  
  
0
0
1 1 0.447
2.62
1 1 0.447
VSWR
 8
 0 50Z
 8
  8INZ
LV
35/40
Department of Electronic Engineering, NTUT
Example(III)
 
 
 
 
   




     
   
8 100 50
8 10 0 5.59 26.57
8 100 50 100 50
IN
s
IN s
Z j
V V
Z Z j j
    
   2
1 01j d j d
V d A e e
 
 


 
       
 
4 2
18 5.59 26.57 1 0.447 63.44
j j
V A e e

  1 3.95 63.44A
   
      0 3.95 63.44 1.77 5 45LV V
  100 50sZ j

 10 0sv
    8 100 50INZ j
Equivalent circuit
Transmission-line effect makes things different! It is not always bad, since it
cab be used for matching and makes maximum power transfer possible.
36/40
Department of Electronic Engineering, NTUT
 V x
 I x
R x  j L x
G x  j C x
  V x x
  I x x
Lossy Transmission Line
 
     
dV x
R j L I x
dx
 
     
dI x
G j C V x
dx
 
  
2
2
2
d V x
V x
dx
          j R j L G j C
 Complex propagation constant
is the attenuation constant in
nepers/m and propagation constant
is in rads/m


37/40
Department of Electronic Engineering, NTUT
Reflection Coefficient and Input Impedance
        
        
  , Re Re
j x t j x tj t x x
v x t V x e Ae e Be e
                
   
 0 0
, Re Re
j x t j x tj t x xA B
i x t I x e e e e e
Z Z
 With x=l - d
   
 1 1
d d
V d A e B e
   
 1 1
0 0
d dA B
I d e e
Z Z
l
1A Ae l
1B Be
 The reflection coefficient of the terminated lossy line
 





    21
0
1
d
d
IN d
B e
d e
A e
where  

    

01
0
1 0
0 L
IN
L
Z ZB
A Z Z
 





0
0
0
tanh
tanh
L
IN
L
Z Z d
Z d Z
Z Z d
where and
 The impedance of the terminated lossy line
38/40
Department of Electronic Engineering, NTUT
Summary (I)
 





0
0
0
tanh
tanh
L
IN
L
Z Z d
Z d Z
Z Z d
  
   2
0
d
IN d e

 

0
0
0
L
L
Z Z
Z Z
 

 
0
0
1
1
VSWR
 





0
0
0
tan
tan
L
IN
L
Z jZ d
Z d Z
Z jZ d
  
   2
0
j d
IN d e


pv




2
  LC• Propagation constant
• Reflection coefficient at load
• Reflection coefficient at any position
lossless
• Input impedance
lossless
    j where
• Phase velocity
• Wavelength
• Voltage standing wave ratio
39/40
Department of Electronic Engineering, NTUT
Summary (II)
• Transmission line affects the input impedance, and you
may not get the voltage you want at the load. On the other
hand, this property is useful when you need impedance
matching to get maximum power transfer.
• Both the wave velocity and wavelength decreases when the
wave travels from vacuum into the material that has a
relative dielectric constant greater than 1.
• Generally speaking, when the circuit dimension is
under , the transmission effects can be considered
negligible.
 20
40/40

More Related Content

What's hot

Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parameters
mmlodro
 

What's hot (20)

Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Narrow band frequency modulation nbfm
Narrow band frequency modulation nbfmNarrow band frequency modulation nbfm
Narrow band frequency modulation nbfm
 
Power divider, combiner and coupler.ppt
Power divider, combiner and coupler.pptPower divider, combiner and coupler.ppt
Power divider, combiner and coupler.ppt
 
Microwave Filter
Microwave FilterMicrowave Filter
Microwave Filter
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
Signal & systems
Signal & systemsSignal & systems
Signal & systems
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parameters
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parameters
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
PA linearity
PA linearityPA linearity
PA linearity
 
Microwave
MicrowaveMicrowave
Microwave
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
S parameters
S parametersS parameters
S parameters
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppt
 
Fir filter design using Frequency sampling method
Fir filter design using Frequency sampling methodFir filter design using Frequency sampling method
Fir filter design using Frequency sampling method
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 

Viewers also liked

Viewers also liked (20)

RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 

Similar to RF Circuit Design - [Ch1-2] Transmission Line Theory

Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
DibyadipRoy1
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
sami717280
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
kiran93845
 
High speed board design considerations
High speed board design considerationsHigh speed board design considerations
High speed board design considerations
Mohamad Tisani
 

Similar to RF Circuit Design - [Ch1-2] Transmission Line Theory (20)

UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
emtl
emtlemtl
emtl
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Linear integrated circuit
Linear integrated circuitLinear integrated circuit
Linear integrated circuit
 
unit6 RL-transient.ppt
unit6 RL-transient.pptunit6 RL-transient.ppt
unit6 RL-transient.ppt
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Be lab manual csvtu
Be lab manual csvtuBe lab manual csvtu
Be lab manual csvtu
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
12695 solid state m icrowave devices
12695 solid state m icrowave devices12695 solid state m icrowave devices
12695 solid state m icrowave devices
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
RF cavity resonator
RF cavity resonator RF cavity resonator
RF cavity resonator
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methods
 
High speed board design considerations
High speed board design considerationsHigh speed board design considerations
High speed board design considerations
 
Synchronization of single phase power converters to grid
Synchronization of single phase power converters to gridSynchronization of single phase power converters to grid
Synchronization of single phase power converters to grid
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 

More from Simen Li

More from Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 

Recently uploaded

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Recently uploaded (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

RF Circuit Design - [Ch1-2] Transmission Line Theory

  • 1. Chapter 1-2 Transmission Line Theory Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Common Types of Transmission Lines Two-wire line Coaxial Microstrip 2/40
  • 3. Department of Electronic Engineering, NTUT Transmission Line Theory • At high frequencies, especially when the wavelength is not longer than the dimension of circuitry, conventional circuit theory no longer holds. • Circuitry perspective on electromagnetic waves. • Transmission-line effects:  Standing waves generated (related to position)  Load impedance changes  Departs from max power transmission • Transmission-line effect is obvious as frequency or line length increases. 3/40
  • 4. Department of Electronic Engineering, NTUT Theory Conventional Circuit Theory Microwave Engineering Optics 4/40
  • 5. Department of Electronic Engineering, NTUT Electrical Model for Transmission Line Source Source impedance Load impedance • In conventional circuit theory, you can easily find the voltage appears at load by: L s s L Z v v Z Z   Transmission line sv sZ LZ l • If the transmission line is not just an ideal interconnection? 5/40
  • 6. Department of Electronic Engineering, NTUT Distributed Circuit Model • Assume that the transmission line is uniform and the length l is divided into many identical sections Δx. • R: Ω/m, L: H/m, C: F/m, G: S/m G x L xR x C x sZ sv LZ l dx dx dx 6/40
  • 7. Department of Electronic Engineering, NTUT A Section of the Transmission Line • The voltages and currents along the trans- mission line are functions of position and time. • Input: , • Output: , • R: finite conductivity G: dielectric loss  ,v x t  ,i x t R x L x G x C x    ,v x x t    ,i x x t  ,v x t  ,i x t    ,v x x t    ,i x x t 7/40
  • 8. Department of Electronic Engineering, NTUT Transmission Line Equations (I) • Apply Kirchhoff’s voltage law (KVL) • Apply Kirchhoff’s current law (KCL)                     , , , , i x t v x t v x x t R x i x t L x t                         , , , , v x x t i x t i x x t G x v x x t C x t  ,v x t  ,i x t R x L x G x C x    ,v x x t    ,i x x t 8/40
  • 9. Department of Electronic Engineering, NTUT Transmission Line Equations (II)             , , , v x t i x t Ri x t L x t             , , , i x t v x t Gv x t C x t                , , , , v x t v x x t i x t Ri x t L x t                    , , , , i x t i x x t v x x t Gv x x t C x t • Rearrange Δx then we have: • Assume that Δx is very small  The partial differential equations describe the voltages and currents along the transmissions, called transmission line, or telegrapher equation. 9/40
  • 10. Department of Electronic Engineering, NTUT Lossless Transmission Line             , , , v x t i x t Ri x t L x t             , , , i x t v x t Gv x t C x t          , ,v x t i x t L x t          , ,i x t v x t C x t  ,v x t  ,i x t    ,v x x t    ,i x x tL x C x • Of particular interest in microwave electronics is the lossless transmission line, i.e., R=G=0. 10/40
  • 11. Department of Electronic Engineering, NTUT Sinusoidal Steady-state Analysis f(x) and g(x) are the real functions of position, and , describe the positional dependence of the phase.                              , cos Re Re j t x j x j t v x t f x t x f x e f x e e                              , cos Re Re j t x j x j t i x t g x t x g x e g x e e        j x I x g x e        j x V x f x e      , Re j t v x t V x e      , Re j t i x t I x e • Time-domain representation   x   x • Phasor-domain representation time-domain 11/40
  • 12. Department of Electronic Engineering, NTUT Solve for the Voltage               V x I x L j LI x x t               I x V x C j CV x x t      dV x j LI x dx      dI x j CV x dx       V x dV x x dx           2 2 2 d V x dI x j L LCV x dx dx • Laplace equation            2 2 2 2 2 2 d V x d V x LCV x V x dx dx   LC• Propagation constant • General solution      j x j x V x Ae Be ,where A, B are complex constant • Lossless transmission line equations (Think that if approaches zero?) ( is also called the “phase constant” that represents the phase change per meter for the wave traveling along the path)  12/40
  • 13. Department of Electronic Engineering, NTUT Solve for the Current                      1 1 j x j xdv x I x A j e B j e j L dt j L • Solve for the current   LC • Define       0 L L L Z CLC               j x j x A e B e L L      j x j x V x Ae Be       0 0 j x j xA B I x e e Z Z      dV x j LI x dx With and ,where Z0 is the characteristics impedance of the transmission line, for the lossless condition Z0 is real. 13/40
  • 14. Department of Electronic Engineering, NTUT Time-domain Results                    , Re Re j x t j x tj t v x t V x e Ae Be                      0 0 , Re Re j x t j x tj t A B i x t I x e e e Z Z          cos cosA x t B x t           0 0 cos cos A B x t x t Z Z      j x j x V x Ae Be       0 0 j x j xA B I x e e Z Z • Time-domain results can be easily drawn from the phasor.  Voltage Wave  Current Wave 14/40
  • 15. Department of Electronic Engineering, NTUT Wave Wavelength     j x V x Ae • Consider  Take a look on the term , the phase means how many radians change for the wave to travel through the distance of x. If distance x is equal to a wavelength long, i.e., :  j x e x      2 x x     2  0x x  0t t T distance time phase  0x x     2x x            1 , Re cosj x j t v x t Ae e A t x x For simplification, assume the wave starts from x=0 and t=0. 15/40
  • 16. Department of Electronic Engineering, NTUT Wave Velocity  In the vacuum,       7 0 4 10 Wb/A-mL  0 8.85419 F/mC           8 , 0 0 1 light speed 3 10 /p vacuumv c m s        0 0 0 377 L Z C   , 0 p vaccumv f is the wavelength in vacuum                   2 1 2 2 pv f T LC • Wave velocity can be found: ( the wave goes one wavelength long in a period of T) is the intrinsic/characteristic impedance of vacuum (or free-space) 16/40
  • 17. Department of Electronic Engineering, NTUT Wave Propagation in Material  0  0r            8 0 0 1 3 10 /p r r r c v m s  Propagation in material with relative dielectric constant r (non-magnetic material)        0p r g r c v f f  Take water for an example:      8 7 , 3 10 3.32 10 / 81.5 p waterv m s    0 , 00.11 81.5 g water The propagation speed is slower than that in vacuum, and the wavelength is also shorter than that in vacuum. 17/40
  • 18. Department of Electronic Engineering, NTUT Wave at a Certain Point    2t T t    2 T      1 , cosv x t A x t  0x   1 0, cosv t A t  2 t   0 0t t A A   1 0, cosv t A t  0x x l  0x x l • Consider  At position We only pay attention to this point 18/40
  • 19. Department of Electronic Engineering, NTUT Wave at a Certain Time     2x x     2      1 , cosv x t A x t  0t   1 ,0 cosv x A x  2 x   0 0x x A A   1 ,0 cosv x A x  0x x l  0x x l • Consider  At time We now pay attention to the whole line at any time instant (here, t=0) 19/40
  • 20. Department of Electronic Engineering, NTUT Wave Propagation versus x and t  2  x A A t t T  2t T x x t 20/40
  • 21. Department of Electronic Engineering, NTUT Wave at Point x=  2  x A A t t T  2t T t   0x x l We only pay attention to this point x 21/40
  • 22. Department of Electronic Engineering, NTUT Terminated Transmission Line LZ LZ0Z 0Z  j x Ae j x Be j x Be  j x Ae  0x x l  0dd l      j x j x V x Ae Be       0 0 j x j xA B I x e e Z Z  IN d      1 1 j d j d V d A e B e      1 1 0 0 j d j dA B I d e e Z Z  1 j A Ae l  1 j B Be l where and  d xl incident wave reflected wave 22/40
  • 23. Department of Electronic Engineering, NTUT Reflection Coefficient      1 1 j d j d V d A e B e  1 j A Ae l  1 j B Be l              2 21 1 0 1 1 j d j d j d IN j d B e B d e e A e A      1 0 1 0IN B A where and • Moves from the load (at d=0) toward the source (at d=l) where is the load reflection coefficient, which is the value of at d=0: 0  IN d incident wave reflected wave 23/40
  • 24. Department of Electronic Engineering, NTUT Reflection Coefficient at Load                 2 1 0 1 01j d j d j d j d V d A e e A e e                 21 1 0 0 0 0 1j d j d j d j dA A I d e e e e Z Z                   0 0 0 j d j d IN j d j d V d e e Z d Z I d e e         0 0 0 1 0 1 IN LZ Z Z     0 0 0 L L Z Z Z Z      1 1 j d j d V d Ae B e      1 1 0 0 j d j dA B I d e e Z Z  Input impedance of the transmission line at any position d is defined as  Use boundary condition at load (d=0)  0 0 when  0LZ ZProperly terminated (matched line): LZ V d  0dd l  IN d  INZ d  I d   24/40
  • 25. Department of Electronic Engineering, NTUT Input Impedance of a Terminated Line                        0 0 0 0 0 j d j d L L IN j d j d L L Z Z e Z Z e Z d Z Z Z e Z Z e        0 0 0 cos sin cos sin L L Z d jZ d Z Z d jZ d      0 0 0 tan tan L L Z jZ d Z Z jZ d     0 0 0 L L Z Z Z Z                   0 0 0 j d j d IN j d j d V d e e Z d Z I d e e It gives the value of the input impedance at any position d along the transmission line At d=0   0IN LZ Z At d=l        0 0 0 tan tan L IN L Z jZ Z Z Z jZ l l l A very important property of a transmission line is the ability to change a load impedance to another value of impedance as its input. 25/40
  • 26. Department of Electronic Engineering, NTUT Voltage Standing-wave Ratio (VSWR)       2 1 01 j d V d A e      1 0max 1V d A      1 0min 1V d A           0max 0min 1 1 V d VSWR V d  The addition of the two waves traveling in opposite directions in a transmission line produces a standing-wave pattern – that is, a sinusoidal function of time whose amplitude is a function of position.                 2 1 0 1 01j d j d j d j d V d A e e Ae e  Magnitude of the voltage along the line:  The voltage standing-wave ratio (VSWR): Next we will discuss 4 important cases of the terminated line, which are matched line, short-circuited line, open-circuited line, and quarter-wave line. and 26/40
  • 27. Department of Electronic Engineering, NTUT Matched Line (Properly Terminated) • Matched line: the characteristic impedance is equal to the load impedance, i.e.,   IN LZ d Z  0LZ Z  0dd l  l  0INZ Z    0INZ d Z 0Z  There is no reflection wave, the input impedance is at any location d, VSWR has its minimum value of 1, i.e.,  0 0  1VSWRand 0Z  No matter how long the line is, there is no transmission line effects . 27/40
  • 28. Department of Electronic Engineering, NTUT Short-Circuited Line • For , it follows that , , and the input impedance at a distance d from the load, , is given by    0 tanscZ d jZ d  The amplitude of the incident and reflected waves are the same since (total reflection from the load), VSWR attains its largest value of infinity.  0LZ  0dd l  l l 0 tanINZ jZ    0 tanscZ d jZ d 0Z  0LZ   0 1  VSWR  scZ d  When Short-circuited load is transformed to open-circuited.  0 1 l   4  l  scZ  When Short-circuited load is still short- circuited seen from the input. l   2  l  0scZ 28/40
  • 29. Department of Electronic Engineering, NTUT Open-Circuited Line • For , it follows that , , and the input impedance at a distance d from the load, , is given by  The amplitude of the incident and reflected waves are the same since (total reflection from the load), VSWR attains its largest value of infinity.  LZ  0 1  VSWR  ocZ d  When Open-circuited load is transformed to short-circuited.  0 1 l   4  l  0ocZ  When Open-circuited load is still open- circuited seen from the input. l   2  l  ocZ     0 cotocZ d jZ d  LZ  0dd l  l l  0 cotINZ jZ     0 cotocZ d jZ d 0Z 29/40
  • 30. Department of Electronic Engineering, NTUT Quarter-wave Line • Quarter-wave transformer:    2 0 4IN L Z Z Z   0 4IN LZ Z Z  In order to transform a real impedance to another real impedance given by , a quarter-wave line with real characteristic impedance of value can be used. LZ  0d  4 d       2 0 4 IN L Z Z Z 0Z l    4 d LZ   4INZ  Example: , how to trans- form it to at certain frequency?  75LZ 50       0 4 50 75 61.2IN LZ Z Z You can simply use a transmission line with 61.2 Ohm characteristic impedance!  4 30/40
  • 31. Department of Electronic Engineering, NTUT Half-wave Line • Half-wave line:   2IN LZ Z  No matter what the line impedance is, when a half-wave line is used and it does not affect the impedance seen from the input. LZ  0d  2 d      2 IN LZ Z 0Z   2IN LZ Z l    2 d 31/40
  • 32. Department of Electronic Engineering, NTUT Voltage on the Shorted-circuited Line         1 12 sinj d j d V d A e e j A d                          2 1, Re Re 2 sin j t j t v d t V d e A d e  When      1 14 2 sin 2 2V j A j A      12 2 sin 0V j A   4 d  When   2 d • Voltage on the short-circuited line: incident wave reflected wave 32/40
  • 33. Department of Electronic Engineering, NTUT Standing-wave Pattern              1, 2 sin cos 2 v d t A d t   2 3 2 2       max min V d VSWR V d  V d  1 max 2A V d   min 0 V dd d  2  4 3 4   In order to proceed we need to know the value of the complex constant A1. For simplicity let us assume that A1 is real. Hence we obtain   2 3 2 2  ,v d t 12A   min 0 V dd d  2  4 3 4  12A   3 2 t  5 4 t    3, 4 4 t   2 t   0,t 33/40
  • 34. Department of Electronic Engineering, NTUT Example(I)   100 50sZ j   50 50LZ j   10 0sv       50 50 10 0 3.92 11.31 50 50 100 50 L L s L s jZ V V Z Z j j            Consider the circuit shown below that there is no transmission line between the source and load, find the voltage at the terminal of the load. 34/40
  • 35. Department of Electronic Engineering, NTUT Example(II)  Find the load reflection coefficient, the input impedance, and the VSWR in the transmission line shown, the length of the transmission line is and its characteristic impedance is 50 Ohm.   10 0sv   100 50sZ j   50 50LZ j l               0 0 0 50 50 50 0.447 63.44 50 50 50 L L jZ Z Z Z j                       50 50 50tan45 8 50 100 50 50 50 50 tan45 IN j j Z j j j          0 0 1 1 0.447 2.62 1 1 0.447 VSWR  8  0 50Z  8   8INZ LV 35/40
  • 36. Department of Electronic Engineering, NTUT Example(III)                           8 100 50 8 10 0 5.59 26.57 8 100 50 100 50 IN s IN s Z j V V Z Z j j         2 1 01j d j d V d A e e                   4 2 18 5.59 26.57 1 0.447 63.44 j j V A e e    1 3.95 63.44A           0 3.95 63.44 1.77 5 45LV V   100 50sZ j   10 0sv     8 100 50INZ j Equivalent circuit Transmission-line effect makes things different! It is not always bad, since it cab be used for matching and makes maximum power transfer possible. 36/40
  • 37. Department of Electronic Engineering, NTUT  V x  I x R x  j L x G x  j C x   V x x   I x x Lossy Transmission Line         dV x R j L I x dx         dI x G j C V x dx      2 2 2 d V x V x dx           j R j L G j C  Complex propagation constant is the attenuation constant in nepers/m and propagation constant is in rads/m   37/40
  • 38. Department of Electronic Engineering, NTUT Reflection Coefficient and Input Impedance                     , Re Re j x t j x tj t x x v x t V x e Ae e Be e                       0 0 , Re Re j x t j x tj t x xA B i x t I x e e e e e Z Z  With x=l - d      1 1 d d V d A e B e      1 1 0 0 d dA B I d e e Z Z l 1A Ae l 1B Be  The reflection coefficient of the terminated lossy line            21 0 1 d d IN d B e d e A e where          01 0 1 0 0 L IN L Z ZB A Z Z        0 0 0 tanh tanh L IN L Z Z d Z d Z Z Z d where and  The impedance of the terminated lossy line 38/40
  • 39. Department of Electronic Engineering, NTUT Summary (I)        0 0 0 tanh tanh L IN L Z Z d Z d Z Z Z d       2 0 d IN d e     0 0 0 L L Z Z Z Z      0 0 1 1 VSWR        0 0 0 tan tan L IN L Z jZ d Z d Z Z jZ d       2 0 j d IN d e   pv     2   LC• Propagation constant • Reflection coefficient at load • Reflection coefficient at any position lossless • Input impedance lossless     j where • Phase velocity • Wavelength • Voltage standing wave ratio 39/40
  • 40. Department of Electronic Engineering, NTUT Summary (II) • Transmission line affects the input impedance, and you may not get the voltage you want at the load. On the other hand, this property is useful when you need impedance matching to get maximum power transfer. • Both the wave velocity and wavelength decreases when the wave travels from vacuum into the material that has a relative dielectric constant greater than 1. • Generally speaking, when the circuit dimension is under , the transmission effects can be considered negligible.  20 40/40