SlideShare a Scribd company logo
1 of 61
Download to read offline
Network Analysis
Chapter 4
Laplace Transform and Circuit Analysis
Chien-Jung Li
Department of Electronic Engineering
National Taipei University of Technology
Derivative
2
y x=
• Derivative
Isaac Newton (牛頓, 1643-1727)
Method of fluxions
流量: fluent
流數: fluxion
2y x x=
i i
2
y
x
x
=
i
i
y對應x的導數(變化率)即兩個流數的比
代表對時間的微分
G. Wilhelm Leibniz (萊布尼茲, 1646-1716)
dy
dx
y
x
∆ 
= ∆ 
J-Louis Lagrange (拉格朗日, 1736-1813)
( )y f x= ( )
dy
y f x
dx
′ ′= =
2
y x= 2y x′ =
( )
2
2
d dy d y
y f x
dx dx dx
 
′′ ′′= = = 
 
2/61 Department of Electronic Engineering, NTUT
• Operators do particular mathematical manipulations, such as
Operators
+ − × ÷
( ) ( )
dy d
y f x y
dx dx
′ ′= = = 2 2 3
2
d
x x x
dx
=
( ) ( )
2 2
2 2
d dy d y d
y f x y
dx dx dx dx
 
′′ ′′= = = = 
 
d
D
dx
≜ 2 2 3
2x Dx x=
• Louis Arbogast (1759-1803) conceived the calculus as operational
symbols. The formal algebraic manipulation of series investigated by
Lagrange and Laplace.
2 5 3
20D x x=
• The derivative
n
n
n
d
D
dx
≜
Differential operator
3/61 Department of Electronic Engineering, NTUT
Differential Equations
x
y e= x x xd
y e De e
dx
′ = = = Dy y=
Hence, we can know the solution of the equation should be of the form
x
y e= x
y Ce=
• Oliver Heaviside (1850-1925)
Heaviside was a self-taught English electrical engineer, mathematician, and
physicist who adapted complex numbers to the study of electrical circuits,
invented mathematical techniques to the solution of differential equations
(later found to be equivalent to Laplace transforms. He changed the face of
mathematics and science for years to come.
or
C is a constant
Dy y=
kx
y e= kx kx xd
y e De ke
dx
′ = = = Dy ky=
Similarly, we can know the solution of the equation should be of the
form
Dy ky=
kx
y Ce=
4/61 Department of Electronic Engineering, NTUT
Solutions of the Differential Equation
• Consider the differential equation: ( )7 8 0y y y′′ ′+ − =
2
2
7 8 0
d d
y y y
dx dx
+ − =
2
7 8 0D y Dy y+ − =
(將D視為代數)
( )2
7 8 0D D y+ − =
( ) ( )( )2
7 8 1 8 0D D D D+ − = − + =
Use the differential operator D:
Take this as an algebraic equation:
The solutions:
0y = or 1D = 8D = −
Dy y= 8Dy y= − x
y Ae= 6x
y Be−
=
and
roots
6x x
y Ae Be−
= +General Solution:
put y back
and
solutions
and(/or)
5/61 Department of Electronic Engineering, NTUT
Fourier Transform
( ) ( ) ω
∞
−
−∞
= ∫
j t
X f x t e dt
The usefulness of the Fourier transform is limited by a series drawback:
if we try to evaluate the Fourier integral, we find that the integral does not
converge for most signals x(t), i.e.,
( ) 0sinx t tω=
( ) 00
sin j t
X f t e dtω
ω
∞
−
= ⋅∫
( ) 0 0 0
0 2 20
0 0
sin cos
sin
j t j t
j t j e t e t
X t e dt
ω ω
ω ω ω ω ω
ω ω
ω ω
∞
− −
∞
− − −
= ⋅ =
−∫
( ) 0 0
2 2
0
sin cosj j
j e e
X
ω ω ω
ω
ω ω
− ∞ − ∞
− ∞ − ∞ +
=
−
But what are andsin∞ cos ?∞
• The Fourier Transform
6/61 Department of Electronic Engineering, NTUT
Circumvent the Problem
The evaluation of the Fourier integral would be simpler if the function x(t)
would approach zero for every large values of t. The solution of the Fourier
integral becomes possible if x(t) is multiplied by a damping function ,
where σ is a positive real number.
( ) ( )0
, t j t
X f x t e e dtσ ω
σ
∞
− −
′  = ⋅ ∫
( ) 00
, sin t j t
X f t e e dtσ ω
σ ω
∞
− −
′  = ⋅ ⋅ ∫
( )
( ) ( ) ( )
( )
0 0 0
22
0 0
sin cos
,
j t j t
j e t e t
X
j
σ ω σ ω
σ ω ω ω ω
ω σ
ω σ ω
∞
− + − +
− + −
′ =
+ +
• The Laplace transform offers a way to circumvent this problem.
t
e σ−
( )
( ) ( ) ( )
( )
( )
( )
0 0
0 0
2 22 2
0 0
sin cos sin0 cos0
,
j j
j e e j e e
X
j j
σ ω σ ω
σ ω ω σ ω ω
ω σ
ω σ ω ω σ ω
− + ∞ − + ∞
− + ∞ − ∞ − + −
′ = −
+ + + +
( )
( )
0
22
0
,X
j
ω
ω σ
ω σ ω
′ =
+ +
For ( ) 0sinx t tω=
( ) ( )
0
j t j
t
e e
σ ω σ ω− + − + ∞
=∞
= →
7/61 Department of Electronic Engineering, NTUT
The Fourier Transform of the Sinusoid
( )
( )
0
22
0
,X
j
ω
ω σ
ω σ ω
′ =
+ +
• The Fourier integral X(f) is now obtained by letting
( ) 0
2 2
0
X
ω
ω
ω ω
=
−
Thus the Fourier transform of any function x(t) is obtained by first introducing
a damping function evaluating the integral for and finally
letting .
( )- 0
0 1t
e eσ
σ → =≃
- t
e σ
0σ >
0σ →
• The Fourier integral is obtained with x(t) multiplied by a damping
function:
( ),X ω σ′
8/61 Department of Electronic Engineering, NTUT
Definition of the Laplace Transform
( ) ( )0
, t j t
X f x t e e dtσ ω
σ
∞
− −
′  = ⋅ ∫
( ) ( ) ( )
0
,
j t
X f x t e dt
σ ω
σ
∞ − +
′ = ⋅∫
• Define s jσ ω= + , where s is called the complex frequency
( ) ( ) ( ),X f X j X sσ σ ω′ = + =
( ) ( )0
st
X s x t e dt
∞
−
= ⋅∫
This is the definition of
the Laplace transform
• As we said, the evaluation of the Fourier integral would be simpler if
the function x(t) is multiplied by a damping function , where σ is a
positive real number.
t
e σ−
• The Fourier transform can be obtained by letting , i.e.
( ) ( )s j
X X s ω
ω =
=
0σ → s jω=
9/61 Department of Electronic Engineering, NTUT
Historical Points of View (I)
Watt 1736-1819
Coulomb 1736-1806
Ampere 1775-1836
Volta 1745-1827
Ohm 1789-1854
Kirchhoff 1824-1887
1600 19001700
Joule 1818-1889
1609
顯微鏡
1752
避雷針
1710
溫度計
1769
蒸汽機
1791
輪船
1800
電池
1804
鐵路機車
1807
蒸汽船
1821
電動機
1826
內燃機
1831
發電機
1824
都卜勒效應
1836
縫紉機
1843
冰淇淋
1801
紡織機
1870
汽油引擎
1877
留聲機
麥克風
1889
汽車
1893
無線電
Department of Electronic Engineering, NTUT10/61
Lagrange 1736-1813
Newton 1643-1727
Leibniz 1646-1716
Fourier 1768-1830
Laplace 1749-1827
Arbogast 1759-1803
Heaviside 1850-1925
1800
1657
擺鐘
1679
壓力鍋
1643
晴雨表
1609
克卜勒行星
運動定律
1610
伽利略提出
太陽自轉
1621
斯耐爾
折射定律
1687
牛頓
自然哲學的
數學原理
(萬有引力, 三大
運動定律)
1690
惠更斯
以太說
1652
富蘭克林
論電與
電氣相同
1685
庫侖定律
Historical Points of View (II)
1774-1783
美國獨立戰爭
1774
大陸會議
1776
傑佛遜獨立宣言,
美國成立
1789
美國憲法生效
華盛頓第一任總統
1861
南北戰爭爆發
1865
林肯遇刺身亡
1662-1722 康熙 1795-1908 嘉慶, 道光, 咸豐, 同治, 光緒1722-35-95 雍正, 乾隆
1754 吳敬梓歿
1763 曹雪芹歿
1796-1804
白蓮教起義
1840-42 第一次
鴉片戰爭
1851 洪秀全
成立太平天國
1852 曾國藩成
立湘軍
1856-60 第二次
鴉片戰爭, 英法
聯軍
1861 慈禧垂簾聽政
1865 李鴻章成
立江南製造局
1866 左宗棠成
立福州造船廠
1885 劉銘傳任台
灣巡撫
1894 中日甲午戰爭
1898 譚嗣同,
康有為戌戊變法
1900 義和團起義
1784 鹿港開港
1863 雞籠開港
1864 打狗開港
1874 牡丹社事件
1884 中法戰爭, 砲
轟基隆
1885 台灣脫離福
建省, 為台灣省
1887 台灣鐵路
1760 英國工業
革命開始
1789-1794 法國
大革命
1795 法王路易
十六上斷頭台
1799-1814 拿破
崙王朝
1871 德意志帝
國成立 1889 巴黎艾菲爾鐵塔
1895 馬關條約
Department of Electronic Engineering, NTUT11/61
1600 19001700 1800
-1644 明朝末
1644
吳三桂降清
1644-62 南明
1650
鄭成功居廈門
與金門抗清
1661
鄭成功攻台灣
逐荷蘭人
1636 大清國
皇太極稱帝
1683
施琅攻台
鄭克塽降清
1600
英國東印度
公司
1600~
英法殖民者於
北美拓殖
1624 荷蘭占台
Definition of The Laplace Transform
Department of Electronic Engineering, NTUT
( ) ( )f t F s  = L
( ) ( )-1
F s f t  = L
( ) ( )
0
st
F s f t e dt
∞
−
= ∫
• The mathematical definition of the Laplace transform is
One-sided or Unilateral Laplace transform
• The process of transformation is indicated symbolically as
• The process of inverse transformation is indicated symbolically as
12/61
Basic Theorems of Linearity
( ) ( ) ( )Kf t K f t KF s   = =   L L
( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2f t f t f t f t F s F s     + = + = +     L L L
( ) ( ) ( ) ( )1 2 1 2f t f t F s F s ⋅ ≠ ⋅ L
• Consider the Laplace transform of a function f(t) is
( ) ( )f t F s  = L
Let K represent an arbitrary constant, we have
Let f1(t) and f2(t) represent any arbitrary functions, we have
• It is mentioned here that
Department of Electronic Engineering, NTUT13/61
Step Function
( ) 0 for 0u t t= <
1 for 0t= >
( ) ( )U s u t =  L
• The unit step function u(t) can be used to describe the process of
“turning on” a DC level at t=0.
1
t
( )u t
( ) ( ) 0 for 0u t Ku t t′ = = <
for 0K t= >
K
t
( )u t′
( ) ( )U s u t′ ′ =  L
0
1st
e dt
s
∞
−
= =∫ 0
st K
Ke dt
s
∞
−
= =∫
Department of Electronic Engineering, NTUT14/61
Exponential Function
( ) 0
t t st
X s e e e dtα α
∞
− − −
 = =  ∫L
• The Laplace transform of the exponential function .
for 0α >1
t
( ) t
x t e α−
=
for 0α <
1
t
( ) t
x t e α−
=
( )
0
1s t
e dt
s
α
α
∞ − +
= =
+∫
t
e α−
Department of Electronic Engineering, NTUT15/61
Sine and Cosine Functions
• The Laplace transform of the sinusoid .0cos tω
( )
0 0
0 0
0
0 0 0 0
1
sin
2 2
j t j t
j t j tst st st ste e
F s te dt e dt e e dt e e dt
j j
ω ω
ω ω
ω
∞ ∞ ∞ ∞−
−− − − −
 −
= = = − 
 
∫ ∫ ∫ ∫
( ) ( )
( )
( )
( )
( )0 0 0 0
0 00 0 0 0
1 1 1 1
2 2
s j t s j t s j t s j t
e dt e dt e e
j j s j s j
ω ω ω ω
ω ω
∞ ∞
∞ ∞
− − − + − − − +
  
 = − = − 
− − − +    
∫ ∫
( ) ( )
( )0 0 0
2 2 2 2
0 0 0 0
1 1 1 1
2 2
s j s j
j s j s j j s s
ω ω ω
ω ω ω ω
   + − −
= − = =   
− + + +    
( )
0 0
0 0
0
0 0 0 0
1
cos
2 2
j t j t
j t j tst st st ste e
F s te dt e dt e e dt e e dt
ω ω
ω ω
ω
∞ ∞ ∞ ∞−
−− − − −
 +
= = = + 
 
∫ ∫ ∫ ∫
( ) ( )
( )
( )
( )
( )0 0 0 0
0 00 0 0 0
1 1 1 1
2 2
s j t s j t s j t s j t
e dt e dt e e
s j s j
ω ω ω ω
ω ω
∞ ∞
∞ ∞
− − − + − − − +
  
 = + = + 
− − − +    
∫ ∫
( ) ( )
( )0 0
2 2 2 2
0 0 0 0
1 1 1 1
2 2
s j s j s
s j s j s s
ω ω
ω ω ω ω
   + + −
= + = =   
− + + +  
• The Laplace transform of the sinusoid .0sin tω
Department of Electronic Engineering, NTUT16/61
Damped Sinusoidal Functions
( ) ( )
0 0
s tt st
F s e e dt e dt
αα
∞ ∞
− +− −
= =∫ ∫
( )
( )
( )0
1 1s t
e
s s
α
α α
∞
− +
= =
− + +
1
( )0cos where 0t
e tα
ω α−
>
t
e α−
( ) ( )
( )
0 0 2 2
0 0 0
cos cos
s tt st s
F s te e dt te dt
s
αα α
ω ω
α ω
∞ ∞
− +− − +
= = =
+ +
∫ ∫
( ) ( )
( )
0
0 0 2 2
0 0 0
sin sin
s tt st
F s te e dt te dt
s
αα ω
ω ω
α ω
∞ ∞
− +− −
= = =
+ +
∫ ∫
• The Laplace transform of the damped function .t
e α−
• The Laplace transform of the damped sine function .0sint
e tα
ω−
• The Laplace transform of the damped cosine function .0cost
e tα
ω−
Department of Electronic Engineering, NTUT17/61
Transformation Pairs Encountered in Circuit Analysis
1 ( )u t
1
s
t
e α− 1
s α+
0sin tω
0cos tω
0sint
e tα
ω−
( )
2 2
0
s
s
α
α ω
+
+ +
2
1
s
t
1
!
n
n
s +
n
t
t n
e tα−
( )
1
!
n
n
s α
+
+
( )tδ 1
( )f t ( ) ( )F s f t =  L
or
0
2 2
0s
ω
ω+
2 2
0
s
s ω+
( )
0
2 2
0s
ω
α ω+ +
0cost
e tα
ω−
( )f t ( ) ( )F s f t =  L
Department of Electronic Engineering, NTUT18/61
Transform Example
( ) 4 2
10 5 12sin3 4 cos5t t
f t e t e t− −
= + + +
( )
( )
( )
22 2 2
4 210 5 12 3
4 3 2 5
s
F s
s s s s
+⋅
= + + +
+ + + +
( )
2 2
4 210 5 36
4 9 4 29
s
s s s s s
+
= + + +
+ + + +
• Find the Laplace transform of f(t):
<Sol.>
( ) 4 2
10 5 12sin3 4 cos5t t
f t e t e t− −
= + + +
constant damped sinusoid damped cosine
Department of Electronic Engineering, NTUT19/61
OperationOperationOperationOperation f(t)f(t)f(t)f(t) F(s)F(s)F(s)F(s)
Laplace Transform Operations
( )f t′ ( ) ( )0sF s f−
( )0
t
f t dt∫
( )F s
s
( )t
e f tα−
( )F s α+
( ) ( )f t T u t T− − ( )sT
e F s−
( )0f ( )lim
s
sF s
→∞
( )lim
t
f t
→∞
( )0
lim
s
sF s
→
poles of sF(s) must be in left-hand
half-plane. (stable)
Differentiation
Integration
Multiplication by
t
e α−
Time shifting
(Frequency shifting)
Initial value theorem
(初值定理)
Final value theorem
(終值定理)
Department of Electronic Engineering, NTUT20/61
Differentiate Operation
( ) ( )
0
st
F s f t e dt
∞
−
= ∫
• If the Laplace transform of f(t) is F(s), prove that Laplace transform of
f’(t) is sF(s)-f(0).
( )
( )
0 0
st stdf t
f t e dt e dt
dt
∞ ∞
− −
′ =∫ ∫
Let ,st
u e−
= and
( )df t
dt dv
dt
= ( )v f t=
( )
( ) ( ) ( ) ( ) ( )0 00
0
st st st st stdf t
e dt f t e f t de f t e s f t e dt
dt
∞
∞ ∞∞
− − − − −
 = − = − − ⋅
 ∫ ∫ ∫
( ) ( ) ( ) ( ) ( )0
0
0 0s s st
f e f e s f t e dt sF s f
∞
− ⋅∞ − ⋅ −
 = ∞ − + = −  ∫
Department of Electronic Engineering, NTUT21/61
Use Differential Operation to Find the Transform of Sinusoid
( ) 0
2 2
0
F s
s
ω
ω
=
+
( ) 0sinf t tω=
( ) 0 0cosf t tω ω′ =
( ) ( ) ( ) 0
2 2
0
0 0
s
f t sF s f
s
ω
ω
′  = − = −  +
L
[ ] [ ] 0
0 0 0 0 2 2
0
cos cos
s
t t
s
ω
ω ω ω ω
ω
= =
+
L L
[ ] 2 2
cos
s
t
s
ω
ω
=
+
L
• Let and its Laplace transform is know as .
Find the Laplace transform of by using the differential
operation.
0cos tω
( ) 0sinf t tω=
Department of Electronic Engineering, NTUT22/61
Use Integral Operation to Find the Transform of Ramp Function
( ) 1f t = ( )
1
F s
s
=
( ) ( )0 0
1
t t
x t f t dt dt t= = =∫ ∫
( ) ( )
( )
20
1 1 1t F s
x t f t dt
s s s s
    = = = =       
∫L L
( ) ( ) [ ] 2
1
X s x t t
s
 = = = L L
( ) 1f t =• Let and its Laplace transform is know as .
Find the Laplace transform of the ramp function by using the
integral operation.
( )x t t=
( )
1
F s
s
=
Department of Electronic Engineering, NTUT23/61
Degree or Order
( )
( )
( )
N s
F s
D s
=
( ) 1
1 0
n n
n nN s a s a s a−
−= + + +⋯
( ) 1
1 0
m m
m mD s b s b s b−
−= + + +⋯
( )
( )( )( )
5 4 3 2
2 2
19 160 1086 3896 8919 10440
4 9 4 29
s s s s s
F s
s s s s s
+ + + + +
=
+ + + +
order = m (means m roots)
order = n (means n roots)
• Most transforms of interest in circuit analysis turn out to be expressed
as ratios of polynomials in the Laplace variables s. Define the
transform function F(s) as
Numerator polynomial
Denominator polynomial
Department of Electronic Engineering, NTUT24/61
Zeros and Poles
( ) 0zN s = ( ) 0zF s =
( ) 0pD s = ( )pF s = ∞
( )
( )
( )
N s
F s
D s
=• For
ZerosZerosZerosZeros of F(s): roots of the numerator polynomial N(s)
PolesPolesPolesPoles of F(s): roots of the denominator polynomial D(s)
( ) 1
1 0
m m
m mD s b s b s b−
−= + + +⋯Denominator polynomial
can also be completely specified by its roots except for a constant
multiplier mb in factored form as
( ) ( )( ) ( )1 2m mD s b s s s s s s= − − −⋯
Department of Electronic Engineering, NTUT25/61
Classification of Poles
• The poles can be classified as either real, imaginary, or complex.
• An imaginary or complex pole is always accompanied by its complex
conjugate, i.e., jy is accompanied (-jy) and (x+jy) is with (x-jy).
x jy x+jy
• The poles can also be classified according to their order, which is the
number of times a roots is repeated in the denominator polynomial
(重根).
• The first-order (or simple-order) root is which the root appears only
once. Higher-order roots are referred to as multiple-order roots.
• The roots of second-order equations may be either real or complex. For
third- and higher-degree equations, numerical methods must often be
used.
Department of Electronic Engineering, NTUT26/61
Example – Inverse Laplace Transform
( ) 2
10 15 20
3
F s
s s s
= + +
+
( ) 3
10 15 20 t
f t t e−
= + +
( ) 2
8 30
25
s
F s
s
+
=
+
( ) 2 2 2 2
5
8 6
5 5
s
F s
s s
= +
+ +
( ) 8cos5 6sin5f t t t= +
( )
( )
( )
( )
( ) ( )
2 2 22 2 2
2 3 20 32 26 5
2 4
6 34 3 25 3 5 3 5
s ss
F s
s s s s s
+ + ++
= = = +
+ + + + + + + +
( ) 3 3
2 cos5 4 sin5t t
f t e t e t− −
= +
• Find the inverse Laplace transform of F(s):
<Sol.>
• Find the inverse Laplace transform of F(s):
<Sol.>
• Find the inverse Laplace transform of F(s):
<Sol.>
( ) 2
2 26
6 34
s
F s
s s
+
=
+ +
Department of Electronic Engineering, NTUT27/61
Example – Classify the Poles
( )
( )
( )( )( )( )2 2 2 2
3 2 16 6 34 8 16
N s
F s
s s s s s s s s
=
+ + + + + + +
9 poles 1 2 9, , ,s s s⋯
1 0s = 2
3 9 8
1
2
s
− + −
= = − 3
3 9 8
2
2
s
− − −
= = −
4 4s j= + 5 4s j= −
6
6 36 136
3 5
2
s j
− + −
= = − − 7 3 5s j= − +
8
8 64 64
4
2
s
− + −
= = − 9
8 64 64
4
2
s
− − −
= = −
Real, 1st order (3 poles): s1, s2, s3
Imaginary, 1st order (2 poles): s4, s5
Complex, 1st order (2 poles): s6, s7
Real, 2nd order (2 poles): s8, s9
• Given F(s):
and where N(s) is not specified but known that no roots coincide with
those of D(s). Classify the poles.
<Sol.>
Department of Electronic Engineering, NTUT28/61
Inverse Laplace Transform Step 1
• For the purpose of inverse transformation, poles will be classified in 4
categories
1. First-order real poles
2. First-order complex poles
3. Multiple-order real poles
4. Multiple-order complex poles
(purely imaginary poles will be considered as a special case of complex poles with zero real part)
• Step 1: Check Poles
( )
( )( )2 2
50 75
3 2 4 20
s
F s
s s s s
+
=
+ + + +
( )( )( )2
50 75
1 2 4 20
s
s s s s
+
=
+ + + +
real real complex conjugate
Department of Electronic Engineering, NTUT29/61
Inverse Laplace Transform Step 2 (I)
• Step 2: Partial Fraction Expansion
( )
( )( )( )2
50 75
1 2 4 20
s
F s
s s s s
+
=
+ + + +
( ) ( ) ( )
1 2 1 2
2
1 2 4 20
A A B s B
s s s s
+
= + +
+ + + +
A1,A2,B1,B2 are constants to be determined.
• Note that the single-pole denominator terms require only a constant in the
numerator, but the quadratic term requires a constant plus a term
proportional to s.
• Various procedures exist for determining the constants, but the results can
always be checked by combining back over a common denominator of
necessary to see if the original function is obtained.
Department of Electronic Engineering, NTUT30/61
Inverse Laplace Transform Step 2 (II)
( )
( ) ( ) ( )
1 2 1 2
2
1 2 4 20
A A B s B
F s
s s s s
+
= + +
+ + + +
( ) ( )2 2
1 2 sin 4t t t
f t Ae A e Be t θ− − −
= + + +
B and are determined form B1 and B2.
• A first-order real pole corresponds to an exponential time response
term.
• A quadratic factor with complex poles corresponds to a damped
sinusoidal time response term. Said differently, a pair of complex
conjugate poles corresponds to a damped sinusoidal time response
term.
• The inverse transform of :
θ
Department of Electronic Engineering, NTUT31/61
General Algorithm – Find Coefficients
( )
( )( ) ( )( )( ) ( )
1
2 2 2
1 2 1 1 2 2r r rk R R
A
F s
s s s s a s b s a s b s a s bα α α
=
+ + + + + + + + +⋯ ⋯
1 2, , ,r r rkα α α− − −⋯ ( ) ( ) ( )1 1 2 2, , , R Rj j jα ω α ω α ω− ± − ± − ±⋯
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2e e ek s s sRf t f t f t f t f t f t f t= + + + + + + +⋯ ⋯
( ) kt
ek kf t A e α−
=
( ) ( ) k
k k s
A s F s α
α =−
= +
( ) ( )sinRt
sR R R Rf t B e tα
ω θ−
= +
( ) ( )21R
R R
j
R R R R rR
R s j
B e B s a s b F sθ
α ω
θ
ω =− +
 = ∠ = + + 
• Give F(s) in the factored form:
• The corresponding inverse transform:
coeff. coeff.
Department of Electronic Engineering, NTUT32/61
Example
( ) 2
6 42
7 10
s
F s
s s
+
=
+ +
( )
( )
( )( )
6 7
2 5
s
F s
s s
+
=
+ +
( ) ( ) ( ) 2 5
1 2 1 2
t t
e ef t f t f t Ae A e− −
= + = +
( ) ( )
( )
( )
( )
( )1 2
2
6 7 6 2 7
2 10
5 2 5s
s
s
A s F s
s=−
=−
+ − +
= + = = =
+ − +
( ) ( )
( )
( )
( )
( )2 5
5
6 7 6 5 7
5 4
2 5 2s
s
s
A s F s
s=−
=−
+ − +
= + = = = −
+ − +
( ) 2 5
10 4t t
f t e e− −
= −
• Find the inverse Laplace transform of F(s):
<Sol.>
Department of Electronic Engineering, NTUT33/61
Example
( )
2
3 2
10 42 24
4 3
s s
F s
s s s
+ +
=
+ +
( )
( )( )
2
10 42 24
1 3
s s
F s
s s s
+ +
=
+ +
( ) 3
1 2 3
t t
f t A A e A e− −
= + +
( )( )
2
1
0
10 42 24 24
8
1 3 1 3s
s s
A
s s =
+ +
= = =
+ + ⋅
( )
2
2
1
10 42 24 10 42 24
4
3 1 2s
s s
A
s s =−
+ + − +
= = =
+ − ⋅
( ) ( )
2
3
3
10 42 24 90 126 24
2
1 3 2s
s s
A
s s =−
+ + − +
= = = −
+ − ⋅ −
( ) 3
8 4 2t t
f t e e− −
= + −
• Find the inverse Laplace transform of F(s):
<Sol.>
Department of Electronic Engineering, NTUT34/61
Example
( )
( )
( )( )2
20 2
1 2 5
s
F s
s s s s
+
=
+ + +
( ) ( ) ( ) ( ) ( )1 2 1 2 sin 2t t
e e sf t f t f t f t A A e Be t θ− −
= + + = + + +
( )
( )( )1 2
0
20 2 20 2
8
1 51 2 5
s
s
A
s s s
=
+ ⋅
= = =
⋅+ + +
( )
( )2 2
1
20 2 20 1
5
1 42 5
s
s
A
s s s
=−
+ ⋅
= = = −
− ⋅+ +
( ) ( )
( )
( )
( )
( )( )
2
1 2 1 2
20 2 10 1 21 1
2 5
2 2 1 1 2 2s j s j
s j
B s s F s
s s j j
θ
=− + =− +
+ +
∠ = + + = =
+ − +
( )
( )( )
10 2.2361 63.435
5 143.13
2.2361 116.565 2 90
⋅ ∠
= = ∠ −
∠ ∠
( ) ( )8 5 5 sin 2 143.13t t
sf t e e t− −
= − + −
• Find the inverse Laplace transform of F(s):
<Sol.>
Department of Electronic Engineering, NTUT35/61
Example
( )
( )( )2 2
100
4 2 10
s
F s
s s s
=
+ + +
( ) ( ) ( )1 2s sf t f t f t= +
( ) ( )0
1 1 1sin 2t
sf t B e t θ−
= + ( )1 1sin 2B t θ= +
( ) ( )2 2 2sin 3t
sf t B e t θ−
= +
( ) ( )
( )
( )
2
1 1 2
2 2
50 21 1 100
4
2 2 2 10 4 10 4s j s j
js
B s F s
s s j
θ
= =
∠ = + = =
+ + − + +
( ) ( )
( )
( )
2
2 2 22
1 3 1 3
33.33 1 31 1 100
2 10 14.6176 127.875
3 3 4 1 3 4s j s j
js
B s s F s
s j
θ
=− + =− +
− +
∠ = + + = = = ∠ −
+ − + +
• Find the inverse Laplace transform of F(s):
<Sol.>
100 90
13.8675 56.3099
7.2111 33.6901
∠
= = ∠
∠
( ) ( ) ( )13.8675sin 2 56.3099 14.6176 sin 3 127.875t
sf t t e t−
= + + −
Department of Electronic Engineering, NTUT36/61
Inverse Transform of Multiple-order Poles (I)
• Algorithm for Multiple-order Real Poles
( )
( )
( )
i
Q s
F s
s α
=
+
( ) ( ) ( )
i
Q s s F sα= +
roots@i s α= −
The time function due to the pole of order i with a value will be
the form:
α−
( )
( ) ( ) ( )
1 2
1 2
1 ! 2 ! !
i i i k
tk
m i
C t C t C t
f t C e
i i i k
α
− − −
−
 
= + + + + + 
− − − 
⋯ ⋯
A give coefficient Ck can be determined from the expression:
( )
( )
1
1
1
1 !
k
k k
s
d
C Q s
k ds α
−
−
=−
=
−
Department of Electronic Engineering, NTUT37/61
Inverse Transform of Multiple-order Poles (II)
• For a first-order real pole:
( )
0 1
1
1
0!
t t
m
C t
f t e C eα α
−
− −
= =
( ) ( ) ( )1
1
0! s s
C Q s s F sα α
α=− =−
= = +
• For second-order real poles:
( ) ( ) ( )
2
Q s s F sα= +
( ) ( )1 2
t
mf t C t C e α−
= +
( )1 s
C Q s α=−
=
( )
2
s
dQ s
C
ds α=−
=
Department of Electronic Engineering, NTUT
For complex poles, find the complex coefficients Ck with s jα ω= − ±
38/61
s-domain Circuit Analysis
Time domain circuit for which a general solution is desired
Convert circuit to s-domain
form
Solve for desired response in
s-domain
Determine inverse transform
of desired response
Desired time domain response
Department of Electronic Engineering, NTUT39/61
Transform Impedances (I)
Passive
RLC Circuit
( )i t
( )v t Z(s)
( )I s
( )V s
s-domain
( ) ( )I s i t =  L
( ) ( )V s v t =  L
( )
( )
( )
V s
Z s
I s
=
( )
( )
( )
( )
1 I s
Y s
Z s V s
= =
Transform impedance Z(s)
Transform admittance Y(s)
Department of Electronic Engineering, NTUT40/61
Transform Impedances (II)
( )i t
( )v t R
( )i t
( )v t
( )i t
( )v t
C
L
( )V s
( )I s
R
1
sC
( )V s
( )I s
sL( )V s
( )I s
R
C
L
( )V ω
( )I ω
R
ω
1
j C
( )V ω
( )I ω
ωj L( )V ω
( )I ω
0σ →
0σ →
0σ →
Department of Electronic Engineering, NTUT41/61
Example – Transform Impedance
1 kR = Ω
0.5 FC µ=
30 mHL =
1 kR =
( )
6
6
1 1 2 10
0.5 10sC ss −
⋅
= =
⋅
( )3
30 10 0.03sL s s−
= ⋅ =
Department of Electronic Engineering, NTUT42/61
Models for Initially Charged Capacitor
0VC
+
−
0V
s
1
sC
+
−
0CV1
sC
0 60 VV =0.2 FC µ=
+
−
60
s
6
50 10
s
⋅
+
−
6
12 10−
⋅
6
50 10
s
⋅
Thevenin’s equivalent circuit Norton’s equivalent circuitInitially charged capacitor
Example:
Department of Electronic Engineering, NTUT43/61
Models for Initially Fluxed Inductor
0IL
0LI
sL
+
−
0I
s
sL
0 0.4 AI =50 mHL =
0.02
0.05s
+
−
0.4
s
0.05s
Thevenin’s equivalent circuit Norton’s equivalent circuitInitially fluxed inductor
Department of Electronic Engineering, NTUT44/61
Complete Circuit Models
1. Transform the complete circuit from the time-domain to the s-domain
( ) ( )v t V s→ ( ) ( )i t I s→
L sL→
1
C
sC
→
0
0
V
V
s
→ 0
0
I
I
s
→
2. Solve for the desired voltages currents using the s-domain model.
3. Using inverse Laplace transform to determine the corresponding time-
domain forms for the voltages or currents of interest.
Department of Electronic Engineering, NTUT45/61
Example (I)
20 V+
−10cos3t
+
−
0t =
2 H
1
F
4 3 Ω 4 Ω 5 H
+
−
8 V
1
F
6
( )1i t ( )2i t
20
s
+
−2
10
9
s
s +
+
−
2s
4
s 3 4 5s
8
s
6
s
( )1I s ( )2I s+
−
Transform from time-domain to s-domain
Department of Electronic Engineering, NTUT46/61
Example (II)
20
s
+
−2
10
9
s
s +
+
−
2s
4
s 3 4 5s
8
s
6
s
( )1I s ( )2I s+
−
( ) ( ) ( ) ( ) ( )1 1 1 1 22
10 4 6 8
2 3 0
9
s
sI s I s I s I s I s
s s s s
−
 + + + + − + = +
( ) ( ) ( ) ( )2 1 2 2
8 6 20
4 5 10 0I s I s I s sI s
s s s
−
 + − + + + + = 
Mesh 1:
Mesh 2:
Solve for I1(s) and I2(s)
Apply the circuit laws:
Department of Electronic Engineering, NTUT47/61
General Forms for Solutions (I)
( ) ( ) ( )n fy t y t y t= +
• Natural and Forced Responses
Let represent some arbitrary general circuit response (either a voltage
or current). When the circuit is excited by one or more sources, a general
response may be represented by the sum of two responses as follows:
( )y t
( )y t
Natural response Forced response
• Natural Response
The form of the natural response is determined by the circuit parameter,
i.e., if the circuit has a time constant of 2 seconds, corresponding to an
exponential , such a term will appear in the response when the circuit
is excited by any type of source.
2t
e−
• Force Response
The form of the forced response is determined by the excitation source(s),
i.e., if a circuit is excited by a sinusoid having a frequency of 5 kHz, the
general response will always contain a sinusoid with a frequency of 5 kHz.
Department of Electronic Engineering, NTUT48/61
General Forms for Solutions (II)
( ) 10sin1000sv t t=
( ) ( )2
2 3 4sin 1000 30t t
i t e e t− −
= − + +
( ) ( ) ( )4sin 1000 30ss fi t i t t= = +( ) ( ) 2
2 3t t
t ni t i t e e− −
= = −
( ) ( ) ( )t ssy t y t y t= +
• Transient and Steady-state Responses
Transient response Steady-state response
Frequently, transient response and natural response are considered to be
equivalent, and steady-state response and forced response are considered
to be equivalent. The terms transient and steady-state relate to the
common case where the natural response is transient in nature and
eventually vanishes, whereas the forced response continuous as a steady-
state condition indefinitely.
Example:
Department of Electronic Engineering, NTUT49/61
First-Order Circuits
• First-order Circuit with Arbitrary Input
( ) t t
ny t Ke Keτ α− −
= =
For first-order circuits, the natural response will always be an exponential
term of the form:
( )ny t
K is a constant
is the time constantτ
is the damping factor1α τ=
Since the exponential term approaches zero as time increases, it is proper to
designate the natural response as a transient response whenever the forced
response continuous indefinitely.
Department of Electronic Engineering, NTUT50/61
Example of a First-Order Circuit (I)
40sin4t
+
−
0t =
4 Ω
( )i t
1
F
12
+
−
( )cv t
2
160
16s +
+
−
4 Ω
( )I s
12
s
+
−
( )cV s
( ) ( )2
160 12
4 0
16
I s I s
s s
− + + =
+
( )
( )( )2
40
3 16
s
I s
s s
=
+ +
( ) ( )3
4.8 8sin 4 36.87t
i t e t−
= − + +
( ) ( )
( )( )2
12 480
3 16
CV s I s
s s s
= =
+ +
( ) ( )3
19.2 24sin 4 53.13t
Cv t e t−
= + −
• Use Laplace transform techniques, determine the current and
voltage for .
( )i t
( )Cv t 0t >
Transform from time-domain to s-domain
Apply KVL:
Transient response Steady-state response
Transient response Steady-state response
Time constant = 1/3 = RC
Damping factor = 3
Department of Electronic Engineering, NTUT51/61
Example of a First-Order Circuit (II)
( ) ( )
30
6 3 0
1
I s s I s
s
− + + ⋅ =
+
( )
( )( )
10
1 2
I s
s s
=
+ +
( ) 2
10 10t t
i t e e− −
= −
• Use Laplace transform techniques, determine the for .( )i t 0t >
Transform from time-domain to s-domain
Apply KVL:
Forced response Natural response
Time constant = 1/2 = L/R
Damping factor = 2
30 t
e− +
−
0t =
6 Ω
( )i t 3 H
30
1s +
+
−
6
( )I s 3s
Department of Electronic Engineering, NTUT52/61
Second-Order Circuits
( ) ( ) ( )
1
0iV
sLI s RI s I s
s sC
− + + + =
( )
2 1
iV
LI s
R
s s
L LC
=
+ +
( ) ( )
2
1
1
i
C
V
LCV s I s
RsC
s s s
L LC
= =
 
+ + 
 
• Second-order circuits are of special interest because they are capable
of displaying, on a simple scales, the types of responses that appear
in circuits of arbitrary order. In fact, second-order circuits and systems
occur frequently in practical applications, so their behavior is subject
of considerable interest.
• Series RLC Circuit
iV +
−
0t =
R
( )i t
+
−
( )cv t
L
C
iV
s
+
−
R
( )I s
+
−
( )CV s
sL
1
sC
Department of Electronic Engineering, NTUT53/61
3 Possible Forms of the Roots
2
1
2
2
1
2 4
s R R
s L L LC
= − ± −
• The roots of the second-order circuit
• Three possibilities for the roots s1 and s2
Overdamped Case (the roots are real and different) :
2
2
1
4
R
L LC
>
Critically Damped Case (the roots are real and equal) :
2
2
1
4
R
L LC
=
Underdamped Case (the roots are complex) :
2
2
1
4
R
L LC
<
Department of Electronic Engineering, NTUT54/61
Overdamped Case (Series RLC)
( )
( )( )1 2
iV
LI s
s sα α
=
+ +
( )
( )( )1 2
i
C
V
LCV s
s s sα α
=
+ +
( ) 1 2
0 0
t t
i t A e A eα α− −
= −
( ) 1 2
1 2
t t
C iv t V Ae A eα α− −
= + +
• In the overdamped case, the two poles are real and different. Assume
that the poles are and , the forms for I(s) and VC(s)
can be expressed as
1 1s α= − 2 2s α= −
• The inverse transforms are of the forms
The natural response consists of two exponential
terms, each having a different damping factor or
time constant. The forced response for the current
is zero and for the capacitor voltage is the
constant final voltage across the capacitor.
Department of Electronic Engineering, NTUT55/61
Critically Damped Case (Series RLC)
( )
( )
2
iV
LI s
s α
=
+
( )
( )
2
i
C
V
LCV s
s s α
=
+
( ) 2
0
t Rt LiVt
i t C te e
L
α− −
= =
( ) ( ) 2
1 2
Rt L
C iv t V C t C e−
= + +
• In the critically damped case, the two poles are real and equal.
Assume that the poles are , the forms for I(s) and VC(s)
can be expressed as
1 2s s α= = −
The damping factor:
2
R
L
α =
• The inverse transforms are of the forms
0 iC V L=
The most significant aspect of the natural
response function for the critically damped case is
the form. Although the t factor increases
with increasing t, the decreases at a faster
rate, so the product eventually approaches zero.
t
te α−
t
te α−
Department of Electronic Engineering, NTUT56/61
Underdamped Case (Series RLC)
1 ds jα ω= − + 1 ds jα ω= − −
2
R
L
α =
2
1
2
d
R
LC L
ω
 
= −  
 
( )
( )
2 2
i
d
V
LI s
s α ω
=
+ +
( )
2 1
i
C
V
LCV s
R
s s s
L LC
=
 
+ + 
 
( ) sinti
d
d
V
i t e t
L
α
ω
ω
−
=
( ) ( )sint
C i dv t V Be tα
ω θ−
= + +
• In this case, the two poles are complex and denoted as
• The forms for I(s) and VC(s) can be expressed as
and
where and
is called the damped
natural oscillation frequency
dω
and
• The inverse transforms are of the forms
The natural response is oscillatory. Depending on
the value of , this response may damp out very
quickly, or it may continue for a reasonable period
of time.
α
Department of Electronic Engineering, NTUT57/61
Comparison of Response Forms (I)
Overdamped Case :
Critically Damped Case :
Underdamped Case :
( ) 1 2
0 0
t t
i t A e A eα α− −
= −
( ) 2
0
t Rt LiVt
i t C te e
L
α− −
= =
( ) sinti
d
d
V
i t e t
L
α
ω
ω
−
=
Department of Electronic Engineering, NTUT58/61
( )i t
t
Underdamped
Critically damped
Overdamped
Comparison of Response Forms (II)
Overdamped Case :
Critically Damped Case :
Underdamped Case :
( ) 1 2
1 2
t t
C iv t V Ae A eα α− −
= + +
( ) ( ) 2
1 2
Rt L
C iv t V C t C e−
= + +
( ) ( )sint
C i dv t V Be tα
ω θ−
= + +
Department of Electronic Engineering, NTUT59/61
overshoot
Underdamped
Critically damped
Overdamped
Final level= iV
( )Cv t
t
Example (I)
40 ViV = +
−
0t =
400 Ω
( )i t
+
−
( )Cv t
2 H
0.5 Fµ
• Use Laplace transform techniques, determine the current and
voltage for .
( )i t
0t >( )Cv t
40
s
+
−
400
( )I s
+
−
( )CV s
2s
6
2 10
s
⋅
( )
6 2 6
2 10 2 400 2 10
2 400
s s
Z s s
s s
⋅ + + ⋅
= + + =
( )
( )
( ) 2 6
40
2 400 2 10
V s sI s
s sZ s
s
= =
+ + ⋅
( )
22 6 2
20 20
200 10 100 994.987s s s
= =
+ + + +
( ) ( )100
0.0201008 sin 994.987t
i t e t−
= ⋅
( ) ( ) ( )
( )
6
2 6
40 10
200 10
V s I s Z s
s s s
⋅
= =
+ +
( )
( )
−
= +
× −
100
40 40.2015
sin 994.987 95.7392
t
Cv t e
t
Department of Electronic Engineering, NTUT60/61
Example (II)
( ) ( )−
= + ⋅ −100
40 40.2015 sin 994.987 95.7392t
Cv t e t
( ) ( )100
0.0201008 sin 994.987t
i t e t−
= ⋅
Department of Electronic Engineering, NTUT61/61
( ), mAi t( ), VCv t
20
10
, mst
10
20
30
60
40
20
0
−20
Final voltage = 40 V
( )i t
( )Cv t

More Related Content

What's hot

DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier TransformWaqas Afzal
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristicssanu singh
 
Table of transformation of laplace & z
Table of transformation of laplace & zTable of transformation of laplace & z
Table of transformation of laplace & zcairo university
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsMr. RahüL YøGi
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 

What's hot (20)

DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristics
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
Table of transformation of laplace & z
Table of transformation of laplace & zTable of transformation of laplace & z
Table of transformation of laplace & z
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
Two port network
Two port networkTwo port network
Two port network
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Z transform
Z transformZ transform
Z transform
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
S-matrix analysis of waveguide components
S-matrix analysis of waveguide componentsS-matrix analysis of waveguide components
S-matrix analysis of waveguide components
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And Systems
 
Energy & Power Signals |Solved Problems|
Energy & Power Signals |Solved Problems|Energy & Power Signals |Solved Problems|
Energy & Power Signals |Solved Problems|
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 

Viewers also liked

電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 

Viewers also liked (20)

電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 

Similar to Circuit Network Analysis - [Chapter4] Laplace Transform

FirstAndSecond.pptx.pdf
FirstAndSecond.pptx.pdfFirstAndSecond.pptx.pdf
FirstAndSecond.pptx.pdfShanmukhSaiR
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processesSolo Hermelin
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdfIILSASTOWER
 
Unit v rpq1
Unit v rpq1Unit v rpq1
Unit v rpq1Babu Rao
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAlex (Oleksiy) Varfolomiyev
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 

Similar to Circuit Network Analysis - [Chapter4] Laplace Transform (20)

residue
residueresidue
residue
 
FirstAndSecond.pptx.pdf
FirstAndSecond.pptx.pdfFirstAndSecond.pptx.pdf
FirstAndSecond.pptx.pdf
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
 
Unit v rpq1
Unit v rpq1Unit v rpq1
Unit v rpq1
 
A05330107
A05330107A05330107
A05330107
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
 
legendre.pptx
legendre.pptxlegendre.pptx
legendre.pptx
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 

More from Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 

Circuit Network Analysis - [Chapter4] Laplace Transform

  • 1. Network Analysis Chapter 4 Laplace Transform and Circuit Analysis Chien-Jung Li Department of Electronic Engineering National Taipei University of Technology
  • 2. Derivative 2 y x= • Derivative Isaac Newton (牛頓, 1643-1727) Method of fluxions 流量: fluent 流數: fluxion 2y x x= i i 2 y x x = i i y對應x的導數(變化率)即兩個流數的比 代表對時間的微分 G. Wilhelm Leibniz (萊布尼茲, 1646-1716) dy dx y x ∆  = ∆  J-Louis Lagrange (拉格朗日, 1736-1813) ( )y f x= ( ) dy y f x dx ′ ′= = 2 y x= 2y x′ = ( ) 2 2 d dy d y y f x dx dx dx   ′′ ′′= = =    2/61 Department of Electronic Engineering, NTUT
  • 3. • Operators do particular mathematical manipulations, such as Operators + − × ÷ ( ) ( ) dy d y f x y dx dx ′ ′= = = 2 2 3 2 d x x x dx = ( ) ( ) 2 2 2 2 d dy d y d y f x y dx dx dx dx   ′′ ′′= = = =    d D dx ≜ 2 2 3 2x Dx x= • Louis Arbogast (1759-1803) conceived the calculus as operational symbols. The formal algebraic manipulation of series investigated by Lagrange and Laplace. 2 5 3 20D x x= • The derivative n n n d D dx ≜ Differential operator 3/61 Department of Electronic Engineering, NTUT
  • 4. Differential Equations x y e= x x xd y e De e dx ′ = = = Dy y= Hence, we can know the solution of the equation should be of the form x y e= x y Ce= • Oliver Heaviside (1850-1925) Heaviside was a self-taught English electrical engineer, mathematician, and physicist who adapted complex numbers to the study of electrical circuits, invented mathematical techniques to the solution of differential equations (later found to be equivalent to Laplace transforms. He changed the face of mathematics and science for years to come. or C is a constant Dy y= kx y e= kx kx xd y e De ke dx ′ = = = Dy ky= Similarly, we can know the solution of the equation should be of the form Dy ky= kx y Ce= 4/61 Department of Electronic Engineering, NTUT
  • 5. Solutions of the Differential Equation • Consider the differential equation: ( )7 8 0y y y′′ ′+ − = 2 2 7 8 0 d d y y y dx dx + − = 2 7 8 0D y Dy y+ − = (將D視為代數) ( )2 7 8 0D D y+ − = ( ) ( )( )2 7 8 1 8 0D D D D+ − = − + = Use the differential operator D: Take this as an algebraic equation: The solutions: 0y = or 1D = 8D = − Dy y= 8Dy y= − x y Ae= 6x y Be− = and roots 6x x y Ae Be− = +General Solution: put y back and solutions and(/or) 5/61 Department of Electronic Engineering, NTUT
  • 6. Fourier Transform ( ) ( ) ω ∞ − −∞ = ∫ j t X f x t e dt The usefulness of the Fourier transform is limited by a series drawback: if we try to evaluate the Fourier integral, we find that the integral does not converge for most signals x(t), i.e., ( ) 0sinx t tω= ( ) 00 sin j t X f t e dtω ω ∞ − = ⋅∫ ( ) 0 0 0 0 2 20 0 0 sin cos sin j t j t j t j e t e t X t e dt ω ω ω ω ω ω ω ω ω ω ω ∞ − − ∞ − − − = ⋅ = −∫ ( ) 0 0 2 2 0 sin cosj j j e e X ω ω ω ω ω ω − ∞ − ∞ − ∞ − ∞ + = − But what are andsin∞ cos ?∞ • The Fourier Transform 6/61 Department of Electronic Engineering, NTUT
  • 7. Circumvent the Problem The evaluation of the Fourier integral would be simpler if the function x(t) would approach zero for every large values of t. The solution of the Fourier integral becomes possible if x(t) is multiplied by a damping function , where σ is a positive real number. ( ) ( )0 , t j t X f x t e e dtσ ω σ ∞ − − ′  = ⋅ ∫ ( ) 00 , sin t j t X f t e e dtσ ω σ ω ∞ − − ′  = ⋅ ⋅ ∫ ( ) ( ) ( ) ( ) ( ) 0 0 0 22 0 0 sin cos , j t j t j e t e t X j σ ω σ ω σ ω ω ω ω ω σ ω σ ω ∞ − + − + − + − ′ = + + • The Laplace transform offers a way to circumvent this problem. t e σ− ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 2 22 2 0 0 sin cos sin0 cos0 , j j j e e j e e X j j σ ω σ ω σ ω ω σ ω ω ω σ ω σ ω ω σ ω − + ∞ − + ∞ − + ∞ − ∞ − + − ′ = − + + + + ( ) ( ) 0 22 0 ,X j ω ω σ ω σ ω ′ = + + For ( ) 0sinx t tω= ( ) ( ) 0 j t j t e e σ ω σ ω− + − + ∞ =∞ = → 7/61 Department of Electronic Engineering, NTUT
  • 8. The Fourier Transform of the Sinusoid ( ) ( ) 0 22 0 ,X j ω ω σ ω σ ω ′ = + + • The Fourier integral X(f) is now obtained by letting ( ) 0 2 2 0 X ω ω ω ω = − Thus the Fourier transform of any function x(t) is obtained by first introducing a damping function evaluating the integral for and finally letting . ( )- 0 0 1t e eσ σ → =≃ - t e σ 0σ > 0σ → • The Fourier integral is obtained with x(t) multiplied by a damping function: ( ),X ω σ′ 8/61 Department of Electronic Engineering, NTUT
  • 9. Definition of the Laplace Transform ( ) ( )0 , t j t X f x t e e dtσ ω σ ∞ − − ′  = ⋅ ∫ ( ) ( ) ( ) 0 , j t X f x t e dt σ ω σ ∞ − + ′ = ⋅∫ • Define s jσ ω= + , where s is called the complex frequency ( ) ( ) ( ),X f X j X sσ σ ω′ = + = ( ) ( )0 st X s x t e dt ∞ − = ⋅∫ This is the definition of the Laplace transform • As we said, the evaluation of the Fourier integral would be simpler if the function x(t) is multiplied by a damping function , where σ is a positive real number. t e σ− • The Fourier transform can be obtained by letting , i.e. ( ) ( )s j X X s ω ω = = 0σ → s jω= 9/61 Department of Electronic Engineering, NTUT
  • 10. Historical Points of View (I) Watt 1736-1819 Coulomb 1736-1806 Ampere 1775-1836 Volta 1745-1827 Ohm 1789-1854 Kirchhoff 1824-1887 1600 19001700 Joule 1818-1889 1609 顯微鏡 1752 避雷針 1710 溫度計 1769 蒸汽機 1791 輪船 1800 電池 1804 鐵路機車 1807 蒸汽船 1821 電動機 1826 內燃機 1831 發電機 1824 都卜勒效應 1836 縫紉機 1843 冰淇淋 1801 紡織機 1870 汽油引擎 1877 留聲機 麥克風 1889 汽車 1893 無線電 Department of Electronic Engineering, NTUT10/61 Lagrange 1736-1813 Newton 1643-1727 Leibniz 1646-1716 Fourier 1768-1830 Laplace 1749-1827 Arbogast 1759-1803 Heaviside 1850-1925 1800 1657 擺鐘 1679 壓力鍋 1643 晴雨表 1609 克卜勒行星 運動定律 1610 伽利略提出 太陽自轉 1621 斯耐爾 折射定律 1687 牛頓 自然哲學的 數學原理 (萬有引力, 三大 運動定律) 1690 惠更斯 以太說 1652 富蘭克林 論電與 電氣相同 1685 庫侖定律
  • 11. Historical Points of View (II) 1774-1783 美國獨立戰爭 1774 大陸會議 1776 傑佛遜獨立宣言, 美國成立 1789 美國憲法生效 華盛頓第一任總統 1861 南北戰爭爆發 1865 林肯遇刺身亡 1662-1722 康熙 1795-1908 嘉慶, 道光, 咸豐, 同治, 光緒1722-35-95 雍正, 乾隆 1754 吳敬梓歿 1763 曹雪芹歿 1796-1804 白蓮教起義 1840-42 第一次 鴉片戰爭 1851 洪秀全 成立太平天國 1852 曾國藩成 立湘軍 1856-60 第二次 鴉片戰爭, 英法 聯軍 1861 慈禧垂簾聽政 1865 李鴻章成 立江南製造局 1866 左宗棠成 立福州造船廠 1885 劉銘傳任台 灣巡撫 1894 中日甲午戰爭 1898 譚嗣同, 康有為戌戊變法 1900 義和團起義 1784 鹿港開港 1863 雞籠開港 1864 打狗開港 1874 牡丹社事件 1884 中法戰爭, 砲 轟基隆 1885 台灣脫離福 建省, 為台灣省 1887 台灣鐵路 1760 英國工業 革命開始 1789-1794 法國 大革命 1795 法王路易 十六上斷頭台 1799-1814 拿破 崙王朝 1871 德意志帝 國成立 1889 巴黎艾菲爾鐵塔 1895 馬關條約 Department of Electronic Engineering, NTUT11/61 1600 19001700 1800 -1644 明朝末 1644 吳三桂降清 1644-62 南明 1650 鄭成功居廈門 與金門抗清 1661 鄭成功攻台灣 逐荷蘭人 1636 大清國 皇太極稱帝 1683 施琅攻台 鄭克塽降清 1600 英國東印度 公司 1600~ 英法殖民者於 北美拓殖 1624 荷蘭占台
  • 12. Definition of The Laplace Transform Department of Electronic Engineering, NTUT ( ) ( )f t F s  = L ( ) ( )-1 F s f t  = L ( ) ( ) 0 st F s f t e dt ∞ − = ∫ • The mathematical definition of the Laplace transform is One-sided or Unilateral Laplace transform • The process of transformation is indicated symbolically as • The process of inverse transformation is indicated symbolically as 12/61
  • 13. Basic Theorems of Linearity ( ) ( ) ( )Kf t K f t KF s   = =   L L ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2f t f t f t f t F s F s     + = + = +     L L L ( ) ( ) ( ) ( )1 2 1 2f t f t F s F s ⋅ ≠ ⋅ L • Consider the Laplace transform of a function f(t) is ( ) ( )f t F s  = L Let K represent an arbitrary constant, we have Let f1(t) and f2(t) represent any arbitrary functions, we have • It is mentioned here that Department of Electronic Engineering, NTUT13/61
  • 14. Step Function ( ) 0 for 0u t t= < 1 for 0t= > ( ) ( )U s u t =  L • The unit step function u(t) can be used to describe the process of “turning on” a DC level at t=0. 1 t ( )u t ( ) ( ) 0 for 0u t Ku t t′ = = < for 0K t= > K t ( )u t′ ( ) ( )U s u t′ ′ =  L 0 1st e dt s ∞ − = =∫ 0 st K Ke dt s ∞ − = =∫ Department of Electronic Engineering, NTUT14/61
  • 15. Exponential Function ( ) 0 t t st X s e e e dtα α ∞ − − −  = =  ∫L • The Laplace transform of the exponential function . for 0α >1 t ( ) t x t e α− = for 0α < 1 t ( ) t x t e α− = ( ) 0 1s t e dt s α α ∞ − + = = +∫ t e α− Department of Electronic Engineering, NTUT15/61
  • 16. Sine and Cosine Functions • The Laplace transform of the sinusoid .0cos tω ( ) 0 0 0 0 0 0 0 0 0 1 sin 2 2 j t j t j t j tst st st ste e F s te dt e dt e e dt e e dt j j ω ω ω ω ω ∞ ∞ ∞ ∞− −− − − −  − = = = −    ∫ ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 00 0 0 0 1 1 1 1 2 2 s j t s j t s j t s j t e dt e dt e e j j s j s j ω ω ω ω ω ω ∞ ∞ ∞ ∞ − − − + − − − +     = − = −  − − − +     ∫ ∫ ( ) ( ) ( )0 0 0 2 2 2 2 0 0 0 0 1 1 1 1 2 2 s j s j j s j s j j s s ω ω ω ω ω ω ω    + − − = − = =    − + + +     ( ) 0 0 0 0 0 0 0 0 0 1 cos 2 2 j t j t j t j tst st st ste e F s te dt e dt e e dt e e dt ω ω ω ω ω ∞ ∞ ∞ ∞− −− − − −  + = = = +    ∫ ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 00 0 0 0 1 1 1 1 2 2 s j t s j t s j t s j t e dt e dt e e s j s j ω ω ω ω ω ω ∞ ∞ ∞ ∞ − − − + − − − +     = + = +  − − − +     ∫ ∫ ( ) ( ) ( )0 0 2 2 2 2 0 0 0 0 1 1 1 1 2 2 s j s j s s j s j s s ω ω ω ω ω ω    + + − = + = =    − + + +   • The Laplace transform of the sinusoid .0sin tω Department of Electronic Engineering, NTUT16/61
  • 17. Damped Sinusoidal Functions ( ) ( ) 0 0 s tt st F s e e dt e dt αα ∞ ∞ − +− − = =∫ ∫ ( ) ( ) ( )0 1 1s t e s s α α α ∞ − + = = − + + 1 ( )0cos where 0t e tα ω α− > t e α− ( ) ( ) ( ) 0 0 2 2 0 0 0 cos cos s tt st s F s te e dt te dt s αα α ω ω α ω ∞ ∞ − +− − + = = = + + ∫ ∫ ( ) ( ) ( ) 0 0 0 2 2 0 0 0 sin sin s tt st F s te e dt te dt s αα ω ω ω α ω ∞ ∞ − +− − = = = + + ∫ ∫ • The Laplace transform of the damped function .t e α− • The Laplace transform of the damped sine function .0sint e tα ω− • The Laplace transform of the damped cosine function .0cost e tα ω− Department of Electronic Engineering, NTUT17/61
  • 18. Transformation Pairs Encountered in Circuit Analysis 1 ( )u t 1 s t e α− 1 s α+ 0sin tω 0cos tω 0sint e tα ω− ( ) 2 2 0 s s α α ω + + + 2 1 s t 1 ! n n s + n t t n e tα− ( ) 1 ! n n s α + + ( )tδ 1 ( )f t ( ) ( )F s f t =  L or 0 2 2 0s ω ω+ 2 2 0 s s ω+ ( ) 0 2 2 0s ω α ω+ + 0cost e tα ω− ( )f t ( ) ( )F s f t =  L Department of Electronic Engineering, NTUT18/61
  • 19. Transform Example ( ) 4 2 10 5 12sin3 4 cos5t t f t e t e t− − = + + + ( ) ( ) ( ) 22 2 2 4 210 5 12 3 4 3 2 5 s F s s s s s +⋅ = + + + + + + + ( ) 2 2 4 210 5 36 4 9 4 29 s s s s s s + = + + + + + + + • Find the Laplace transform of f(t): <Sol.> ( ) 4 2 10 5 12sin3 4 cos5t t f t e t e t− − = + + + constant damped sinusoid damped cosine Department of Electronic Engineering, NTUT19/61
  • 20. OperationOperationOperationOperation f(t)f(t)f(t)f(t) F(s)F(s)F(s)F(s) Laplace Transform Operations ( )f t′ ( ) ( )0sF s f− ( )0 t f t dt∫ ( )F s s ( )t e f tα− ( )F s α+ ( ) ( )f t T u t T− − ( )sT e F s− ( )0f ( )lim s sF s →∞ ( )lim t f t →∞ ( )0 lim s sF s → poles of sF(s) must be in left-hand half-plane. (stable) Differentiation Integration Multiplication by t e α− Time shifting (Frequency shifting) Initial value theorem (初值定理) Final value theorem (終值定理) Department of Electronic Engineering, NTUT20/61
  • 21. Differentiate Operation ( ) ( ) 0 st F s f t e dt ∞ − = ∫ • If the Laplace transform of f(t) is F(s), prove that Laplace transform of f’(t) is sF(s)-f(0). ( ) ( ) 0 0 st stdf t f t e dt e dt dt ∞ ∞ − − ′ =∫ ∫ Let ,st u e− = and ( )df t dt dv dt = ( )v f t= ( ) ( ) ( ) ( ) ( ) ( )0 00 0 st st st st stdf t e dt f t e f t de f t e s f t e dt dt ∞ ∞ ∞∞ − − − − −  = − = − − ⋅  ∫ ∫ ∫ ( ) ( ) ( ) ( ) ( )0 0 0 0s s st f e f e s f t e dt sF s f ∞ − ⋅∞ − ⋅ −  = ∞ − + = −  ∫ Department of Electronic Engineering, NTUT21/61
  • 22. Use Differential Operation to Find the Transform of Sinusoid ( ) 0 2 2 0 F s s ω ω = + ( ) 0sinf t tω= ( ) 0 0cosf t tω ω′ = ( ) ( ) ( ) 0 2 2 0 0 0 s f t sF s f s ω ω ′  = − = −  + L [ ] [ ] 0 0 0 0 0 2 2 0 cos cos s t t s ω ω ω ω ω ω = = + L L [ ] 2 2 cos s t s ω ω = + L • Let and its Laplace transform is know as . Find the Laplace transform of by using the differential operation. 0cos tω ( ) 0sinf t tω= Department of Electronic Engineering, NTUT22/61
  • 23. Use Integral Operation to Find the Transform of Ramp Function ( ) 1f t = ( ) 1 F s s = ( ) ( )0 0 1 t t x t f t dt dt t= = =∫ ∫ ( ) ( ) ( ) 20 1 1 1t F s x t f t dt s s s s     = = = =        ∫L L ( ) ( ) [ ] 2 1 X s x t t s  = = = L L ( ) 1f t =• Let and its Laplace transform is know as . Find the Laplace transform of the ramp function by using the integral operation. ( )x t t= ( ) 1 F s s = Department of Electronic Engineering, NTUT23/61
  • 24. Degree or Order ( ) ( ) ( ) N s F s D s = ( ) 1 1 0 n n n nN s a s a s a− −= + + +⋯ ( ) 1 1 0 m m m mD s b s b s b− −= + + +⋯ ( ) ( )( )( ) 5 4 3 2 2 2 19 160 1086 3896 8919 10440 4 9 4 29 s s s s s F s s s s s s + + + + + = + + + + order = m (means m roots) order = n (means n roots) • Most transforms of interest in circuit analysis turn out to be expressed as ratios of polynomials in the Laplace variables s. Define the transform function F(s) as Numerator polynomial Denominator polynomial Department of Electronic Engineering, NTUT24/61
  • 25. Zeros and Poles ( ) 0zN s = ( ) 0zF s = ( ) 0pD s = ( )pF s = ∞ ( ) ( ) ( ) N s F s D s =• For ZerosZerosZerosZeros of F(s): roots of the numerator polynomial N(s) PolesPolesPolesPoles of F(s): roots of the denominator polynomial D(s) ( ) 1 1 0 m m m mD s b s b s b− −= + + +⋯Denominator polynomial can also be completely specified by its roots except for a constant multiplier mb in factored form as ( ) ( )( ) ( )1 2m mD s b s s s s s s= − − −⋯ Department of Electronic Engineering, NTUT25/61
  • 26. Classification of Poles • The poles can be classified as either real, imaginary, or complex. • An imaginary or complex pole is always accompanied by its complex conjugate, i.e., jy is accompanied (-jy) and (x+jy) is with (x-jy). x jy x+jy • The poles can also be classified according to their order, which is the number of times a roots is repeated in the denominator polynomial (重根). • The first-order (or simple-order) root is which the root appears only once. Higher-order roots are referred to as multiple-order roots. • The roots of second-order equations may be either real or complex. For third- and higher-degree equations, numerical methods must often be used. Department of Electronic Engineering, NTUT26/61
  • 27. Example – Inverse Laplace Transform ( ) 2 10 15 20 3 F s s s s = + + + ( ) 3 10 15 20 t f t t e− = + + ( ) 2 8 30 25 s F s s + = + ( ) 2 2 2 2 5 8 6 5 5 s F s s s = + + + ( ) 8cos5 6sin5f t t t= + ( ) ( ) ( ) ( ) ( ) ( ) 2 2 22 2 2 2 3 20 32 26 5 2 4 6 34 3 25 3 5 3 5 s ss F s s s s s s + + ++ = = = + + + + + + + + + ( ) 3 3 2 cos5 4 sin5t t f t e t e t− − = + • Find the inverse Laplace transform of F(s): <Sol.> • Find the inverse Laplace transform of F(s): <Sol.> • Find the inverse Laplace transform of F(s): <Sol.> ( ) 2 2 26 6 34 s F s s s + = + + Department of Electronic Engineering, NTUT27/61
  • 28. Example – Classify the Poles ( ) ( ) ( )( )( )( )2 2 2 2 3 2 16 6 34 8 16 N s F s s s s s s s s s = + + + + + + + 9 poles 1 2 9, , ,s s s⋯ 1 0s = 2 3 9 8 1 2 s − + − = = − 3 3 9 8 2 2 s − − − = = − 4 4s j= + 5 4s j= − 6 6 36 136 3 5 2 s j − + − = = − − 7 3 5s j= − + 8 8 64 64 4 2 s − + − = = − 9 8 64 64 4 2 s − − − = = − Real, 1st order (3 poles): s1, s2, s3 Imaginary, 1st order (2 poles): s4, s5 Complex, 1st order (2 poles): s6, s7 Real, 2nd order (2 poles): s8, s9 • Given F(s): and where N(s) is not specified but known that no roots coincide with those of D(s). Classify the poles. <Sol.> Department of Electronic Engineering, NTUT28/61
  • 29. Inverse Laplace Transform Step 1 • For the purpose of inverse transformation, poles will be classified in 4 categories 1. First-order real poles 2. First-order complex poles 3. Multiple-order real poles 4. Multiple-order complex poles (purely imaginary poles will be considered as a special case of complex poles with zero real part) • Step 1: Check Poles ( ) ( )( )2 2 50 75 3 2 4 20 s F s s s s s + = + + + + ( )( )( )2 50 75 1 2 4 20 s s s s s + = + + + + real real complex conjugate Department of Electronic Engineering, NTUT29/61
  • 30. Inverse Laplace Transform Step 2 (I) • Step 2: Partial Fraction Expansion ( ) ( )( )( )2 50 75 1 2 4 20 s F s s s s s + = + + + + ( ) ( ) ( ) 1 2 1 2 2 1 2 4 20 A A B s B s s s s + = + + + + + + A1,A2,B1,B2 are constants to be determined. • Note that the single-pole denominator terms require only a constant in the numerator, but the quadratic term requires a constant plus a term proportional to s. • Various procedures exist for determining the constants, but the results can always be checked by combining back over a common denominator of necessary to see if the original function is obtained. Department of Electronic Engineering, NTUT30/61
  • 31. Inverse Laplace Transform Step 2 (II) ( ) ( ) ( ) ( ) 1 2 1 2 2 1 2 4 20 A A B s B F s s s s s + = + + + + + + ( ) ( )2 2 1 2 sin 4t t t f t Ae A e Be t θ− − − = + + + B and are determined form B1 and B2. • A first-order real pole corresponds to an exponential time response term. • A quadratic factor with complex poles corresponds to a damped sinusoidal time response term. Said differently, a pair of complex conjugate poles corresponds to a damped sinusoidal time response term. • The inverse transform of : θ Department of Electronic Engineering, NTUT31/61
  • 32. General Algorithm – Find Coefficients ( ) ( )( ) ( )( )( ) ( ) 1 2 2 2 1 2 1 1 2 2r r rk R R A F s s s s s a s b s a s b s a s bα α α = + + + + + + + + +⋯ ⋯ 1 2, , ,r r rkα α α− − −⋯ ( ) ( ) ( )1 1 2 2, , , R Rj j jα ω α ω α ω− ± − ± − ±⋯ ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2e e ek s s sRf t f t f t f t f t f t f t= + + + + + + +⋯ ⋯ ( ) kt ek kf t A e α− = ( ) ( ) k k k s A s F s α α =− = + ( ) ( )sinRt sR R R Rf t B e tα ω θ− = + ( ) ( )21R R R j R R R R rR R s j B e B s a s b F sθ α ω θ ω =− +  = ∠ = + +  • Give F(s) in the factored form: • The corresponding inverse transform: coeff. coeff. Department of Electronic Engineering, NTUT32/61
  • 33. Example ( ) 2 6 42 7 10 s F s s s + = + + ( ) ( ) ( )( ) 6 7 2 5 s F s s s + = + + ( ) ( ) ( ) 2 5 1 2 1 2 t t e ef t f t f t Ae A e− − = + = + ( ) ( ) ( ) ( ) ( ) ( )1 2 2 6 7 6 2 7 2 10 5 2 5s s s A s F s s=− =− + − + = + = = = + − + ( ) ( ) ( ) ( ) ( ) ( )2 5 5 6 7 6 5 7 5 4 2 5 2s s s A s F s s=− =− + − + = + = = = − + − + ( ) 2 5 10 4t t f t e e− − = − • Find the inverse Laplace transform of F(s): <Sol.> Department of Electronic Engineering, NTUT33/61
  • 34. Example ( ) 2 3 2 10 42 24 4 3 s s F s s s s + + = + + ( ) ( )( ) 2 10 42 24 1 3 s s F s s s s + + = + + ( ) 3 1 2 3 t t f t A A e A e− − = + + ( )( ) 2 1 0 10 42 24 24 8 1 3 1 3s s s A s s = + + = = = + + ⋅ ( ) 2 2 1 10 42 24 10 42 24 4 3 1 2s s s A s s =− + + − + = = = + − ⋅ ( ) ( ) 2 3 3 10 42 24 90 126 24 2 1 3 2s s s A s s =− + + − + = = = − + − ⋅ − ( ) 3 8 4 2t t f t e e− − = + − • Find the inverse Laplace transform of F(s): <Sol.> Department of Electronic Engineering, NTUT34/61
  • 35. Example ( ) ( ) ( )( )2 20 2 1 2 5 s F s s s s s + = + + + ( ) ( ) ( ) ( ) ( )1 2 1 2 sin 2t t e e sf t f t f t f t A A e Be t θ− − = + + = + + + ( ) ( )( )1 2 0 20 2 20 2 8 1 51 2 5 s s A s s s = + ⋅ = = = ⋅+ + + ( ) ( )2 2 1 20 2 20 1 5 1 42 5 s s A s s s =− + ⋅ = = = − − ⋅+ + ( ) ( ) ( ) ( ) ( ) ( )( ) 2 1 2 1 2 20 2 10 1 21 1 2 5 2 2 1 1 2 2s j s j s j B s s F s s s j j θ =− + =− + + + ∠ = + + = = + − + ( ) ( )( ) 10 2.2361 63.435 5 143.13 2.2361 116.565 2 90 ⋅ ∠ = = ∠ − ∠ ∠ ( ) ( )8 5 5 sin 2 143.13t t sf t e e t− − = − + − • Find the inverse Laplace transform of F(s): <Sol.> Department of Electronic Engineering, NTUT35/61
  • 36. Example ( ) ( )( )2 2 100 4 2 10 s F s s s s = + + + ( ) ( ) ( )1 2s sf t f t f t= + ( ) ( )0 1 1 1sin 2t sf t B e t θ− = + ( )1 1sin 2B t θ= + ( ) ( )2 2 2sin 3t sf t B e t θ− = + ( ) ( ) ( ) ( ) 2 1 1 2 2 2 50 21 1 100 4 2 2 2 10 4 10 4s j s j js B s F s s s j θ = = ∠ = + = = + + − + + ( ) ( ) ( ) ( ) 2 2 2 22 1 3 1 3 33.33 1 31 1 100 2 10 14.6176 127.875 3 3 4 1 3 4s j s j js B s s F s s j θ =− + =− + − + ∠ = + + = = = ∠ − + − + + • Find the inverse Laplace transform of F(s): <Sol.> 100 90 13.8675 56.3099 7.2111 33.6901 ∠ = = ∠ ∠ ( ) ( ) ( )13.8675sin 2 56.3099 14.6176 sin 3 127.875t sf t t e t− = + + − Department of Electronic Engineering, NTUT36/61
  • 37. Inverse Transform of Multiple-order Poles (I) • Algorithm for Multiple-order Real Poles ( ) ( ) ( ) i Q s F s s α = + ( ) ( ) ( ) i Q s s F sα= + roots@i s α= − The time function due to the pole of order i with a value will be the form: α− ( ) ( ) ( ) ( ) 1 2 1 2 1 ! 2 ! ! i i i k tk m i C t C t C t f t C e i i i k α − − − −   = + + + + +  − − −  ⋯ ⋯ A give coefficient Ck can be determined from the expression: ( ) ( ) 1 1 1 1 ! k k k s d C Q s k ds α − − =− = − Department of Electronic Engineering, NTUT37/61
  • 38. Inverse Transform of Multiple-order Poles (II) • For a first-order real pole: ( ) 0 1 1 1 0! t t m C t f t e C eα α − − − = = ( ) ( ) ( )1 1 0! s s C Q s s F sα α α=− =− = = + • For second-order real poles: ( ) ( ) ( ) 2 Q s s F sα= + ( ) ( )1 2 t mf t C t C e α− = + ( )1 s C Q s α=− = ( ) 2 s dQ s C ds α=− = Department of Electronic Engineering, NTUT For complex poles, find the complex coefficients Ck with s jα ω= − ± 38/61
  • 39. s-domain Circuit Analysis Time domain circuit for which a general solution is desired Convert circuit to s-domain form Solve for desired response in s-domain Determine inverse transform of desired response Desired time domain response Department of Electronic Engineering, NTUT39/61
  • 40. Transform Impedances (I) Passive RLC Circuit ( )i t ( )v t Z(s) ( )I s ( )V s s-domain ( ) ( )I s i t =  L ( ) ( )V s v t =  L ( ) ( ) ( ) V s Z s I s = ( ) ( ) ( ) ( ) 1 I s Y s Z s V s = = Transform impedance Z(s) Transform admittance Y(s) Department of Electronic Engineering, NTUT40/61
  • 41. Transform Impedances (II) ( )i t ( )v t R ( )i t ( )v t ( )i t ( )v t C L ( )V s ( )I s R 1 sC ( )V s ( )I s sL( )V s ( )I s R C L ( )V ω ( )I ω R ω 1 j C ( )V ω ( )I ω ωj L( )V ω ( )I ω 0σ → 0σ → 0σ → Department of Electronic Engineering, NTUT41/61
  • 42. Example – Transform Impedance 1 kR = Ω 0.5 FC µ= 30 mHL = 1 kR = ( ) 6 6 1 1 2 10 0.5 10sC ss − ⋅ = = ⋅ ( )3 30 10 0.03sL s s− = ⋅ = Department of Electronic Engineering, NTUT42/61
  • 43. Models for Initially Charged Capacitor 0VC + − 0V s 1 sC + − 0CV1 sC 0 60 VV =0.2 FC µ= + − 60 s 6 50 10 s ⋅ + − 6 12 10− ⋅ 6 50 10 s ⋅ Thevenin’s equivalent circuit Norton’s equivalent circuitInitially charged capacitor Example: Department of Electronic Engineering, NTUT43/61
  • 44. Models for Initially Fluxed Inductor 0IL 0LI sL + − 0I s sL 0 0.4 AI =50 mHL = 0.02 0.05s + − 0.4 s 0.05s Thevenin’s equivalent circuit Norton’s equivalent circuitInitially fluxed inductor Department of Electronic Engineering, NTUT44/61
  • 45. Complete Circuit Models 1. Transform the complete circuit from the time-domain to the s-domain ( ) ( )v t V s→ ( ) ( )i t I s→ L sL→ 1 C sC → 0 0 V V s → 0 0 I I s → 2. Solve for the desired voltages currents using the s-domain model. 3. Using inverse Laplace transform to determine the corresponding time- domain forms for the voltages or currents of interest. Department of Electronic Engineering, NTUT45/61
  • 46. Example (I) 20 V+ −10cos3t + − 0t = 2 H 1 F 4 3 Ω 4 Ω 5 H + − 8 V 1 F 6 ( )1i t ( )2i t 20 s + −2 10 9 s s + + − 2s 4 s 3 4 5s 8 s 6 s ( )1I s ( )2I s+ − Transform from time-domain to s-domain Department of Electronic Engineering, NTUT46/61
  • 47. Example (II) 20 s + −2 10 9 s s + + − 2s 4 s 3 4 5s 8 s 6 s ( )1I s ( )2I s+ − ( ) ( ) ( ) ( ) ( )1 1 1 1 22 10 4 6 8 2 3 0 9 s sI s I s I s I s I s s s s s −  + + + + − + = + ( ) ( ) ( ) ( )2 1 2 2 8 6 20 4 5 10 0I s I s I s sI s s s s −  + − + + + + =  Mesh 1: Mesh 2: Solve for I1(s) and I2(s) Apply the circuit laws: Department of Electronic Engineering, NTUT47/61
  • 48. General Forms for Solutions (I) ( ) ( ) ( )n fy t y t y t= + • Natural and Forced Responses Let represent some arbitrary general circuit response (either a voltage or current). When the circuit is excited by one or more sources, a general response may be represented by the sum of two responses as follows: ( )y t ( )y t Natural response Forced response • Natural Response The form of the natural response is determined by the circuit parameter, i.e., if the circuit has a time constant of 2 seconds, corresponding to an exponential , such a term will appear in the response when the circuit is excited by any type of source. 2t e− • Force Response The form of the forced response is determined by the excitation source(s), i.e., if a circuit is excited by a sinusoid having a frequency of 5 kHz, the general response will always contain a sinusoid with a frequency of 5 kHz. Department of Electronic Engineering, NTUT48/61
  • 49. General Forms for Solutions (II) ( ) 10sin1000sv t t= ( ) ( )2 2 3 4sin 1000 30t t i t e e t− − = − + + ( ) ( ) ( )4sin 1000 30ss fi t i t t= = +( ) ( ) 2 2 3t t t ni t i t e e− − = = − ( ) ( ) ( )t ssy t y t y t= + • Transient and Steady-state Responses Transient response Steady-state response Frequently, transient response and natural response are considered to be equivalent, and steady-state response and forced response are considered to be equivalent. The terms transient and steady-state relate to the common case where the natural response is transient in nature and eventually vanishes, whereas the forced response continuous as a steady- state condition indefinitely. Example: Department of Electronic Engineering, NTUT49/61
  • 50. First-Order Circuits • First-order Circuit with Arbitrary Input ( ) t t ny t Ke Keτ α− − = = For first-order circuits, the natural response will always be an exponential term of the form: ( )ny t K is a constant is the time constantτ is the damping factor1α τ= Since the exponential term approaches zero as time increases, it is proper to designate the natural response as a transient response whenever the forced response continuous indefinitely. Department of Electronic Engineering, NTUT50/61
  • 51. Example of a First-Order Circuit (I) 40sin4t + − 0t = 4 Ω ( )i t 1 F 12 + − ( )cv t 2 160 16s + + − 4 Ω ( )I s 12 s + − ( )cV s ( ) ( )2 160 12 4 0 16 I s I s s s − + + = + ( ) ( )( )2 40 3 16 s I s s s = + + ( ) ( )3 4.8 8sin 4 36.87t i t e t− = − + + ( ) ( ) ( )( )2 12 480 3 16 CV s I s s s s = = + + ( ) ( )3 19.2 24sin 4 53.13t Cv t e t− = + − • Use Laplace transform techniques, determine the current and voltage for . ( )i t ( )Cv t 0t > Transform from time-domain to s-domain Apply KVL: Transient response Steady-state response Transient response Steady-state response Time constant = 1/3 = RC Damping factor = 3 Department of Electronic Engineering, NTUT51/61
  • 52. Example of a First-Order Circuit (II) ( ) ( ) 30 6 3 0 1 I s s I s s − + + ⋅ = + ( ) ( )( ) 10 1 2 I s s s = + + ( ) 2 10 10t t i t e e− − = − • Use Laplace transform techniques, determine the for .( )i t 0t > Transform from time-domain to s-domain Apply KVL: Forced response Natural response Time constant = 1/2 = L/R Damping factor = 2 30 t e− + − 0t = 6 Ω ( )i t 3 H 30 1s + + − 6 ( )I s 3s Department of Electronic Engineering, NTUT52/61
  • 53. Second-Order Circuits ( ) ( ) ( ) 1 0iV sLI s RI s I s s sC − + + + = ( ) 2 1 iV LI s R s s L LC = + + ( ) ( ) 2 1 1 i C V LCV s I s RsC s s s L LC = =   + +    • Second-order circuits are of special interest because they are capable of displaying, on a simple scales, the types of responses that appear in circuits of arbitrary order. In fact, second-order circuits and systems occur frequently in practical applications, so their behavior is subject of considerable interest. • Series RLC Circuit iV + − 0t = R ( )i t + − ( )cv t L C iV s + − R ( )I s + − ( )CV s sL 1 sC Department of Electronic Engineering, NTUT53/61
  • 54. 3 Possible Forms of the Roots 2 1 2 2 1 2 4 s R R s L L LC = − ± − • The roots of the second-order circuit • Three possibilities for the roots s1 and s2 Overdamped Case (the roots are real and different) : 2 2 1 4 R L LC > Critically Damped Case (the roots are real and equal) : 2 2 1 4 R L LC = Underdamped Case (the roots are complex) : 2 2 1 4 R L LC < Department of Electronic Engineering, NTUT54/61
  • 55. Overdamped Case (Series RLC) ( ) ( )( )1 2 iV LI s s sα α = + + ( ) ( )( )1 2 i C V LCV s s s sα α = + + ( ) 1 2 0 0 t t i t A e A eα α− − = − ( ) 1 2 1 2 t t C iv t V Ae A eα α− − = + + • In the overdamped case, the two poles are real and different. Assume that the poles are and , the forms for I(s) and VC(s) can be expressed as 1 1s α= − 2 2s α= − • The inverse transforms are of the forms The natural response consists of two exponential terms, each having a different damping factor or time constant. The forced response for the current is zero and for the capacitor voltage is the constant final voltage across the capacitor. Department of Electronic Engineering, NTUT55/61
  • 56. Critically Damped Case (Series RLC) ( ) ( ) 2 iV LI s s α = + ( ) ( ) 2 i C V LCV s s s α = + ( ) 2 0 t Rt LiVt i t C te e L α− − = = ( ) ( ) 2 1 2 Rt L C iv t V C t C e− = + + • In the critically damped case, the two poles are real and equal. Assume that the poles are , the forms for I(s) and VC(s) can be expressed as 1 2s s α= = − The damping factor: 2 R L α = • The inverse transforms are of the forms 0 iC V L= The most significant aspect of the natural response function for the critically damped case is the form. Although the t factor increases with increasing t, the decreases at a faster rate, so the product eventually approaches zero. t te α− t te α− Department of Electronic Engineering, NTUT56/61
  • 57. Underdamped Case (Series RLC) 1 ds jα ω= − + 1 ds jα ω= − − 2 R L α = 2 1 2 d R LC L ω   = −     ( ) ( ) 2 2 i d V LI s s α ω = + + ( ) 2 1 i C V LCV s R s s s L LC =   + +    ( ) sinti d d V i t e t L α ω ω − = ( ) ( )sint C i dv t V Be tα ω θ− = + + • In this case, the two poles are complex and denoted as • The forms for I(s) and VC(s) can be expressed as and where and is called the damped natural oscillation frequency dω and • The inverse transforms are of the forms The natural response is oscillatory. Depending on the value of , this response may damp out very quickly, or it may continue for a reasonable period of time. α Department of Electronic Engineering, NTUT57/61
  • 58. Comparison of Response Forms (I) Overdamped Case : Critically Damped Case : Underdamped Case : ( ) 1 2 0 0 t t i t A e A eα α− − = − ( ) 2 0 t Rt LiVt i t C te e L α− − = = ( ) sinti d d V i t e t L α ω ω − = Department of Electronic Engineering, NTUT58/61 ( )i t t Underdamped Critically damped Overdamped
  • 59. Comparison of Response Forms (II) Overdamped Case : Critically Damped Case : Underdamped Case : ( ) 1 2 1 2 t t C iv t V Ae A eα α− − = + + ( ) ( ) 2 1 2 Rt L C iv t V C t C e− = + + ( ) ( )sint C i dv t V Be tα ω θ− = + + Department of Electronic Engineering, NTUT59/61 overshoot Underdamped Critically damped Overdamped Final level= iV ( )Cv t t
  • 60. Example (I) 40 ViV = + − 0t = 400 Ω ( )i t + − ( )Cv t 2 H 0.5 Fµ • Use Laplace transform techniques, determine the current and voltage for . ( )i t 0t >( )Cv t 40 s + − 400 ( )I s + − ( )CV s 2s 6 2 10 s ⋅ ( ) 6 2 6 2 10 2 400 2 10 2 400 s s Z s s s s ⋅ + + ⋅ = + + = ( ) ( ) ( ) 2 6 40 2 400 2 10 V s sI s s sZ s s = = + + ⋅ ( ) 22 6 2 20 20 200 10 100 994.987s s s = = + + + + ( ) ( )100 0.0201008 sin 994.987t i t e t− = ⋅ ( ) ( ) ( ) ( ) 6 2 6 40 10 200 10 V s I s Z s s s s ⋅ = = + + ( ) ( ) − = + × − 100 40 40.2015 sin 994.987 95.7392 t Cv t e t Department of Electronic Engineering, NTUT60/61
  • 61. Example (II) ( ) ( )− = + ⋅ −100 40 40.2015 sin 994.987 95.7392t Cv t e t ( ) ( )100 0.0201008 sin 994.987t i t e t− = ⋅ Department of Electronic Engineering, NTUT61/61 ( ), mAi t( ), VCv t 20 10 , mst 10 20 30 60 40 20 0 −20 Final voltage = 40 V ( )i t ( )Cv t