SlideShare a Scribd company logo
1 of 42
Download to read offline
Chapter 2-2
The Smith Chart
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
The Smith Chart
• The analysis of transmission-line problems and of
matching circuits at microwave frequencies can
be cumbersome in analytical form. The smith
chart provides a very useful graphical aid to the
analysis of these problems.
• Matching circuits can be easily and quickly
designed using the normalized impedance and
admittance Smith chart (Z and Y charts).
• The Smith chart is also used to present the
frequency dependence of scattering parameters
and other amplifier characteristics.
2/42
Department of Electronic Engineering, NTUT
Development of the Smith Chart (I)
 

 

o
o
Z Z
x
Z Z
• The Smith chart is the representation in the reflection coefficient plane,
called the plane, of the relation
for all values of Z, such that Re{Z}≥0. Zo is the characteristic impedance
of the transmission line or a reference impedance value.
• Defining the normalized impedance z as

   
o o
Z R jX
z r jx
Z Z
 
 
 
    
  
11
1 1
r jxz
U jV
z r jx  
 

 
2 2
2 2
1
1
r x
U
r x  

 
2 2
2
1
x
V
r x
where and
• Reflection Coefficient
3/42
Department of Electronic Engineering, NTUT
Development of the Smith Chart (II)
r
x
 U jV  Γ-plane
U
V
 1z j
 1z
 0z
1
1
z
z

 

1 1 1 90z j j   
0 1 1 180z       
1 0z    
1 90  
0 
1  
  z r jxz-plane
1 1 1 90z j j        
1z j 
Short Load Open
1z     
1 
Pure Imaginary: inductive
1 90   
Pure Imaginary: capacitive
4/42
Department of Electronic Engineering, NTUT
Constant Resistance Circles (I)
r
x
 U jV  Γ-plane
U
V
 1 1z j
 1 1z j
 0z
0.447 63.4  
0.447 63.4   
  z r jxz-plane
1 1z j 
1 1z j 
0.447 63.43  
0.447 63.43   
1 2z j 
1 2z j 
1 2z j 
1 2z j 
0.707 45  
0.707 45   
1j
2j
1j
2j
0.707 45  
0.707 45  
5/42
Department of Electronic Engineering, NTUT
Constant Resistance Circles (II)
r
x
  z r jxz-plane
U
V
0z jx 
0z r 
0.5r 
1r  3r 
0.5z jx 
1z jx  3z jx 
0r  3r 1r 
0.5r 
6/42
Department of Electronic Engineering, NTUT
Constant Reactance Loci
r
x
  z r jxz-plane
U
V
0.5z j
0.5z j
1z j
3z j
0.5z j 
1z j 
3z j 
0j
0.5j
1j
3j
0.5j 1j
3j
0.5 0.5z j 
1 0.5z j 
1.5 0.5z j 
1 126.87  
0.447 116.56  
0.243 75.97  
0.2773 33.69  
7/42
Department of Electronic Engineering, NTUT
Complete the Smith Chart
Short OpenLoad
+jx
-jx
Inductive
Capacitive
8/42
Department of Electronic Engineering, NTUT
Reactance in the Smith Chart
Short OpenLoad
+jx
-jx
Inductive
Capacitive
+j0.1
+j0.2
+j0.3
+j0.4
+j0.5
+j0.6 +j1.6
+j1.7
+j1.8
+j2.0
+j3.0
+j4.0
+j5.0
+j6.0
0.4x 
0.4x 
0.4x 
9/42
Department of Electronic Engineering, NTUT
Example – Impedance in the Smith Chart
1 1 1z j 
2 0.4 0.5z j 
3 3 3z j 
4 0.2 0.6z j 
5 0z  1z2z
3z
4z
5z
10/42
Department of Electronic Engineering, NTUT
Example – Find from Impedance
19.44 

1 3 3z j 
1z
0.721 19.44   
11/42
Department of Electronic Engineering, NTUT
Example – Find Impedance from
0.447 26.56  
2 1z j 
26.56

12/42
Department of Electronic Engineering, NTUT
Use Smith Chart as an Admittance (Y) Chart
y g jb 1 1 1y j 
2 0.4 0.5y j 
3 2 1.4y j 
4 0.5 0.2y j 
5y   1y2y
3y4y
5y
13/42
Department of Electronic Engineering, NTUT
Show Z and Y in One Chart
y g jb 
U
V
U
Vz r jx 
1 1
1
y g jb
z
 
   
 
1
1
z
 

 
Impedance Chart (Z-Chart) Admittance Chart (Y-Chart)
jx
jx jb
jb
Short Load Open Short Load Open
14/42
Department of Electronic Engineering, NTUT
The ZY Chart
U
V
15/42
Department of Electronic Engineering, NTUT
Adding a Series Inductor
0.8Lz j
0.3 0.3z j 
0.3 0.5inz j 
0.3 0.3z j 
0.3 0.5inz j 
0.8x 
-j0.3
+j0.5


16/42
Department of Electronic Engineering, NTUT
Adding a Series Capacitor
0.8Cz j 
0.3 0.3z j 
0.3 1.1inz j 
0.3 0.3z j 
0.3 1.1inz j 0.8x  
-j0.3
-j1.1


17/42
Department of Electronic Engineering, NTUT
Adding a Shunt Inductor
1.6 1.6y j 
1.6 0.8iny j 
2.4Ly j 
1.6 1.6y j 
1.6 0.8iny j 
2.4y  
+j1.6
-j0.8


18/42
Department of Electronic Engineering, NTUT
Adding a Shunt Capacitor
1.6 1.6y j 
1.6 5iny j 
3.4Cy j
1.6 1.6y j 
1.6 5iny j 
3.4y 
+j1.6
+j5

19/42
Department of Electronic Engineering, NTUT
Series/Shunt Inductor or Capacitor
Higher impedanceLower impedance
Series L
Series C
Shunt L
Shunt C
+jx
-jx
Inductive
Capacitive
Short
Open
Lower admittanceHigher admittance
-jb
+jb
20/42
Department of Electronic Engineering, NTUT
Matching Networks (Two-Element L-Shape)
LZ1C
2C
LZL
C
LZ1L
2L
LZC
L
LZC
L
LZ2C
1C
LZL
C
LZ2L
1L
21/42
Department of Electronic Engineering, NTUT
Match to the Reference Impedance
• Usually the goal is to transform a particular impedance to the reference
impedance (center of the Smith chart). In practical systems, the
reference impedance .
50refZ  
1z2z
3z
4z
5z
Goal
Goal circle (r=1)
Goal circle (g=1)
22/42
Department of Electronic Engineering, NTUT
Matching from Load to the Reference Impedance (I)
 10 10LZ j  
0.2 0.2Lz j 
Goal
0.2j
0.4j
0.2x j 
2j
0j
2y j 
0.2 0.4z j 
 50refZ  







C
L
01@ 500 MHzinz f 
0.2
0.2j
 0.2j

0.5j
02 0.2 50 10f L    
0
1
2 2 0.04
50
f C   

3.18 nHL 
12.74 pFC 
C
L 10 
3.18 nH
3.18 nH
12.74 pF
23/42
Department of Electronic Engineering, NTUT
Matching from Load to the Reference Impedance (II)
 10 10LZ j  
0.2 0.2Lz j 
Goal
0.2j
0.4j
0.6x j  
2j
0j
2y j  
0.2 0.4z j 
L
C 0.2
0.2j
01@ 500 MHzinz f 







 0.6j
 
1
02 0.6 50 30f C

   
 
1
0
1
2 2 0.04
50
f L

  

10.6 pFC 
7.95 nHL 
L
C
10.6 pF
7.95 nH
10 
3.18 nH
24/42
Department of Electronic Engineering, NTUT
Matching from the Reference Impedance
1 L
C
 8 12 mSoutY j 
Goal
 50 
0.4 0.6outy j 



25/42
Department of Electronic Engineering, NTUT
Matching from Load to an Arbitrary Impedance
LZC
L
50 20inZ j  
100 100LZ j  
Goal
100refZ  
LZC
L
0.5 0.2inZ j  
1 1Lz j  



26/42
Department of Electronic Engineering, NTUT
Impedance with Frequency Increasing
L
R
C
R
L
R
C
L
R
C
 1inZ R j L  
 
 1
1
50
in
in
Z
z r jx

   

 1in aZ 
 1in bZ 
 2inZ 
 2in aZ 
 2in bZ 
 3inZ 
 3in aZ 
 1
1
inZ R j
C


 
 3in bZ   4inZ 
 4in bZ 
 4in aZ 
27/42
Department of Electronic Engineering, NTUT
Impedance with Frequency Increasing
L R
C R
L R
C
C R
L
 2inZ   1inZ 
 4inZ   3inZ 
 1in aZ 
 1in bZ 
 2in aZ 
 2in bZ 
 3in aZ 
 3in bZ 
 4in aZ 
 4in bZ 
28/42
Department of Electronic Engineering, NTUT
Constant Q Contour (I)
n
X x
Q
R r
 
1nQ 
2nQ 
Short Open
29/42
Department of Electronic Engineering, NTUT
Constant Q Contours (II)
Short Open
very intensive
very intensive
intensive
30/42
Department of Electronic Engineering, NTUT
Matching with Particular Q Requirement (I)
• At matched condition:
2
n
L
Q
Q 
• For certain BW spec., the designed QL meets 0
1
L
f BW
Q

• Design a T-shape matching networks to transform to
. The matching should meet relative bandwidth
requirement of 40%.
50LZ  
10 15inZ j  
1
0.4
LQ

1
2.5
0.4
LQ  
At matched condition: 2.5
2
n
L
Q
Q  
5nQ Thus in the design stage, the network should have a node Q:
31/42
Department of Electronic Engineering, NTUT
Matching with Particular Q Requirement (II)
32/42
Department of Electronic Engineering, NTUT
Low Q Matching with 5% LC Variations
1.2 nHL 
1.8 pFC 
1.1nQ 1nQ  1nQ  1.06nQ 
LZ1.8 pFC 
1.2 nHL 
 24.26 11.62LZ j   50inZ  
• Application example: Match a certain
impedance to 50-Ohm in a 1800 MHz
GSM handset front-end with node Q = 1.
1.26 nHL 
1.8 pFC 
5% L variation
1.2 nHL 
1.89 pFC 
5% C variation
1.26 nHL 
1.89 pFC 
5% L+C variation
50.4 0.61inZ j  51.8 0.57inZ j  50.34 1.97inZ j  51.75 2.16inZ j 
33/42
Department of Electronic Engineering, NTUT
High Q Matching with 5% LC Variations
50inZ  44 5inZ j  40 8inZ j  35.4 13.5inZ j 
LZ1.8 pFC 
5.5 nHL 
 24.26 11.62LZ j   50inZ  
8.8 nHL 
5% L variation 5% C variation 5% L+C variation
• Application example: Match a certain
impedance to 50-Ohm in a 1800 MHz
GSM handset front-end with node Q = 3.
34/42
Department of Electronic Engineering, NTUT
Small Impedance Matched to 50 Ohm (I)
4.9nQ  5.1nQ  4.9nQ  5.1nQ 
LZ8.6 pFC 
0.78 nHL 
 2 1LZ j   50inZ  
50.2 1.26inZ j  52.8 10inZ j  48.2 9.76inZ j  45.94 0.44inZ j 
0.78 nHL 
8.6 pFC 
0.82 nHL 
8.6 pFC 
5% L variation
0.78 nHL 
9 pFC 
5% C variation
0.82 nHL 
9 pFC 
5% L+C variation
• Application example: Match a certain
small impedance to 50-Ohm in a 1800
MHz GSM handset front-end. (node Q = 4.9)
 In this case, the major problem is not easy
to find a small inductor for matching.
 Practically, a higher value of inductor would
be used. (see next page)
35/42
Department of Electronic Engineering, NTUT
Small Impedance Matched to 50 Ohm (II)
11.2nQ 
2.2nQ  11.8nQ  1.15nQ 11.8nQ  1.62nQ 
LZ3.2 pFC 
1.9 nHL 
 2 1LZ j   50inZ  
50.15inZ  74.3 22inZ j  119.6 41.8inZ j 
 To avoid a small inductor, use a higher value of L
with increasing the node Q.
5% L variation 5% L+C variation
 Problems arise:
(1) Fail to meet broadband spec.
(not a case for GSM in this example)
(2) Sensitive to component variations
(3) Use parallel-connected Ls to maintain
a low-Q matching (area consuming)
 How about using a series-C and shunt-L?
36/42
Department of Electronic Engineering, NTUT
Small Impedance Matched to 50 Ohm (III)
5.1nQ 
5.8nQ 
LZ1 pFC 
1.3 nHL 
 2 1LZ j  
 50inZ  
12 pFC 
9.3 pFC 
 Use more components to trade the
matching bandwidth. (area consuming)
 Variations affect node Q easily in
low-impedance region.
37/42
Department of Electronic Engineering, NTUT
High Impedance Matched to 50 Ohm
9.94nQ  10.44nQ 
LZ0.176 pFC 
44 nHL 
 5000 60LZ j   50inZ  
50.08 0.32inZ j  45.47 23inZ j 
• Application example: Match a certain
small impedance to 50-Ohm in a 1800
MHz GSM handset front-end. (node Q = 9.9)
 In this case, the major problem is not easy to find
a small capacitor for matching. (In ICs, it is
possible)
 The components variation affects.
5% L+C variation
38/42
Department of Electronic Engineering, NTUT
Frequency Sweeping (Low Q v.s. High Q)
5.7nQ 
2.2nQ 
LZ0.94 pFC 
9.6 nHL 
 160.5 44LZ j   50inZ  
LZ3.9 pFC 
6.1 nHL 
 160.5 44LZ j   50inZ  
2.0 pFC 
 47.8 2 @1.8 GHzinZ j 
 44.2 10 @1.9 GHzinZ j 
 57.3 13 @1.7 GHzinZ j 
50@1.8 GHzinZ 
 23.6 4.7 @1.7 GHzinZ j 
 47.8 46 @1.9 GHzinZ j 
39/42
Department of Electronic Engineering, NTUT
Frequency Sweeping Low Q with 5% LC Variations
LZ0.94 pFC 
9.6 nHL 
 160.5 44LZ j   50inZ  
LZ0.99 pFC 
10.1 nHL 
 160.5 44LZ j   50inZ  
 47.8 2 @1.8 GHzinZ j 
 44.2 10 @1.9 GHzinZ j 
 57.3 13 @1.7 GHzinZ j 
 44.7 9 @1.8 GHzinZ j 
 39.4 20.7 @1.9 GHzinZ j 
 51.1 3 @1.7 GHzinZ j 
40/42
Department of Electronic Engineering, NTUT
Frequency Sweeping High Q with 5% LC Variations
LZ3.9 pFC 
6.1 nHL 
 160.5 44LZ j   50inZ  
2.0 pFC  LZ4 pFC 
6.4 nHL 
 160.5 44LZ j   50inZ  
2.1 pFC 
50@1.8 GHzinZ 
 23.6 4.7 @1.7 GHzinZ j 
 47.8 46 @1.9 GHzinZ j 
 53 44 @1.8 GHzinZ j 
 46.4 3 @1.7 GHzinZ j 
 17.6 49 @1.9 GHzinZ j 
41/42
Department of Electronic Engineering, NTUT
Summary
• Although the Smith chart is seldom used
nowadays for the computation of reflection
coefficients. It is very useful and helpful for the
engineers on the high-frequency circuit designs.
• Just remember that a higher-Q circuit
corresponds to a narrower bandwidth, and a
lower-Q circuit corresponds to a wider
bandwidth. Thus a higher-Q circuit is more
sensitive to the frequency and components
variations.
42/42

More Related Content

What's hot

RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] LinearitySimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 

What's hot (20)

RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
Microwave Filter
Microwave FilterMicrowave Filter
Microwave Filter
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 

Viewers also liked

Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

Viewers also liked (15)

Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similar to RF Circuit Design - [Ch2-2] Smith Chart

power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxdivakarrvl
 
SHORT CIRCUIT CALCULATIONS REVISITED. pptx
SHORT CIRCUIT CALCULATIONS REVISITED. pptxSHORT CIRCUIT CALCULATIONS REVISITED. pptx
SHORT CIRCUIT CALCULATIONS REVISITED. pptxJatmylHarnero1
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptx
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptxBUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptx
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptxAshish Sadavarti
 
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...IRJET Journal
 
Basic electronics - Bi Junction Terminals 02.pptx
Basic electronics - Bi Junction Terminals 02.pptxBasic electronics - Bi Junction Terminals 02.pptx
Basic electronics - Bi Junction Terminals 02.pptxhappycocoman
 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
 
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...eSAT Journals
 
Electrónica: Probador de LOPT/FBT Flyback
Electrónica: Probador de LOPT/FBT FlybackElectrónica: Probador de LOPT/FBT Flyback
Electrónica: Probador de LOPT/FBT FlybackSANTIAGO PABLO ALBERTO
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITAnil Yadav
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 

Similar to RF Circuit Design - [Ch2-2] Smith Chart (20)

power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
SHORT CIRCUIT CALCULATIONS REVISITED. pptx
SHORT CIRCUIT CALCULATIONS REVISITED. pptxSHORT CIRCUIT CALCULATIONS REVISITED. pptx
SHORT CIRCUIT CALCULATIONS REVISITED. pptx
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptx
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptxBUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptx
BUILD DC TIME DELAY RELAY USING PUT ON ZERO (0) PCB .pptx
 
Simbol
SimbolSimbol
Simbol
 
Matching_Network.pdf
Matching_Network.pdfMatching_Network.pdf
Matching_Network.pdf
 
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...
IRJET- Mitigation of Harmonics in Active Neutral Point Clamped Multilevel Inv...
 
Firing Circuit
Firing CircuitFiring Circuit
Firing Circuit
 
Basic electronics - Bi Junction Terminals 02.pptx
Basic electronics - Bi Junction Terminals 02.pptxBasic electronics - Bi Junction Terminals 02.pptx
Basic electronics - Bi Junction Terminals 02.pptx
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
Modelling of fuzzy logic controller for variable step mppt in photovoltaic sy...
 
AC Circuit Theorems Slides
AC Circuit Theorems SlidesAC Circuit Theorems Slides
AC Circuit Theorems Slides
 
Probador de-flybacks
Probador de-flybacksProbador de-flybacks
Probador de-flybacks
 
Electrónica: Probador de LOPT/FBT Flyback
Electrónica: Probador de LOPT/FBT FlybackElectrónica: Probador de LOPT/FBT Flyback
Electrónica: Probador de LOPT/FBT Flyback
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Be lab manual csvtu
Be lab manual csvtuBe lab manual csvtu
Be lab manual csvtu
 
Electrical Machines
Electrical MachinesElectrical Machines
Electrical Machines
 
The new approach minimizes harmonics in a single-phase three-level NPC 400 Hz...
The new approach minimizes harmonics in a single-phase three-level NPC 400 Hz...The new approach minimizes harmonics in a single-phase three-level NPC 400 Hz...
The new approach minimizes harmonics in a single-phase three-level NPC 400 Hz...
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 

More from Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 

Recently uploaded

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 

Recently uploaded (20)

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 

RF Circuit Design - [Ch2-2] Smith Chart

  • 1. Chapter 2-2 The Smith Chart Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT The Smith Chart • The analysis of transmission-line problems and of matching circuits at microwave frequencies can be cumbersome in analytical form. The smith chart provides a very useful graphical aid to the analysis of these problems. • Matching circuits can be easily and quickly designed using the normalized impedance and admittance Smith chart (Z and Y charts). • The Smith chart is also used to present the frequency dependence of scattering parameters and other amplifier characteristics. 2/42
  • 3. Department of Electronic Engineering, NTUT Development of the Smith Chart (I)       o o Z Z x Z Z • The Smith chart is the representation in the reflection coefficient plane, called the plane, of the relation for all values of Z, such that Re{Z}≥0. Zo is the characteristic impedance of the transmission line or a reference impedance value. • Defining the normalized impedance z as      o o Z R jX z r jx Z Z               11 1 1 r jxz U jV z r jx        2 2 2 2 1 1 r x U r x      2 2 2 1 x V r x where and • Reflection Coefficient 3/42
  • 4. Department of Electronic Engineering, NTUT Development of the Smith Chart (II) r x  U jV  Γ-plane U V  1z j  1z  0z 1 1 z z     1 1 1 90z j j    0 1 1 180z        1 0z     1 90   0  1     z r jxz-plane 1 1 1 90z j j         1z j  Short Load Open 1z      1  Pure Imaginary: inductive 1 90    Pure Imaginary: capacitive 4/42
  • 5. Department of Electronic Engineering, NTUT Constant Resistance Circles (I) r x  U jV  Γ-plane U V  1 1z j  1 1z j  0z 0.447 63.4   0.447 63.4      z r jxz-plane 1 1z j  1 1z j  0.447 63.43   0.447 63.43    1 2z j  1 2z j  1 2z j  1 2z j  0.707 45   0.707 45    1j 2j 1j 2j 0.707 45   0.707 45   5/42
  • 6. Department of Electronic Engineering, NTUT Constant Resistance Circles (II) r x   z r jxz-plane U V 0z jx  0z r  0.5r  1r  3r  0.5z jx  1z jx  3z jx  0r  3r 1r  0.5r  6/42
  • 7. Department of Electronic Engineering, NTUT Constant Reactance Loci r x   z r jxz-plane U V 0.5z j 0.5z j 1z j 3z j 0.5z j  1z j  3z j  0j 0.5j 1j 3j 0.5j 1j 3j 0.5 0.5z j  1 0.5z j  1.5 0.5z j  1 126.87   0.447 116.56   0.243 75.97   0.2773 33.69   7/42
  • 8. Department of Electronic Engineering, NTUT Complete the Smith Chart Short OpenLoad +jx -jx Inductive Capacitive 8/42
  • 9. Department of Electronic Engineering, NTUT Reactance in the Smith Chart Short OpenLoad +jx -jx Inductive Capacitive +j0.1 +j0.2 +j0.3 +j0.4 +j0.5 +j0.6 +j1.6 +j1.7 +j1.8 +j2.0 +j3.0 +j4.0 +j5.0 +j6.0 0.4x  0.4x  0.4x  9/42
  • 10. Department of Electronic Engineering, NTUT Example – Impedance in the Smith Chart 1 1 1z j  2 0.4 0.5z j  3 3 3z j  4 0.2 0.6z j  5 0z  1z2z 3z 4z 5z 10/42
  • 11. Department of Electronic Engineering, NTUT Example – Find from Impedance 19.44   1 3 3z j  1z 0.721 19.44    11/42
  • 12. Department of Electronic Engineering, NTUT Example – Find Impedance from 0.447 26.56   2 1z j  26.56  12/42
  • 13. Department of Electronic Engineering, NTUT Use Smith Chart as an Admittance (Y) Chart y g jb 1 1 1y j  2 0.4 0.5y j  3 2 1.4y j  4 0.5 0.2y j  5y   1y2y 3y4y 5y 13/42
  • 14. Department of Electronic Engineering, NTUT Show Z and Y in One Chart y g jb  U V U Vz r jx  1 1 1 y g jb z         1 1 z      Impedance Chart (Z-Chart) Admittance Chart (Y-Chart) jx jx jb jb Short Load Open Short Load Open 14/42
  • 15. Department of Electronic Engineering, NTUT The ZY Chart U V 15/42
  • 16. Department of Electronic Engineering, NTUT Adding a Series Inductor 0.8Lz j 0.3 0.3z j  0.3 0.5inz j  0.3 0.3z j  0.3 0.5inz j  0.8x  -j0.3 +j0.5   16/42
  • 17. Department of Electronic Engineering, NTUT Adding a Series Capacitor 0.8Cz j  0.3 0.3z j  0.3 1.1inz j  0.3 0.3z j  0.3 1.1inz j 0.8x   -j0.3 -j1.1   17/42
  • 18. Department of Electronic Engineering, NTUT Adding a Shunt Inductor 1.6 1.6y j  1.6 0.8iny j  2.4Ly j  1.6 1.6y j  1.6 0.8iny j  2.4y   +j1.6 -j0.8   18/42
  • 19. Department of Electronic Engineering, NTUT Adding a Shunt Capacitor 1.6 1.6y j  1.6 5iny j  3.4Cy j 1.6 1.6y j  1.6 5iny j  3.4y  +j1.6 +j5  19/42
  • 20. Department of Electronic Engineering, NTUT Series/Shunt Inductor or Capacitor Higher impedanceLower impedance Series L Series C Shunt L Shunt C +jx -jx Inductive Capacitive Short Open Lower admittanceHigher admittance -jb +jb 20/42
  • 21. Department of Electronic Engineering, NTUT Matching Networks (Two-Element L-Shape) LZ1C 2C LZL C LZ1L 2L LZC L LZC L LZ2C 1C LZL C LZ2L 1L 21/42
  • 22. Department of Electronic Engineering, NTUT Match to the Reference Impedance • Usually the goal is to transform a particular impedance to the reference impedance (center of the Smith chart). In practical systems, the reference impedance . 50refZ   1z2z 3z 4z 5z Goal Goal circle (r=1) Goal circle (g=1) 22/42
  • 23. Department of Electronic Engineering, NTUT Matching from Load to the Reference Impedance (I)  10 10LZ j   0.2 0.2Lz j  Goal 0.2j 0.4j 0.2x j  2j 0j 2y j  0.2 0.4z j   50refZ          C L 01@ 500 MHzinz f  0.2 0.2j  0.2j  0.5j 02 0.2 50 10f L     0 1 2 2 0.04 50 f C     3.18 nHL  12.74 pFC  C L 10  3.18 nH 3.18 nH 12.74 pF 23/42
  • 24. Department of Electronic Engineering, NTUT Matching from Load to the Reference Impedance (II)  10 10LZ j   0.2 0.2Lz j  Goal 0.2j 0.4j 0.6x j   2j 0j 2y j   0.2 0.4z j  L C 0.2 0.2j 01@ 500 MHzinz f          0.6j   1 02 0.6 50 30f C        1 0 1 2 2 0.04 50 f L      10.6 pFC  7.95 nHL  L C 10.6 pF 7.95 nH 10  3.18 nH 24/42
  • 25. Department of Electronic Engineering, NTUT Matching from the Reference Impedance 1 L C  8 12 mSoutY j  Goal  50  0.4 0.6outy j     25/42
  • 26. Department of Electronic Engineering, NTUT Matching from Load to an Arbitrary Impedance LZC L 50 20inZ j   100 100LZ j   Goal 100refZ   LZC L 0.5 0.2inZ j   1 1Lz j      26/42
  • 27. Department of Electronic Engineering, NTUT Impedance with Frequency Increasing L R C R L R C L R C  1inZ R j L      1 1 50 in in Z z r jx        1in aZ   1in bZ   2inZ   2in aZ   2in bZ   3inZ   3in aZ   1 1 inZ R j C      3in bZ   4inZ   4in bZ   4in aZ  27/42
  • 28. Department of Electronic Engineering, NTUT Impedance with Frequency Increasing L R C R L R C C R L  2inZ   1inZ   4inZ   3inZ   1in aZ   1in bZ   2in aZ   2in bZ   3in aZ   3in bZ   4in aZ   4in bZ  28/42
  • 29. Department of Electronic Engineering, NTUT Constant Q Contour (I) n X x Q R r   1nQ  2nQ  Short Open 29/42
  • 30. Department of Electronic Engineering, NTUT Constant Q Contours (II) Short Open very intensive very intensive intensive 30/42
  • 31. Department of Electronic Engineering, NTUT Matching with Particular Q Requirement (I) • At matched condition: 2 n L Q Q  • For certain BW spec., the designed QL meets 0 1 L f BW Q  • Design a T-shape matching networks to transform to . The matching should meet relative bandwidth requirement of 40%. 50LZ   10 15inZ j   1 0.4 LQ  1 2.5 0.4 LQ   At matched condition: 2.5 2 n L Q Q   5nQ Thus in the design stage, the network should have a node Q: 31/42
  • 32. Department of Electronic Engineering, NTUT Matching with Particular Q Requirement (II) 32/42
  • 33. Department of Electronic Engineering, NTUT Low Q Matching with 5% LC Variations 1.2 nHL  1.8 pFC  1.1nQ 1nQ  1nQ  1.06nQ  LZ1.8 pFC  1.2 nHL   24.26 11.62LZ j   50inZ   • Application example: Match a certain impedance to 50-Ohm in a 1800 MHz GSM handset front-end with node Q = 1. 1.26 nHL  1.8 pFC  5% L variation 1.2 nHL  1.89 pFC  5% C variation 1.26 nHL  1.89 pFC  5% L+C variation 50.4 0.61inZ j  51.8 0.57inZ j  50.34 1.97inZ j  51.75 2.16inZ j  33/42
  • 34. Department of Electronic Engineering, NTUT High Q Matching with 5% LC Variations 50inZ  44 5inZ j  40 8inZ j  35.4 13.5inZ j  LZ1.8 pFC  5.5 nHL   24.26 11.62LZ j   50inZ   8.8 nHL  5% L variation 5% C variation 5% L+C variation • Application example: Match a certain impedance to 50-Ohm in a 1800 MHz GSM handset front-end with node Q = 3. 34/42
  • 35. Department of Electronic Engineering, NTUT Small Impedance Matched to 50 Ohm (I) 4.9nQ  5.1nQ  4.9nQ  5.1nQ  LZ8.6 pFC  0.78 nHL   2 1LZ j   50inZ   50.2 1.26inZ j  52.8 10inZ j  48.2 9.76inZ j  45.94 0.44inZ j  0.78 nHL  8.6 pFC  0.82 nHL  8.6 pFC  5% L variation 0.78 nHL  9 pFC  5% C variation 0.82 nHL  9 pFC  5% L+C variation • Application example: Match a certain small impedance to 50-Ohm in a 1800 MHz GSM handset front-end. (node Q = 4.9)  In this case, the major problem is not easy to find a small inductor for matching.  Practically, a higher value of inductor would be used. (see next page) 35/42
  • 36. Department of Electronic Engineering, NTUT Small Impedance Matched to 50 Ohm (II) 11.2nQ  2.2nQ  11.8nQ  1.15nQ 11.8nQ  1.62nQ  LZ3.2 pFC  1.9 nHL   2 1LZ j   50inZ   50.15inZ  74.3 22inZ j  119.6 41.8inZ j   To avoid a small inductor, use a higher value of L with increasing the node Q. 5% L variation 5% L+C variation  Problems arise: (1) Fail to meet broadband spec. (not a case for GSM in this example) (2) Sensitive to component variations (3) Use parallel-connected Ls to maintain a low-Q matching (area consuming)  How about using a series-C and shunt-L? 36/42
  • 37. Department of Electronic Engineering, NTUT Small Impedance Matched to 50 Ohm (III) 5.1nQ  5.8nQ  LZ1 pFC  1.3 nHL   2 1LZ j    50inZ   12 pFC  9.3 pFC   Use more components to trade the matching bandwidth. (area consuming)  Variations affect node Q easily in low-impedance region. 37/42
  • 38. Department of Electronic Engineering, NTUT High Impedance Matched to 50 Ohm 9.94nQ  10.44nQ  LZ0.176 pFC  44 nHL   5000 60LZ j   50inZ   50.08 0.32inZ j  45.47 23inZ j  • Application example: Match a certain small impedance to 50-Ohm in a 1800 MHz GSM handset front-end. (node Q = 9.9)  In this case, the major problem is not easy to find a small capacitor for matching. (In ICs, it is possible)  The components variation affects. 5% L+C variation 38/42
  • 39. Department of Electronic Engineering, NTUT Frequency Sweeping (Low Q v.s. High Q) 5.7nQ  2.2nQ  LZ0.94 pFC  9.6 nHL   160.5 44LZ j   50inZ   LZ3.9 pFC  6.1 nHL   160.5 44LZ j   50inZ   2.0 pFC   47.8 2 @1.8 GHzinZ j   44.2 10 @1.9 GHzinZ j   57.3 13 @1.7 GHzinZ j  50@1.8 GHzinZ   23.6 4.7 @1.7 GHzinZ j   47.8 46 @1.9 GHzinZ j  39/42
  • 40. Department of Electronic Engineering, NTUT Frequency Sweeping Low Q with 5% LC Variations LZ0.94 pFC  9.6 nHL   160.5 44LZ j   50inZ   LZ0.99 pFC  10.1 nHL   160.5 44LZ j   50inZ    47.8 2 @1.8 GHzinZ j   44.2 10 @1.9 GHzinZ j   57.3 13 @1.7 GHzinZ j   44.7 9 @1.8 GHzinZ j   39.4 20.7 @1.9 GHzinZ j   51.1 3 @1.7 GHzinZ j  40/42
  • 41. Department of Electronic Engineering, NTUT Frequency Sweeping High Q with 5% LC Variations LZ3.9 pFC  6.1 nHL   160.5 44LZ j   50inZ   2.0 pFC  LZ4 pFC  6.4 nHL   160.5 44LZ j   50inZ   2.1 pFC  50@1.8 GHzinZ   23.6 4.7 @1.7 GHzinZ j   47.8 46 @1.9 GHzinZ j   53 44 @1.8 GHzinZ j   46.4 3 @1.7 GHzinZ j   17.6 49 @1.9 GHzinZ j  41/42
  • 42. Department of Electronic Engineering, NTUT Summary • Although the Smith chart is seldom used nowadays for the computation of reflection coefficients. It is very useful and helpful for the engineers on the high-frequency circuit designs. • Just remember that a higher-Q circuit corresponds to a narrower bandwidth, and a lower-Q circuit corresponds to a wider bandwidth. Thus a higher-Q circuit is more sensitive to the frequency and components variations. 42/42