SlideShare a Scribd company logo
1 of 82
Download to read offline
李健榮 助理教授
Department of Electronic Engineering
National Taipei University of Technology
Multiband RF Transceiver System
Chapter 6 Multi-mode and
Multi-band Transceivers
Outline
• System Level Considerations
• Wideband LO Generation
• Building Blocks of TX and RX
• Isolating Techniques on ICs
• RF Power Amplifier
• Two multi-mode examples of the transceiver are
introduced in this chapter.
Department of Electronic Engineering, NTUT2/82
Software-Defined Front-ends
• The ultimate dream of every SDR front-end is to deliver an RF
transceiver that can be reconfigured into every operating mode.
Modes for cellular (2G–2.5G–3G and further), WLAN (802.11a/b/g/n), WPAN
(Bluetooth, Zigbee, etc.), broadcasting (DAB, DVB, DMB, etc.), and positioning
(GPS, Galileo) functionalities. Obviously, each of them has different center
frequency, channel bandwidth, noise levels, interference requirements, transmit
spectral mask, and so on.
• As a consequence, the performances of all building blocks in
the transceiver must be reconfigurable over an extremely
wide range.
Linearity, filtering, noise, bandwidth, and so on, can be traded for power
consumption.
Department of Electronic Engineering, NTUT3/82
System Level Considerations
• A first choice to be made is the radio architecture to be used.
Heterodyne, homodyne, low-IF, and other architectures, which one to choose?
• In view of SDR, this question perhaps becomes a little easier
to answer.
When the characteristics of all possible standards are taken into account,
not a single IF can be found that suits them all.
Having multiple IFs and the associated (external) filtering stages increases
the hardware cost of the SDR, which cannot be tolerated.
Thus, the direct-conversion architectures are the right choice for the job.
Department of Electronic Engineering, NTUT4/82
Vision of the SDR Transceiver
• The transceiver core implemented in CMOS includes a fully
reconfigurable direct conversion RX, TX, and two synthesizers
(for FDD).
The functions that cannot be
implemented in CMOS are
included on the package substrate.
These are related primarily to the
interface between the active core
and the antenna. They must
provide high-Q bandpass filtering
or even duplexing, impedance-
matching circuits, and power
amplification.
MEMS switches
Tunable matching
Tunable filtering
Power amplifier
DMQ
VCO
Distr.
DMQ
NoC controller
Frac-N
PLL
Frac-N
PLL
MCM substrate
CMOS IC
Department of Electronic Engineering, NTUT5/82
Hard Works
• Determine performance specifications for each block.
• The total budget for gain, noise, linearity, and so on, must be
divided over all blocks, ensuring that all possible test cases are
covered for every standard.
• Having very flexible building blocks helps a great deal, but
making a smart system analysis is crucial to obtaining an
optimal solution.
• Gain ranges and signal filtering must be set such that the signal
levels are an optimal trade-off between noise and distortion.
• With the built-in flexibility, a software-defined radio can
achieve state-of-the-art performance very close to that of
dedicated single-mode solutions.
Department of Electronic Engineering, NTUT6/82
Wideband LO Synthesis
• Example:
To generate all required LO signals in the range 0.1 to 6 GHz,
several frequency generation techniques have been proposed
to relax the tuning range specifications of a voltage-controlled
oscillator (VCO).
They use division, mixing, multiplication, or a combination of these. However,
to make these systems efficient in terms of phase noise and power consumption,
the VCO tuning range still has to be maximized.
Department of Electronic Engineering, NTUT7/82
Frequency Tuning Capacitor
• Frequency tuning of LC VCOs is commonly done by changing
the capacitance value of the varactors and/or an array of
switched capacitors in the tank.
Switched or controlled inductor designs remain difficult to cover the desired wideband
continuously and to limit the deterioration of the phase noise performance caused by the
insertion of these switches.
• Instead of using a single large varactor to tune the frequency, a
mixed discrete/continuous tuning scheme is usually chosen.
A small varactor is used for fine continuous tuning, and larger steps are realized by
digitally switching capacitors in and out of the resonant tank.
This has two advantages: The VCO gain is lower, allowing easier phase-locked loop
(PLL) design, and digitally switched varactors have a higher ratio between the
capacitance in the on-state (Con) and the capacitance in the off-state (Coff ). A higher
Con/Coff ratio allows a larger VCO frequency tuning range.
Department of Electronic Engineering, NTUT8/82
Tank Loss Variations
• In the target frequency range (< 5 GHz), the losses in the
oscillator tank are usually dominated by the inductor.
This simplification is, of course, not completely valid, since extra losses due to the
skin effect, for examples will increase the resistance at higher frequencies.
• The negative resistance needed to compensate for the inductor
losses is given by Gm = RS(ωC)2.
• If we want the oscillation frequency to change by a factor of 2:
Total capacitance of the resonant tank has to be changed by a factor of 4
Required negative resistance must also change by a factor of 4.
The transconductance required for the active core is four times higher at the
lower end of the frequency tuning range than at the higher end.
Department of Electronic Engineering, NTUT9/82
Wideband VCO Architecture
Scale the core biasing current.
Change the transistors sizes.
Keep parasitics at a minimum (phase noise and the
tuning range achievable).
Switches to turn transistors on or off.
Switches has to avoid degrading the oscillator
phase noise as well as to ensure parasitic
capacitances are small.
For lower frequencies, more and more core units
are gradually activated, and the total bias current
increases to keep the oscillation amplitude steady
and the parasitic capacitance increases, helping the
“normal” varactors in their goal to increase the
total tank capacitance.
M1 M2
SW1 SW1
M3 M4
Dunit
Ckvco
Vtune
0
1
1
0
Dtune
Department of Electronic Engineering, NTUT10/82
Frequency Tuning Sensitivity Variations
• Variation in VCO sensitivity for wide-tuning-range VCOs:
A change in the control voltage Vtune results in a change C in the analog varactor
capacitance Cvar . This causes a change in frequency f :
• The VCO with a frequency ratio of 2, tank capacitance has to
change by a factor of 4, the VCO frequency sensitivity will
then change by a factor 4 √4 = 8.
Such a large change in VCO gain presents serious problems for the design of the
PLL in which it will be incorporated. It prevents keeping the PLL bandwidth
constant and hence endangers the loop stability and an optimal phase noise
performance.
1 1
2 4
f
f
CLC C LCπ π
∆ −
= ⇒ =
∆
Department of Electronic Engineering, NTUT11/82
0.1 to 6-GHz Quadrature Generation
• The divide/multiply and quadrature (DMQ) contains several
divide-by-2 blocks. They generate I and Q phases down to a
division factor of 32.
DIV2DIV2DIV2DIV2DIV2
PPF
PPF
DIV2
BUF
4G
5G:3G
2G
4G:2G
4G
4G
1G
0.5G
250M
1.5G
125M
• The DMQ further employs a
quadrature-phase single-side
band (SSB) mixer to generate
3GHz, 5GHz.
• The SDR’s LO frequency can
be selected by a multiplexer
integrated in the DMQ.
Department of Electronic Engineering, NTUT12/82
Receiver Building Blocks
• A key aspect for the receiver RF part is its interference
robustness. The blocking requirements for simultaneous multi-
mode operation imply the need for tunable narrowband circuits
at the antenna interface.
Either this function can be provided by a multi-band filtering block, in which case
the receiver’s input can be a wideband LNA, or part of this burden can be taken up
in the LNA design.
Department of Electronic Engineering, NTUT13/82
MEMS-Enabled Dual-Band LNA (I)
• Using MEMSs switches to build a low-loss reconfigurable
antenna filter section on a thin-film substrate.
Packaged MEMS switch :
connect the LNA to either
its 1.8 GHz or 5 GHz
matching circuit and
antenna filter. The loss of
the switch is only 0.2 dB.
Cx reduces the gate inductance for the input matching.
At 1.8-GHz, a simple
matching made up of one
or two passive components
can fulfill the matching
requirement.
The bondpad is modeled
by a 65-fF cap in series
with a 50-Ohm resistance.
Each bondwire is modeled
by a 1.3-nH inductance.
Input
Stage
Single
to
Diff.
Conv.
A
BA
B
Gain
Ctrl
5-6
GHz
1.8
GHz
Cx
5-6 GHz
MEMS
SPDT
1.8 GHz
C bp
Low-band
50 -TL Matching
Network
Lbond
Switchable Matching
Network On board On chip
High-band
Freq. [GHz]
0 1 2 3 4 5 6 7 8
0
-2
-4
-6
-8
-10
-12
-14
-16
-18
-20S11[dB]
Department of Electronic Engineering, NTUT14/82
MEMS-Enabled Dual-Band LNA (II)
Internally, the LNA
has two separate
outputs to cover the
required frequency
range.
A resistively loaded output is
small in area and wide
bandwidth but can only provide
enough gain at frequencies up
to 2.5 GHz
This output is for the 5 to 6-GHz
band with an LC-tuned load. A
resistor in parallel with this inductor
lowers its Q to cover the 1-GHz
bandwidth.
Gain switching: When the third CG-
transistor is activated, which bypasses a
certain fraction of the signal current to
the power supply so as to reduce the gain.
The overall gain is
24 dB. S11 input
matching better
than −10 dB is
achieved in both
bands. The
simulated LNA NF
is around 2 dB,
while the IIP3
value is −5 dBm in
the low band and 3
dBm in the high
band.
Input
Stage
Single
to
Diff.
Conv.
A
BA
B
Gain
Ctrl
5-6
GHz
1.8
GHz
Cx
5-6 GHz
MEMS
SPDT
1.8 GHz
C bp
Low-band
50 -TL Matching
Network
Lbond
Switchable Matching
Network On board On chip
High-band
Freq. [GHz]
0 1 2 3 4 5 6 7 8
0
-2
-4
-6
-8
-10
-12
-14
-16
-18
-20
S11[dB]
Department of Electronic Engineering, NTUT15/82
Wideband LNAs (I)
• Rely on the passives in the antenna interface for RF
interference and blocking filtering. This makes the realization
of the concept easier, as commercially available (multi-band)
filtering blocks can be used in the implementation.
• Wideband LNA must now be used that cover an RF frequency
range as large as possible for optimal flexibility, but must still
achieve state-of-the-art performance with respect to
narrowband LNAs.
• Covering the full 100 MHz to 6 GHz frequency range is
challenging since achieving a low NF at hundreds of MHz
requires large transistors with low 1/ f noise
On-chip LC-matched common-source (CS) LNAs typically cover a bandwidth from
3 to 10 GHz. Extending the bandwidth down to 100 MHz would require
prohibitively large inductors and thus chip area.
Department of Electronic Engineering, NTUT16/82
Wideband LNAs (II)
• Two LNAs are combined to cover the entire frequency range:
An inductor-less feedback LNA with a small form factor covers frequencies from
100 MHz to 2.5 GHz, and a CS LC-matched LNA covers frequencies from 2.5 to 6
GHz. Only one LNA is powered at a time, to save power and provide filtering over
half of the bandwidth.
Resistive Feedback LNA
OUT
IN
C
Bandgap
OUT
IN
VC
Bandgap
LC-Matched LNA
Department of Electronic Engineering, NTUT17/82
Resistive Feedback LNA – 0.1 ~ 2.5 GHz
A digitally controlled bank of feedback
resistors allows us to switch from high-
to intermediate- and low-gain modes.
The biasing is done with
a 3-bit programmable
current source. This
allows us to vary the
gain in small steps
around the different gain
modes and to decreasing
the power by half when
switching from high- to
low-gain mode.
At a maximum gain of 22 dB, typical simulation results achieve an NF of 2 dB
and an IIP3 of −10 dBm at a power consumption of 12 mW. At reduced gain
(10 dB), the linearity improves to +3 dBm while the power consumption
decreases to 8 mW.
OUT
IN
C
Bandgap
It employs resistive feedback for wideband matching and
noise canceling for low NF over a wide band. It in general
has lower gain and a higher noise figure than these of
inductively matched narrowband designs, but it offers large
savings in area.
Department of Electronic Engineering, NTUT18/82
LC-Matched LNA – 2.5 ~ 6 GHz
Broadband input-matching is achieved by the inductively degenerated CS-stage into an LC bandpass
filter . Input matching from 6 GHz down to 2.4 GHz can be done with inductive elements of reasonable
values, but extending that frequency band to lower values is practically not feasible.
At the output, a 4-
bit programmable
capacitor bank
provides filtering.
A pullup resistor
is added to obtain
good linearity.
Biasing is done with a
3-bit programmable on-
chip voltage reference.
OUT
IN
VC
Bandgap
Simulated values for NF and IIP3 are 2.4 dB and −10
dBm, at a maximum gain of 22 dB, with a power
consumption of 12 mW.
Gain switching is achieved with a bypass cascode
transistor that diverts a part of the signal current to
the power supply for lower gain without influencing
the input matching
Department of Electronic Engineering, NTUT19/82
RF
LO
B:1 1:B
RF+ RF-
LO-
LO+ LO+
io+
io-
Wideband Down-Conversion Mixer
• The Gilbert cell is is used for wideband operation up to 6 GHz.
An NMOS input pair is used as a transconductance, driving RF signal
current into the core switch transistors that form the Gilbert cell
The folded switching
PMOSs can reduce
flicker noise. The
extra folding
transistors will
contribute a certain
amount of thermal
noise, causing the
overall receiver’s NF
to deteriorate.
The noise contributions in a switching mixer are not easy to
understand or analyze but can generally be kept within limits
by using large LO signals and reduced dc current through the
switching transistors.
The switchable gain is achieved by
digitally programmable current gain B.
The input must be designed
carefully, as it will determine
both the noise and the
linearity performance of the
mixer.
A considerable biasing
current of 5 mA.
Department of Electronic Engineering, NTUT20/82
Signal Selection and Dynamic Range
• How to handle: Signal Selection and Dynamic Range
• Signal Selection
Capturing a slice of bandwidth while rejecting adjacent frequencies, which
sometimes contain signals of higher power than the signal of interest.
• Dynamic Range
Defined by the max. and min. signal levels that the receiver can process
without distortion that would degrade the SNR to an unacceptable level.
• Heterodyne Receivers
1. Convert an RF signal into an IF. The IF is passed through high-Q BPFs to
remove undesired signals such as the image and interfering signals.
2. This IF approach works well for systems with defined channel bandwidths.
But large banks of fixed filters would be required to cover the broad range of
possible channels in SDR applications. This is not a practical solution.
Department of Electronic Engineering, NTUT21/82
Variable-bandwidth Problem
• One possible solution: switched capacitor circuits.
The bandwidth is programmable by varying the capacitor ratio and the clock
frequency of the switched capacitor circuit.
• Another way to handle varying channel bandwidths is with
the use of direct conversion receivers (DCRs).
Since no image frequency is produced, thus RF preselect filters can be
eliminated.
The removal of adjacent channel energy no longer requires high-Q BPFs but
can be accomplished with LPFs, which are much easier to integrate. This is a
great advantage because it is possible to integrate LPFs with programmable
gain and bandwidth in today’s technology.
Department of Electronic Engineering, NTUT22/82
Problems of DCRs
• Challenges: DC offsets and 1/f noise
• DC offsets are caused primarily by mismatch and/or by LO
signal coupling into the mixer RF port.
The undesired effect is saturation of the following dc-coupled gain stages.
• 1/f noise is the dominant source of noise in MOS transistors at
frequencies below 100 kHz.
In most CMOS processes, PMOS devices have between 2 and 5 times less 1/f
noise than do NMOS devices. Where this is true, PMOS devices should be used
in parts of the circuit where reducing 1/f noise is critical.
Noise has a cumulative effect in a gain lineup, so the gain in the first stage
should be as large as possible.
Chopper stabilization can greatly reduce the effects of any remaining 1/f noise.
Department of Electronic Engineering, NTUT23/82
Transmitter Building Blocks
• The pre-power amplifier (PPA) is the final block in the SDR
transmit path.
The effective output power is not as high, and for many
applications the average swing is much lower than the peak.
Furthermore, a non-negligible voltage drop across the series
resistance of the inductor sets the dc output voltage below
the power supply.
INN
INP
OUT
The PPA includes extensive
programmability of gain settings.
The output stage is an inductively loaded CS
amplifier with programmable bias current for
optimal linearity vs. power trade-off.
Department of Electronic Engineering, NTUT24/82
DCFB
IN
OUT
Ref
Programmable Gain PPA
• The pre-power amplifier provides gain programmability.
The core of the amplifier is a CS
stage with a PMOS resistive load.
3 additional PMOS transistors are placed in parallel with the
main load to control the gain. Their gates can be connected to
Vdd , to turn them off and increase the gain, or to ground, to
put them in the linear region and decrease the gain.
Changing the resistive load has an
impact on the dc voltage and so, on its
linearity.
A dc level feedback circuit
(DCFB) controls gate bias (for
enhance linearity).
The total bias current
through the amplifier
can be controlled to
optimize the power
consumption for the
linearity required.
The performance of this
circuit varies widely, of
course, over carrier
frequency, required output
power, bias and gain
settings, and so on.
Simulation results indicate
a total gain range of 50 dB
and typical IM3 distortion
levels of −35 dB at 0-dBm
output power.
Department of Electronic Engineering, NTUT25/82
Direct Conversion Transmitters (I)
• BB digital process provides complex samples of the encoding
intended, including encryption, pulse shaping, and
linearization preconditioning. These discrete samples are
lowpass-filtered and amplified by the post-baseband (PBB)
amplifier.
Amp
LPF
Amp
LPF
RF
Power
Amp
Differential
Quadrature
LO
I
Q
BaseBanddigitalprocessing
&Digital-to-Analogconverter
0 °
90 °
Frequency
dBmlevel
Occupied
Signal
Bandwith
Far Out
Noise Level
dBc/Hz
Carrier frequency
Department of Electronic Engineering, NTUT26/82
Direct Conversion Transmitters (II)
• The benefit of this direct-launch Cartesian encoded carrier is
multi-mode compatibility with baseband frequency bandwidth
and mask determination.
This enables additional digital processing technology to be applied through the
entire transmitter, such as feedforward or predistortion linearization.
• Any form of amplitude, angle, frequency, or any combination
of modulation formats and bandwidths with no exceptions,
including complex non-continuous multi-channel signals.
Department of Electronic Engineering, NTUT27/82
Direct Conversion Transmitters (III)
• Three main issues:
Sideband noise level
Local oscillator feedthrough
Self-generated interference (LO pulling causes remodulation of the carrier)
• Sideband noise level
In practice, it is introduced when circuit noise is increased in level by the
broadband gain in the transmitter system.
• Local oscillator feedthrough
The transmission gate ring switching mixer can improve carrier feedthrough. With
careful design of the mixer, carrier feedthrough of better than −50 dBc is attainable.
• LO pulling
Shielding, grounding, .etc.
Department of Electronic Engineering, NTUT28/82
Far-out Sideband Noise Contribution
• Far-out sideband noise can
become an interference to
receivers close to the
transmission signal. (For
GSM, a BPF is often used to
reduce the far-out noise
significantly outside TX bands.)
• The lack of broadband
tunable RF bandpass filters
results in far-out noise over
a very wide range of
frequencies and the TX may
offend a receiver in close
proximity.
Amp
LPF
Amp
LPF
PADifferential
Quadrature
LO
I
Q
BaseBanddigitalprocessing
&Digital-to-Analogconverter
0 °
90 °
Gain = G
Low Pass Filter
Reduces Far Our noise contribution
Noise Figure contributes to
Input Referenced Added Noise
Transmission Gate
Switching Mixers
Input
Referenced
Added Noise
Carrier
VCO
Department of Electronic Engineering, NTUT29/82
LO Frequency Pulling
• DCTs have an output frequency equal to that of the oscillator
signal source frequency.
The interference causes perturbations in the VCO that are not corrected by the PLL
control loop. This undesirable remodulation of the VCO signal frequency will
degrade the quality of the signal transmitted.
Amp
LPF
Amp
LPF
PA
Differential
Quadrature
LO
I
Q
BaseBanddigitalprocessing
&Digital-to-Analogconverter
0 °
90 °
Transmitter radiated signal coupled input VCO signal source
Antenna
Network
DC supply and ground
conducted into VCO
signal source network
Electromagnetic Shielding
Carrier
VCO
Department of Electronic Engineering, NTUT30/82
Remodulation from Pulling
• Overcome Remodulation:
Shielding
Grounding
Decreased VCO sensitivity to electromagnetic signals and the use of
subharmonic, higher harmonic, or translated reference signal frequency.
Lowering the inductive and capacitive coupling coefficient of the VCO resonant
network, use of differential VCO, and integrated implementation with a lower
coupling area profile.
• These are combined with multiple layers of isolation shielding
between the antenna and the VCO to form a remodulation
rejection system.
Department of Electronic Engineering, NTUT31/82
Required Isolation in ICs
Substrate
modulator PA
LO
ωLO
paraC
PLL
synthesizer
Isolation > 90~110 dB
PA < 30 dBm (1W)
LO < 10 dBm
In the experiment, LO phase noise degrades when the injection power is
as low as −80 dBm.
Department of Electronic Engineering, NTUT32/82
Substrate Coupling and Isolation
• Dominant
Diffusion capacitive coupling
Impact ionization
Inductive coupling (power grid fluctuations)
• Less significant
Gate-induced drain leakage (GIDL)
Photon-induced reverse current
Diode junction leakage current
Department of Electronic Engineering, NTUT33/82
Diffusion Capacitive Coupling
•
SPICE models such elements with "CJ0" and "CJSW" (source/drain-to-
substrate capacitance).
• Metal-to-metal capacitors:
Largest parasitic capacitance to the substrate, hence if these devices are used for
implementing large on-chip capacitors, they can act as significant substrate noise-
injectors.
• As technology feature size reduces,
higher doping concentration leads
to higher depletion capacitance and
hence more coupling effects.
( )
1 2
1 22
js
b
q N N
C
V N N
ε
ψ
 
=  
+ + 
Department of Electronic Engineering, NTUT34/82
Impact Ionization
• Reduced transistor feature sizes increase the electric field in the
channel and therefore impact ionization currents are becoming more
significant compared to other injection mechanisms.
• In saturation, impact ionization takes place with a high electric field
in the depleted region. For a p-type substrate, the generated holes
are swept to the substrate generating an effective drain-to-substrate
current. Recent experimental evidence suggests that hot-electron
induced substrate currents are the dominant cause of substrate noise
in NMOSFETs up to at least one hundred megahertz.
• Shorter device channel lengths in advanced technologies are likely
to increase the impact ionization currents due to increased channel
fields and smaller oxide thickness and drain junction depth.
Department of Electronic Engineering, NTUT35/82
Inductive Coupling - Power Grid Fluctuations
• Due to parasitic effects (mainly bond wire inductance), power
supply lines become very noisy because of currents drawn by
the switching digital circuits. These currents induce large
voltage glitches when they switch (Ldi/dt noise) at substrate
and well contacts. In addition, the power grid noise can be also
capacitively coupled through metal-to-substrate parasitic
capacitance.
Department of Electronic Engineering, NTUT36/82
Isolation in Silicon Substrate (Baseline)
• The baseline:
D = 120 µm
Isolation ~ 29 dB
As the frequency increases, the
isolation is getting more and more
worse.
In the following slides, some isolation
techniques were applied to compare the
isolations.
Baseline Isolation
Department of Electronic Engineering, NTUT37/82
Isolation Techniques – P+ Guard Ring
• P+ ring: D = 120 µm
W = 3 µm / d = 10 µm
Isolation ~ 65 dB
• Guard rings sink the noise currents
P+ ring w/ low ohmic contact Isolation w/ P+-ring
Department of Electronic Engineering, NTUT38/82
Isolation Techniques – N+ Guard Ring
• N+ ring:
D = 120 µm
W = 3 µm / d = 10 µm
Isolation ~ 65 dB
• Good isolation at low frequencies due to the high capacitive
impedance of the p-n junction between n-ring and p-sub.
Isolation w/ N+-ring
Department of Electronic Engineering, NTUT39/82
Isolation Techniques – Deep N-Well Ring
• DNW ring:
D = 120 µm
W = 3 µm / d = 10 µm
Isolation ~ 90 – 70 dB
• Good isolation at low freq.
• The DNW isolation
degrades with increasing
the frequency slower than
the n-well due to that
DNW is lightly doped
than the regular n+ well.(p-
n junction capacitance with the p
substrate is smaller than that of the
n+ well)
Isolation w/ DNW N+-ring
Department of Electronic Engineering, NTUT40/82
Isolation Techniques – Deep Trench
• Deep trench:
D = 120 µm
W = 3 µm / d = 10 µm
Isolation ~ 65 dB
• A deep trench is a trench in the
silicon substrate approximately
10 µm deep that is filled with
oxide.
• The oxide in the deep trench
acts as a high impedance
insulator that forces the
substrate noise current to dive
deep in the substrate.
Department of Electronic Engineering, NTUT41/82
Isolation v.s. Distance D – Baseline
Department of Electronic Engineering, NTUT42/82
Isolation v.s. D – P+ Guard Ring
Department of Electronic Engineering, NTUT43/82
Isolation v.s. Ring Enclosure d
Department of Electronic Engineering, NTUT44/82
Isolation v.s. Ring Enclosure Width w
Department of Electronic Engineering, NTUT4582
Adopt the Offset PLL
• Using an offset PLL eliminates remodulation by increasing the
PLL loop bandwidth to include the signal modulation radiated.
0 °90 °
Quad Generator
ReferencePhase
Frequency
Detector
Narrow band
LPF Synthesizer
control
Offset VCO
Ft or 2*Ft
F = Ft or 2*Ft +/− Ft
Fr
Very
Wideband
LPF
Carrier
VCO
control
Ft or 2*Ft
Department of Electronic Engineering, NTUT46/82
Using DDS
• An alternative direct-launch architecture that does not have a
VCO operating at the transmitter output frequency uses direct
digital signal synthesis (DDS).
• Briefly stated, a high-frequency clocking signal is used to
generate an output signal source without the use of an
oscillator operating at the output frequency. DDS can be an all-
band signal source for SDR, assuming that it is technically
practical for up to 6-GHz operation with acceptable power
dissipation.
Department of Electronic Engineering, NTUT47/82
Cartesian and Polar Implementation
• The advantage of polar processing is direct phase encoding on
the signal source and the potential of an efficiency
enhancement implementation in the amplitude modulation.
First, the bandwidth associated with the magnitude and phase signals are multiples
of the Cartesian equivalent signals.
Second, the magnitude and phase terms are very different, which causes divergent
signal processing effects, including potential time alignment imperfections. These
bandwidth and time alignment effects require additional complexity and
consideration for each mode of operation.
Quadphase - Q
Q
Magitude =
( ) ( )
1/22 2
= I t +Q t  
InPhase - I
Cartesian
( )A t
( ) ( ) ( )Phase= t = arctan Q t /I tθ   
( )v t
Q
90°
-90°
180°
( )A t
( )tθ
( )v t
I
0°
Polar
Department of Electronic Engineering, NTUT48/82
RF Power Amplification (I)
• Power Sources:
Portable equipment: < 4 W of peak power (3.6- to 9-V dc battery)
Fixed-base station equipment: < 100 W of peak power (110-V ac source)
Vehicle mobile class: 10-W or higher (12-V dc battery)
• As the number of modes and bands increases, the size, cost,
and performance of a bank of single solutions will become
prohibitive without technology advancement in the passive
frequency-determining elements needed for matching at each
port of the power transfer gain stages within the transmitter
system.
Department of Electronic Engineering, NTUT49/82
RF Power Amplification (II)
• Combining bands to expand the RF PA across applications
with an acceptable compromise of optimized single-solution
performance.
• Multi-mode operation would be divided between TDD or FDD.
• The TDD switches between transmitter and receiver operation
modes, where only one is active at any given time.
Amp
LPF
Amp
LPF
Differential
Quadrature
BaseBanddigitalprocessing
&Digital-to-Analogconverter
I
Q
0º
90º
PA
Tx RxF = F
Mulitiplexer
Amp
LPF
RxFDifferential
Quadrature
LNA
0º
90º
Amp
LPF
I
Q
BaseBanddigitalprocessing
&Analog-to-Digitalconverter
TxF
Department of Electronic Engineering, NTUT50/82
RF Power Amplification (III)
• The FDD has simultaneous transmitter and receiver operation
at different frequencies. Another incremental step would use
programmable frequency-matching or device- operating
conditions to expand the band or mode of application
associated with a common RF power amplifier implementation.
Amp
LPF
Amp
LPF
Differential
Quadrature
BaseBanddigitalprocessing
&Digital-to-Analogconverter
I
Q
0º
90º
PA
Tx RxF = F
Duplexer
Amp
LPF
RxFDifferential
Quadrature
LNA
0º
90º
Amp
LPF
I
Q
BaseBanddigitalprocessing
&Analog-to-Digitalconverter
TxF
Department of Electronic Engineering, NTUT51/82
RF Power Amplification (IV)
• The RF signal levels associated with power amplifiers can
reach levels greater than the dc voltage source used for
program control.
• If the RF signal voltage is greater than that of the dc control
range of the varactor, its capacitance is a function of the RF
signal in combination with the dc control voltage.
The capacitance is a function of the RF signal and is no longer constant at all times.
This can result in modulation of the programmable element’s impedance value and
distortion in the RF signals.
Department of Electronic Engineering, NTUT52/82
RF Power Amplification (V)
• A single RF PA would be an RF PA with continuous operation
across all frequencies and optimized power dissipation at
every multi-mode format across all operating power levels. In
addition, it would provide acceptable linear performance and
harmonic content for any mode or band of operation.
• As the bandwidth approaches from 100 MHz to 6 GHz, a
cascade of wide bandwidth-matching network gain stages
becomes a complex design. Programmable elements could
become part of the solution to provide a design that would
compete successfully with a band of multi-mode or band-
optimized performance solutions.
• However, a vector combined distributed implementation
(distributed amplifier) can provide wideband performance with
a modest increase in complexity.
Department of Electronic Engineering, NTUT53/82
Transmitter Efficiency
• A linear class B amplifier peak power occurs ideally when the
peak output voltage is equal to that of the dc supply voltage:
• A modulation format with a peak-to-average ratio of 3 dB
would have an efficiency reduction by a factor of 2.
• Supply Modulation:
Modulating the dc supply voltage as a function of the encoded output power
magnitude to provide peak operating efficiency at all power levels. There are a
number of supply modulation variations, such as envelope following, envelope
elimination and restoration, and polar modulation format.
0.785
4 4
out out
in dc
P V
P V
π π
η = = = =
Department of Electronic Engineering, NTUT54/82
Transmitter Linearization
• Error vector magnitude (EVM) and adjacent channel power
ratio (ACPR) are used to measure the performance.
• ACPR:
A measure of the unintended generation of electromagnetic energy from the
transmitter network into frequency bands adjacent to the intended operating
frequency band.
• A transmitter frequency-domain mask is defined by standards
to limit transmitter adjacent channel interference signal level.
The source of the unwanted adjacent channel energy is
nonlinear distortion products within the RF power amplifier.
Department of Electronic Engineering, NTUT55/82
Reducing Nonlinear Distortion
• Reducing the output power reduces the ACPR at the expense
of RF power amplifier efficiency, which is not always a
practical solution.
• Linearization adds complexity to the amplifier to compensate
or cancel generation of the distortion components.
Linearization Tech. Advantages Disadvantages
Feedback
35 dB improvement
Not depend on carrier frequency
Narrowband, < 1 MHz
Instability potential
Dependent on output termination
Feed-forward
35 dB improvement
Not depend on carrier frequency
Wideband < 100 MHz
Efficiency performance
Complexity
Predistortion
Reduced hardware
Table-based
Wideband < 10 MHz
Limited improvement (~15 dB)
Department of Electronic Engineering, NTUT56/82
Transmitter Stability
• When a circuit becomes unstable, it produces output signals at
frequencies not represented within the input signal.
The most common form of unstable behavior in a circuit is positive feedback, where
the output is coupled to the input at a level higher than the original input signal. As
the bandwidth of operation increases, these unintended feedback paths become
more difficult to avoid.
• When an RF power amplifier is working, the operating
condition is changing as a function of the input signal level.
Therefore, the s-parameters are time-varying functions,
making complete stability analysis more difficult to define.
Department of Electronic Engineering, NTUT57/82
Broadband LO Generation
• Perhaps the greatest challenge for SDRs is the generation of
LO oscillator signals over broad, continuous frequency ranges.
• Given that direct conversion is the receiver topology of choice,
quadrature generation must be part of the solution. This is an
area that requires innovation to achieve SDR performance.
Department of Electronic Engineering, NTUT58/82
Phase-Locked Loops (I)
• PLLs are the most common implementations of frequency
synthesizers. A VCO is phase-locked to a stable reference
frequency (typically, a xtal) through a feedback path.
VCO architectures: Ring oscillators have found applications in some wireless
LAN standards and broadband TV tuner applications. However, the LC-tuned
oscillator is most commonly used in applications with stringent phase noise
requirements.
• In addition to the benefits of the PLL integration into CMOS
processes, they typically exhibit good performance in terms of
phase noise, current drain, area, and spurious performance.
The greatest challenge for PLLs is making them tunable over a broad
frequency range. Tuning ranges of 20% are typical but can be as high as 30%.
Recent results suggest that ranges approaching 50% are possible.
Department of Electronic Engineering, NTUT59/82
Phase-Locked Loops (II)
• Even a 50% tuning range is not enough, there are a multitude
of approaches for extending the frequency range of PLL
systems. One approach is to have multiple VCOs, which in
most cases can share the same PLL circuitry.
• The size of inductors places a practical limit on the number of
VCOs and therefore the achievable frequency range. Whether
on- or off-chip, cost and manufacturing issues prevent the use
of huge banks of VCOs to cover wide tuning ranges.
• Another way to get a broad tuning range is to have one or
more VCOs and multipliers, dividers, or mixers combinations.
Inevitably, the addition of these circuits comes at the cost of higher power
consumption for equivalent noise and spurious performance.
Department of Electronic Engineering, NTUT60/82
Direct Digital Synthesizer (DDS)
• DDSs have a broad frequency tuning range, fine frequency
resolution, and very fast switching
• ROM consumes a large amount of power.
• Synthesized frequency is lower than the reference frequency.
Acc. Output
ACC
n m
LPF outF
refF
DACROM
ROM Output DAC Output
Acc.Output
ROMOutput
DACOutput
outF
Department of Electronic Engineering, NTUT61/82
Digital-to-Time Converter
• Use of a digital-to-time converter (DTC) to construct an output
frequency from the phase information in the accumulator to
lower power consumption.
Acc. Output
ACC
K
n m
Tap0
TapX
Phase
Detector
Charge
Pump
LPF
vtuneTapped Delay Line
Tap0 Tap1 Tap2 …… TapX-1 TapX
Tap Selection Logic
……
Digital-to-Time Converter
outF
refF
Department of Electronic Engineering, NTUT62/82
Example (I)
• A highly reconfigurable low-power transceiver implemented in
a 90-nm CMOS process.
• The RFIC processes signals of multiple wireless protocols
from 100 MHz to 2.5 GHz with −6 dBm and a voltage gain of
48 dB.
• The transmitter has better than 40 dB of carrier suppression,
35 dB of sideband suppression, and an EVM of 1% at 800
MHz.
• The frequency synthesizer uses direct digital synthesis to
achieve instantaneous frequency switching and a phase noise
of −115 dBc/Hz at 25 kHz offset for a 500-MHz carrier
frequency.
Department of Electronic Engineering, NTUT63/82
Rx DDS Reference
PLL/VCO
PMA VGA BQ
DCOC MUX
Tx TEST POINTS
SPI
ButterworthForward pole 2 Input Buffer
Tx Forward DDS
ReferenceTx Reverse DDSCartesian Rev Amp/Mixer
Cartesian BB Forward
Reference
Example (II)
Programmable LPF, 4
kHz ~ 10 MHzDDS
DDS
DDS
PLL
DCR
DCT
Cal.
Cal.
external connection to
an ADC and digital
processing.
external connection to
an DAC and digital
processing.
Programmable LPF, 4
kHz ~ 10 MHz, 10% BW
step
90 dB VGA power
control
For
external
LNA
Chopping
Department of Electronic Engineering, NTUT64/82
Quadradture Mixers
• The quadrature mixers on RX inputs 1, 3, and 5 are
nonchopped passive mixers built with a quad ring of CMOS
transmission gates.
• The quadrature mixers on RX inputs 2 and 4 use dynamic
matching to improve IP2, flicker noise, and dc offset. The
chopping mixers are built with three mixers in, where each
mixer is built with a quad ring of CMOS transmission gates.
RFp
LOm OUTp LOp OUTm
RFm
RFp
RFm
CHOPp
CHOPm
LOp
LOm
OUTm
OUTp
Department of Electronic Engineering, NTUT65/82
Baseband Filters (I)
• Baseband filters that support multiple bandwidths are
implemented along with gain control and dc offset correction.
• A filter bandwidth is programmable from 4 kHz to 10 MHz in
6.25% steps or less. Sufficient margin is built into the design
to allow for a 20% change in RC tolerance and still maintain
the bandwidth range of 4 kHz to 10 MHz.
• Bandwidth selection is implemented by adjusting the resistor
and capacitor values in the filter design.
Department of Electronic Engineering, NTUT66/82
Baseband Filters (II)
• Baseband filter gain control is accomplished at three points:
A programmable resistor divider at the input of the PMA allows attenuation in
four 6-dB steps.
The PMA has a maximum gain of 32 dB and a minimum gain of −10 dB.
The VGA has a gain range of 8 dB, and the output buffer has a programmable
gain control of 0 to 18 dB in 6-dB steps.
The entire baseband filter lineup has a maximum gain of 64 dB and a minimum
gain of −4 dB.
• A notable feature of the baseband filter is the use of chopper
stabilization to mitigate the undesirable effects that occur in
direct-conversion receivers when designed in a CMOS process.
Department of Electronic Engineering, NTUT67/82
Chopper Stabilization
• Chopper stabilization is
implemented around the first-stage
amplifier of each two-stage op-amp
(OPA’s input-referred voltage offset
and flicker noise performance are
heavily dependent on the first stage
of the OPA).
• The chopper frequency is derived
from the crystal input and can be
selected as a divide by 1, 2, 4, or 8
of the crystal frequency. Flicker
noise is essentially eliminated when
chopping is enabled, and thus
narrowband protocols will see
improvement in receiver sensitivity.
Department of Electronic Engineering, NTUT68/82
DC Offset Correction
• Dc offset correction circuitry (DCOC) is implemented as a
complete control loop that corrects dc offsets automatically at
the output of the baseband filter.
• DCOC consists of a 1-bit ADC (comparator), control logic,
and a 5-bit current-mode DAC that injects current into the
feedback resistors of the VGA to adjust the offset voltage.
• The control logic implements a successive approximation
algorithm that converges on the correct 5-bit word that
compensates for the filter’s dc offset.
Department of Electronic Engineering, NTUT69/82
Performance of This Transceiver
Summary of the Transceiver Performance
Frequency range 100 MHz ~ 2.5 GHz
RX NF 7 dB
RX gain 48 dB
RX IIP2 +60 dBm
RX IIP3 -6 dBm
RX current 40 mA
TX output power +6 dBm
TX sideband suppression 35 dBc
TX current 40~90 mA
EVM (pi/4 DQPSK 3.5 Msps) 1%@800 MHz
LO phase noise −115 dBc/Hz@25 kHz
LO frequency resolution 15 Hz
LO current per DDS 80 mA
Department of Electronic Engineering, NTUT70/82
Adaptive Multi-mode RF Front-ends
• To provide various services from different wireless
communication standards with high capacities and high data
rates, integrated multi-functional wireless devices are required.
• In the current multi-standard scenario, transceivers are mostly
implemented by replicating the radio-frequency (RF) front end
for each operating standard and by sharing partially the analog
baseband circuitry, but with a number of additional switches.
Although this approach allows for an optimal performance optimization across the
bands, the increase in hardware required to implement such a multifunctional
wireless device increases the total silicon area and cost and may reduce the use
time compared to single-standard implementations.
Department of Electronic Engineering, NTUT71/82
Sharing Building Blocks
• By sharing building blocks between different applications and
standards, portable wireless devices potentially gain advantage
over existing devices:
They use a smaller chip area and have a potential for lower overall cost. This
requires the development of adaptive circuits and systems that are able to trade off
power consumption for performance on the fly.
Realization of adaptivity functions requires scaling of current consumption to the
demands of the signal processing task.
Department of Electronic Engineering, NTUT72/82
Adaptive Multi-mode Low-power Design
• Mobile wireless equipment today is shaped by user and
application demands and RF microelectronics.
• Main drivers for mobile wireless devices are related to cost,
which depends on volume of production, size of mobile units,
engineering bill of materials, power consumption, and
performance.
Power consumption depends on available frequency spectrum, functionality, and
performance.
Performance depends on applications, standards, and protocols. Wireless systems
for new applications require an extension of the capabilities for the RF devices of
today, creating an opportunity for low-power adaptive and multifunctional RF ICs.
Department of Electronic Engineering, NTUT73/82
Low-power and Adaptive RF Circuit
• A variety of applications:
Supporting the transfer of text, audio, graphic, and video data, maintaining
connection with many other devices, position aware, and perhaps wearable.
• A combination of multiple functional requirements and limited
energy supply from a battery is an argument for the design of
both adaptive low-power hardware and software.
• An adaptive design approach poses unique challenges:
From hardware design to application software, and ultimately throughout all layers
of the underlying communication protocol.
Department of Electronic Engineering, NTUT74/82
Adaptive Topology
adaptive analog
RF front-end
LNA
I-mixer
Q-mixer
Quadrature
generation
VCO
VGA
VGA
A/D
A/D
DSP
Memory
CPU
adaptive analog base-band adaptive digital
back-end
( )x t
( )y t
( )I t
( )Q t
Setting the performance parameters of an RF front end by means of adaptive circuitry is a way
to manage power consumption in the RF path of a receiver. An adaptive LNA, an adaptive
mixer, and an adaptive VCO allow more efficient use of scarce battery resources.
Furthermore, adaptive analog baseband and digital back-end
circuits enable complete hardware adaptivity (monitoring and
adjust TRX parameters).
Department of Electronic Engineering, NTUT75/82
Multi-mode and Adaptive RF Circuit (I)
• GSM, UMTS, Bluetooth, 802.11a/b/g, GPS, and DVB-H are
some of the standards likely to be present in the multi-standard,
multi-mode, multi-band mobile terminals of the future.
• The design of multi-functional wireless devices is
accompanied by various challenges:
System challenges:
Single high-performance, low-power terminal that is cheaper than a
compound of separate single-mode terminals.
Circuit design challenges:
For full integration of multifunctional devices include on-chip image
rejection and provision of wide bandwidth and dynamic range.
Technological challenges include the integration of low-cost and high-
performance-scaled silicon devices on a chip.
Department of Electronic Engineering, NTUT76/82
Multi-mode and Adaptive RF Circuit (II)
• Multi-standard modules can be implemented in various ways:
As stand-alone circuits that are designed for the worst-case condition of the
most demanding standard.
As multiple circuits (i.e., one per standard). Even though simpler to implement,
this approach requires more silicon area. Moreover, when multiple standards
operate simultaneously, power consumption increases.
As stand-alone adaptive circuits. When different standards do not operate
simultaneously, circuit blocks of a multi-mode handset can be beneficiary shared,
offering power and area savings compared to other multi-standard receiver
implementations, such as multi-standard receivers implemented using circuits
designed for the worst-case condition and multi-standard receivers implemented
with one receiver circuit per standard.
Department of Electronic Engineering, NTUT77/82
Multi-mode and Adaptive RF Circuit (III)
• For adaptive LNAs and mixers, power consumption is traded
off for dynamic range, whereas adaptive oscillators trade off
power consumption for phase noise and oscillation frequency.
• After a signal is down-converted to the baseband, it is filtered,
amplified, and digitized.
To accommodate multiple radio standards with different bandwidths and
modulation schemes, multi-mode LPFs need to compromise bandwidth, center
frequency, selectivity, and group delay for optimal dynamic range and power
consumption.
Multi-mode ADCs have to sample signals belonging to different standards,
tailoring different sample rates, dynamic range, and linearity requirements.
Department of Electronic Engineering, NTUT78/82
Multi-mode Receiver Concept (I)
• Wireless devices may use a common receiver if the protocols
of the radio standards support intersystem operability.
DCS1800
LNA
LNA
LNA
WCDMA
WLAN,DECT
Bluetooth
MMA-QD IC
I-IF
Q-IF
VCO
buffer
buffer
2-stage
Polyphase
filter
Differential
amplifier
Differential
amplifier
I-mixer
Q-mixer
Impedance matching, packaging,
and prefiltering requirements
are relaxed and simplified by
using multiple LNAs.
An RF switch selects
the mode of interest.
If the VCO and mixer
performance is adequate
to cover the range of
signals anticipated for
each application, the
quadrature downconverter
enables a multi-standard
receiver realization with a
single circuit block
(multi-mode adaptive
quadrature down-
converter, MMA-QD IC).
Department of Electronic Engineering, NTUT79/82
Multi-mode Receiver Concept (II)
• Adaptivity to
Requirements for Various Standards Referred to LNA Input
DCS1800 WCDMA WLAN Bluetooth DECT
f0 (GHz) 1.8 2.1 2.4 2.4 2.4
NF (dB) 9 6 10 23 18
IIP3 (dBm) −9 −9 −12 −16 −20
PN@1MHz (dBc/Hz) −123 −110 −110 −110 −100
Receiver Noise and Linearity Specification per Mode of Operation
Specification Demanding mode
DCS1800/WCDMA
Moderate mode
WLAN 802.11b
Relaxed mode
BT/DECT
NF (dB) 6 10 18
IIP3 (dBm) −9 −19 −16
PN@1MHz (dBc/Hz) −123 −110 −100
Department of Electronic Engineering, NTUT80/82
Multi-mode Receiver Concept (III)
• Referring to the channel spacing of the standards considered,
zero-IF and low-IF receiver configurations may be supported.
For example, the multi-mode adaptive quadrature down-
converter may operate in zero-IF mode for all standards
considered except the 200-kHz narrowband GSM (DCS1800
band) standard where low-IF operation would be favored (due
to flicker nosie).
• The standards considered are chosen to illustrate the feasibility
of the adaptivity design concept for multi-mode receivers.
Department of Electronic Engineering, NTUT81/82
Multi-mode Receiver Concept (IV)
• Given the multi-mode receiver requirements and the
specifications for the LNA and baseband circuitry, the noise
figure and linearity performance of the quadrature down-
converter can be determined for each mode of operation using
the cascaded NF and IIP3 formulas.
The demanding-mode performance is met with a 0-dB gain of the down-converter
with an accompanying NF tuning range (NFTR) of 14.6 dB and an IIP3 tuning
range (IIP3TR) of 7.6 dB. Note that by trading off the performance of the LNA and
baseband circuitry, a different (more relaxed or more demanding) set of down-
converter requirements results.
Required Performance for the Multi-mode Quad-Downconverter for 0 dB of Gain
Specification Demanding mode
DCS1800/WCDMA
Moderate mode
WLAN 802.11b
Relaxed mode
BT/DECT
NFqd (dB) 12.7 19.75 28.8
IIP3qd (dBm) 6.74 3.35 −0.87
Department of Electronic Engineering, NTUT82/82

More Related Content

What's hot

RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
GPS satellite signal acquisition and GPS CA(Gold) code generator
GPS satellite signal acquisition and GPS CA(Gold) code generatorGPS satellite signal acquisition and GPS CA(Gold) code generator
GPS satellite signal acquisition and GPS CA(Gold) code generatorPei-Che Chang
 
Wireless Communication short talk
Wireless Communication short talkWireless Communication short talk
Wireless Communication short talkPei-Che Chang
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationPei-Che Chang
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] LinearitySimen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 

What's hot (20)

Receiver design
Receiver designReceiver design
Receiver design
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
B2 desence
B2 desenceB2 desence
B2 desence
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
What is 16 qam modulation
What is 16 qam modulationWhat is 16 qam modulation
What is 16 qam modulation
 
PA linearity
PA linearityPA linearity
PA linearity
 
GPS satellite signal acquisition and GPS CA(Gold) code generator
GPS satellite signal acquisition and GPS CA(Gold) code generatorGPS satellite signal acquisition and GPS CA(Gold) code generator
GPS satellite signal acquisition and GPS CA(Gold) code generator
 
Wireless Communication short talk
Wireless Communication short talkWireless Communication short talk
Wireless Communication short talk
 
Diplexer duplexer
Diplexer duplexerDiplexer duplexer
Diplexer duplexer
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
 
Nonlinearity
NonlinearityNonlinearity
Nonlinearity
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
Saw filters
Saw filtersSaw filters
Saw filters
 
Introduction to equalization
Introduction to equalizationIntroduction to equalization
Introduction to equalization
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 

Viewers also liked

Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 

Viewers also liked (17)

Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 

Similar to Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers

IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationIRJET Journal
 
CellExtender® Antenna System Design Guidelines
CellExtender® Antenna System Design GuidelinesCellExtender® Antenna System Design Guidelines
CellExtender® Antenna System Design GuidelinesCaroline Seawright
 
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...AlanGustavo13
 
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal GeneratorsAn Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal Generatorscf_home
 
Design and performance analysis of low phase noise LC-voltage controlled osci...
Design and performance analysis of low phase noise LC-voltage controlled osci...Design and performance analysis of low phase noise LC-voltage controlled osci...
Design and performance analysis of low phase noise LC-voltage controlled osci...TELKOMNIKA JOURNAL
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513Pooja Shukla
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studiesPhani Kumar
 
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...Sematron UK Ltd
 
Huawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdfHuawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdfssuser32515c
 
55tmtt05-pfeiffer-proof
55tmtt05-pfeiffer-proof55tmtt05-pfeiffer-proof
55tmtt05-pfeiffer-proofDavid Goren
 
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...IJECEIAES
 
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27cf_home
 
First order sigma delta modulator with low-power
First order sigma delta modulator with low-powerFirst order sigma delta modulator with low-power
First order sigma delta modulator with low-powereSAT Publishing House
 

Similar to Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers (20)

IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Bandwidth optimization
Bandwidth optimizationBandwidth optimization
Bandwidth optimization
 
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless CommunicationA Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
A Review on Wide Bandwidth Low Noise Amplifier for Modern Wireless Communication
 
PMC_6G
PMC_6GPMC_6G
PMC_6G
 
CellExtender® Antenna System Design Guidelines
CellExtender® Antenna System Design GuidelinesCellExtender® Antenna System Design Guidelines
CellExtender® Antenna System Design Guidelines
 
ECE 104-3134
ECE 104-3134ECE 104-3134
ECE 104-3134
 
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...
Printed Circuit Board Design Techniques for EMC Compliance_20240220_145105_00...
 
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal GeneratorsAn Gt123 A Electronic Step Attenuator For Microwave Signal Generators
An Gt123 A Electronic Step Attenuator For Microwave Signal Generators
 
Design and performance analysis of low phase noise LC-voltage controlled osci...
Design and performance analysis of low phase noise LC-voltage controlled osci...Design and performance analysis of low phase noise LC-voltage controlled osci...
Design and performance analysis of low phase noise LC-voltage controlled osci...
 
Ppt iitr
Ppt iitrPpt iitr
Ppt iitr
 
Newtec FlexACM
Newtec FlexACMNewtec FlexACM
Newtec FlexACM
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513
 
upload2
upload2upload2
upload2
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
 
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...
Newtec - Optimisation of Satellite Capacity Efficiency for IP Trunking Applic...
 
Huawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdfHuawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdf
 
55tmtt05-pfeiffer-proof
55tmtt05-pfeiffer-proof55tmtt05-pfeiffer-proof
55tmtt05-pfeiffer-proof
 
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...
A Novel Design of a Microstrip Microwave Power Amplifier for DCS Application ...
 
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27
An Gt101 A Microwave Power Amplifier Fundamentals 08 10 27
 
First order sigma delta modulator with low-power
First order sigma delta modulator with low-powerFirst order sigma delta modulator with low-power
First order sigma delta modulator with low-power
 

Recently uploaded

Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptNoman khan
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfShreyas Pandit
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectGayathriM270621
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 

Recently uploaded (20)

Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).ppt
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdf
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subject
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 

Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers

  • 1. 李健榮 助理教授 Department of Electronic Engineering National Taipei University of Technology Multiband RF Transceiver System Chapter 6 Multi-mode and Multi-band Transceivers
  • 2. Outline • System Level Considerations • Wideband LO Generation • Building Blocks of TX and RX • Isolating Techniques on ICs • RF Power Amplifier • Two multi-mode examples of the transceiver are introduced in this chapter. Department of Electronic Engineering, NTUT2/82
  • 3. Software-Defined Front-ends • The ultimate dream of every SDR front-end is to deliver an RF transceiver that can be reconfigured into every operating mode. Modes for cellular (2G–2.5G–3G and further), WLAN (802.11a/b/g/n), WPAN (Bluetooth, Zigbee, etc.), broadcasting (DAB, DVB, DMB, etc.), and positioning (GPS, Galileo) functionalities. Obviously, each of them has different center frequency, channel bandwidth, noise levels, interference requirements, transmit spectral mask, and so on. • As a consequence, the performances of all building blocks in the transceiver must be reconfigurable over an extremely wide range. Linearity, filtering, noise, bandwidth, and so on, can be traded for power consumption. Department of Electronic Engineering, NTUT3/82
  • 4. System Level Considerations • A first choice to be made is the radio architecture to be used. Heterodyne, homodyne, low-IF, and other architectures, which one to choose? • In view of SDR, this question perhaps becomes a little easier to answer. When the characteristics of all possible standards are taken into account, not a single IF can be found that suits them all. Having multiple IFs and the associated (external) filtering stages increases the hardware cost of the SDR, which cannot be tolerated. Thus, the direct-conversion architectures are the right choice for the job. Department of Electronic Engineering, NTUT4/82
  • 5. Vision of the SDR Transceiver • The transceiver core implemented in CMOS includes a fully reconfigurable direct conversion RX, TX, and two synthesizers (for FDD). The functions that cannot be implemented in CMOS are included on the package substrate. These are related primarily to the interface between the active core and the antenna. They must provide high-Q bandpass filtering or even duplexing, impedance- matching circuits, and power amplification. MEMS switches Tunable matching Tunable filtering Power amplifier DMQ VCO Distr. DMQ NoC controller Frac-N PLL Frac-N PLL MCM substrate CMOS IC Department of Electronic Engineering, NTUT5/82
  • 6. Hard Works • Determine performance specifications for each block. • The total budget for gain, noise, linearity, and so on, must be divided over all blocks, ensuring that all possible test cases are covered for every standard. • Having very flexible building blocks helps a great deal, but making a smart system analysis is crucial to obtaining an optimal solution. • Gain ranges and signal filtering must be set such that the signal levels are an optimal trade-off between noise and distortion. • With the built-in flexibility, a software-defined radio can achieve state-of-the-art performance very close to that of dedicated single-mode solutions. Department of Electronic Engineering, NTUT6/82
  • 7. Wideband LO Synthesis • Example: To generate all required LO signals in the range 0.1 to 6 GHz, several frequency generation techniques have been proposed to relax the tuning range specifications of a voltage-controlled oscillator (VCO). They use division, mixing, multiplication, or a combination of these. However, to make these systems efficient in terms of phase noise and power consumption, the VCO tuning range still has to be maximized. Department of Electronic Engineering, NTUT7/82
  • 8. Frequency Tuning Capacitor • Frequency tuning of LC VCOs is commonly done by changing the capacitance value of the varactors and/or an array of switched capacitors in the tank. Switched or controlled inductor designs remain difficult to cover the desired wideband continuously and to limit the deterioration of the phase noise performance caused by the insertion of these switches. • Instead of using a single large varactor to tune the frequency, a mixed discrete/continuous tuning scheme is usually chosen. A small varactor is used for fine continuous tuning, and larger steps are realized by digitally switching capacitors in and out of the resonant tank. This has two advantages: The VCO gain is lower, allowing easier phase-locked loop (PLL) design, and digitally switched varactors have a higher ratio between the capacitance in the on-state (Con) and the capacitance in the off-state (Coff ). A higher Con/Coff ratio allows a larger VCO frequency tuning range. Department of Electronic Engineering, NTUT8/82
  • 9. Tank Loss Variations • In the target frequency range (< 5 GHz), the losses in the oscillator tank are usually dominated by the inductor. This simplification is, of course, not completely valid, since extra losses due to the skin effect, for examples will increase the resistance at higher frequencies. • The negative resistance needed to compensate for the inductor losses is given by Gm = RS(ωC)2. • If we want the oscillation frequency to change by a factor of 2: Total capacitance of the resonant tank has to be changed by a factor of 4 Required negative resistance must also change by a factor of 4. The transconductance required for the active core is four times higher at the lower end of the frequency tuning range than at the higher end. Department of Electronic Engineering, NTUT9/82
  • 10. Wideband VCO Architecture Scale the core biasing current. Change the transistors sizes. Keep parasitics at a minimum (phase noise and the tuning range achievable). Switches to turn transistors on or off. Switches has to avoid degrading the oscillator phase noise as well as to ensure parasitic capacitances are small. For lower frequencies, more and more core units are gradually activated, and the total bias current increases to keep the oscillation amplitude steady and the parasitic capacitance increases, helping the “normal” varactors in their goal to increase the total tank capacitance. M1 M2 SW1 SW1 M3 M4 Dunit Ckvco Vtune 0 1 1 0 Dtune Department of Electronic Engineering, NTUT10/82
  • 11. Frequency Tuning Sensitivity Variations • Variation in VCO sensitivity for wide-tuning-range VCOs: A change in the control voltage Vtune results in a change C in the analog varactor capacitance Cvar . This causes a change in frequency f : • The VCO with a frequency ratio of 2, tank capacitance has to change by a factor of 4, the VCO frequency sensitivity will then change by a factor 4 √4 = 8. Such a large change in VCO gain presents serious problems for the design of the PLL in which it will be incorporated. It prevents keeping the PLL bandwidth constant and hence endangers the loop stability and an optimal phase noise performance. 1 1 2 4 f f CLC C LCπ π ∆ − = ⇒ = ∆ Department of Electronic Engineering, NTUT11/82
  • 12. 0.1 to 6-GHz Quadrature Generation • The divide/multiply and quadrature (DMQ) contains several divide-by-2 blocks. They generate I and Q phases down to a division factor of 32. DIV2DIV2DIV2DIV2DIV2 PPF PPF DIV2 BUF 4G 5G:3G 2G 4G:2G 4G 4G 1G 0.5G 250M 1.5G 125M • The DMQ further employs a quadrature-phase single-side band (SSB) mixer to generate 3GHz, 5GHz. • The SDR’s LO frequency can be selected by a multiplexer integrated in the DMQ. Department of Electronic Engineering, NTUT12/82
  • 13. Receiver Building Blocks • A key aspect for the receiver RF part is its interference robustness. The blocking requirements for simultaneous multi- mode operation imply the need for tunable narrowband circuits at the antenna interface. Either this function can be provided by a multi-band filtering block, in which case the receiver’s input can be a wideband LNA, or part of this burden can be taken up in the LNA design. Department of Electronic Engineering, NTUT13/82
  • 14. MEMS-Enabled Dual-Band LNA (I) • Using MEMSs switches to build a low-loss reconfigurable antenna filter section on a thin-film substrate. Packaged MEMS switch : connect the LNA to either its 1.8 GHz or 5 GHz matching circuit and antenna filter. The loss of the switch is only 0.2 dB. Cx reduces the gate inductance for the input matching. At 1.8-GHz, a simple matching made up of one or two passive components can fulfill the matching requirement. The bondpad is modeled by a 65-fF cap in series with a 50-Ohm resistance. Each bondwire is modeled by a 1.3-nH inductance. Input Stage Single to Diff. Conv. A BA B Gain Ctrl 5-6 GHz 1.8 GHz Cx 5-6 GHz MEMS SPDT 1.8 GHz C bp Low-band 50 -TL Matching Network Lbond Switchable Matching Network On board On chip High-band Freq. [GHz] 0 1 2 3 4 5 6 7 8 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20S11[dB] Department of Electronic Engineering, NTUT14/82
  • 15. MEMS-Enabled Dual-Band LNA (II) Internally, the LNA has two separate outputs to cover the required frequency range. A resistively loaded output is small in area and wide bandwidth but can only provide enough gain at frequencies up to 2.5 GHz This output is for the 5 to 6-GHz band with an LC-tuned load. A resistor in parallel with this inductor lowers its Q to cover the 1-GHz bandwidth. Gain switching: When the third CG- transistor is activated, which bypasses a certain fraction of the signal current to the power supply so as to reduce the gain. The overall gain is 24 dB. S11 input matching better than −10 dB is achieved in both bands. The simulated LNA NF is around 2 dB, while the IIP3 value is −5 dBm in the low band and 3 dBm in the high band. Input Stage Single to Diff. Conv. A BA B Gain Ctrl 5-6 GHz 1.8 GHz Cx 5-6 GHz MEMS SPDT 1.8 GHz C bp Low-band 50 -TL Matching Network Lbond Switchable Matching Network On board On chip High-band Freq. [GHz] 0 1 2 3 4 5 6 7 8 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 S11[dB] Department of Electronic Engineering, NTUT15/82
  • 16. Wideband LNAs (I) • Rely on the passives in the antenna interface for RF interference and blocking filtering. This makes the realization of the concept easier, as commercially available (multi-band) filtering blocks can be used in the implementation. • Wideband LNA must now be used that cover an RF frequency range as large as possible for optimal flexibility, but must still achieve state-of-the-art performance with respect to narrowband LNAs. • Covering the full 100 MHz to 6 GHz frequency range is challenging since achieving a low NF at hundreds of MHz requires large transistors with low 1/ f noise On-chip LC-matched common-source (CS) LNAs typically cover a bandwidth from 3 to 10 GHz. Extending the bandwidth down to 100 MHz would require prohibitively large inductors and thus chip area. Department of Electronic Engineering, NTUT16/82
  • 17. Wideband LNAs (II) • Two LNAs are combined to cover the entire frequency range: An inductor-less feedback LNA with a small form factor covers frequencies from 100 MHz to 2.5 GHz, and a CS LC-matched LNA covers frequencies from 2.5 to 6 GHz. Only one LNA is powered at a time, to save power and provide filtering over half of the bandwidth. Resistive Feedback LNA OUT IN C Bandgap OUT IN VC Bandgap LC-Matched LNA Department of Electronic Engineering, NTUT17/82
  • 18. Resistive Feedback LNA – 0.1 ~ 2.5 GHz A digitally controlled bank of feedback resistors allows us to switch from high- to intermediate- and low-gain modes. The biasing is done with a 3-bit programmable current source. This allows us to vary the gain in small steps around the different gain modes and to decreasing the power by half when switching from high- to low-gain mode. At a maximum gain of 22 dB, typical simulation results achieve an NF of 2 dB and an IIP3 of −10 dBm at a power consumption of 12 mW. At reduced gain (10 dB), the linearity improves to +3 dBm while the power consumption decreases to 8 mW. OUT IN C Bandgap It employs resistive feedback for wideband matching and noise canceling for low NF over a wide band. It in general has lower gain and a higher noise figure than these of inductively matched narrowband designs, but it offers large savings in area. Department of Electronic Engineering, NTUT18/82
  • 19. LC-Matched LNA – 2.5 ~ 6 GHz Broadband input-matching is achieved by the inductively degenerated CS-stage into an LC bandpass filter . Input matching from 6 GHz down to 2.4 GHz can be done with inductive elements of reasonable values, but extending that frequency band to lower values is practically not feasible. At the output, a 4- bit programmable capacitor bank provides filtering. A pullup resistor is added to obtain good linearity. Biasing is done with a 3-bit programmable on- chip voltage reference. OUT IN VC Bandgap Simulated values for NF and IIP3 are 2.4 dB and −10 dBm, at a maximum gain of 22 dB, with a power consumption of 12 mW. Gain switching is achieved with a bypass cascode transistor that diverts a part of the signal current to the power supply for lower gain without influencing the input matching Department of Electronic Engineering, NTUT19/82
  • 20. RF LO B:1 1:B RF+ RF- LO- LO+ LO+ io+ io- Wideband Down-Conversion Mixer • The Gilbert cell is is used for wideband operation up to 6 GHz. An NMOS input pair is used as a transconductance, driving RF signal current into the core switch transistors that form the Gilbert cell The folded switching PMOSs can reduce flicker noise. The extra folding transistors will contribute a certain amount of thermal noise, causing the overall receiver’s NF to deteriorate. The noise contributions in a switching mixer are not easy to understand or analyze but can generally be kept within limits by using large LO signals and reduced dc current through the switching transistors. The switchable gain is achieved by digitally programmable current gain B. The input must be designed carefully, as it will determine both the noise and the linearity performance of the mixer. A considerable biasing current of 5 mA. Department of Electronic Engineering, NTUT20/82
  • 21. Signal Selection and Dynamic Range • How to handle: Signal Selection and Dynamic Range • Signal Selection Capturing a slice of bandwidth while rejecting adjacent frequencies, which sometimes contain signals of higher power than the signal of interest. • Dynamic Range Defined by the max. and min. signal levels that the receiver can process without distortion that would degrade the SNR to an unacceptable level. • Heterodyne Receivers 1. Convert an RF signal into an IF. The IF is passed through high-Q BPFs to remove undesired signals such as the image and interfering signals. 2. This IF approach works well for systems with defined channel bandwidths. But large banks of fixed filters would be required to cover the broad range of possible channels in SDR applications. This is not a practical solution. Department of Electronic Engineering, NTUT21/82
  • 22. Variable-bandwidth Problem • One possible solution: switched capacitor circuits. The bandwidth is programmable by varying the capacitor ratio and the clock frequency of the switched capacitor circuit. • Another way to handle varying channel bandwidths is with the use of direct conversion receivers (DCRs). Since no image frequency is produced, thus RF preselect filters can be eliminated. The removal of adjacent channel energy no longer requires high-Q BPFs but can be accomplished with LPFs, which are much easier to integrate. This is a great advantage because it is possible to integrate LPFs with programmable gain and bandwidth in today’s technology. Department of Electronic Engineering, NTUT22/82
  • 23. Problems of DCRs • Challenges: DC offsets and 1/f noise • DC offsets are caused primarily by mismatch and/or by LO signal coupling into the mixer RF port. The undesired effect is saturation of the following dc-coupled gain stages. • 1/f noise is the dominant source of noise in MOS transistors at frequencies below 100 kHz. In most CMOS processes, PMOS devices have between 2 and 5 times less 1/f noise than do NMOS devices. Where this is true, PMOS devices should be used in parts of the circuit where reducing 1/f noise is critical. Noise has a cumulative effect in a gain lineup, so the gain in the first stage should be as large as possible. Chopper stabilization can greatly reduce the effects of any remaining 1/f noise. Department of Electronic Engineering, NTUT23/82
  • 24. Transmitter Building Blocks • The pre-power amplifier (PPA) is the final block in the SDR transmit path. The effective output power is not as high, and for many applications the average swing is much lower than the peak. Furthermore, a non-negligible voltage drop across the series resistance of the inductor sets the dc output voltage below the power supply. INN INP OUT The PPA includes extensive programmability of gain settings. The output stage is an inductively loaded CS amplifier with programmable bias current for optimal linearity vs. power trade-off. Department of Electronic Engineering, NTUT24/82
  • 25. DCFB IN OUT Ref Programmable Gain PPA • The pre-power amplifier provides gain programmability. The core of the amplifier is a CS stage with a PMOS resistive load. 3 additional PMOS transistors are placed in parallel with the main load to control the gain. Their gates can be connected to Vdd , to turn them off and increase the gain, or to ground, to put them in the linear region and decrease the gain. Changing the resistive load has an impact on the dc voltage and so, on its linearity. A dc level feedback circuit (DCFB) controls gate bias (for enhance linearity). The total bias current through the amplifier can be controlled to optimize the power consumption for the linearity required. The performance of this circuit varies widely, of course, over carrier frequency, required output power, bias and gain settings, and so on. Simulation results indicate a total gain range of 50 dB and typical IM3 distortion levels of −35 dB at 0-dBm output power. Department of Electronic Engineering, NTUT25/82
  • 26. Direct Conversion Transmitters (I) • BB digital process provides complex samples of the encoding intended, including encryption, pulse shaping, and linearization preconditioning. These discrete samples are lowpass-filtered and amplified by the post-baseband (PBB) amplifier. Amp LPF Amp LPF RF Power Amp Differential Quadrature LO I Q BaseBanddigitalprocessing &Digital-to-Analogconverter 0 ° 90 ° Frequency dBmlevel Occupied Signal Bandwith Far Out Noise Level dBc/Hz Carrier frequency Department of Electronic Engineering, NTUT26/82
  • 27. Direct Conversion Transmitters (II) • The benefit of this direct-launch Cartesian encoded carrier is multi-mode compatibility with baseband frequency bandwidth and mask determination. This enables additional digital processing technology to be applied through the entire transmitter, such as feedforward or predistortion linearization. • Any form of amplitude, angle, frequency, or any combination of modulation formats and bandwidths with no exceptions, including complex non-continuous multi-channel signals. Department of Electronic Engineering, NTUT27/82
  • 28. Direct Conversion Transmitters (III) • Three main issues: Sideband noise level Local oscillator feedthrough Self-generated interference (LO pulling causes remodulation of the carrier) • Sideband noise level In practice, it is introduced when circuit noise is increased in level by the broadband gain in the transmitter system. • Local oscillator feedthrough The transmission gate ring switching mixer can improve carrier feedthrough. With careful design of the mixer, carrier feedthrough of better than −50 dBc is attainable. • LO pulling Shielding, grounding, .etc. Department of Electronic Engineering, NTUT28/82
  • 29. Far-out Sideband Noise Contribution • Far-out sideband noise can become an interference to receivers close to the transmission signal. (For GSM, a BPF is often used to reduce the far-out noise significantly outside TX bands.) • The lack of broadband tunable RF bandpass filters results in far-out noise over a very wide range of frequencies and the TX may offend a receiver in close proximity. Amp LPF Amp LPF PADifferential Quadrature LO I Q BaseBanddigitalprocessing &Digital-to-Analogconverter 0 ° 90 ° Gain = G Low Pass Filter Reduces Far Our noise contribution Noise Figure contributes to Input Referenced Added Noise Transmission Gate Switching Mixers Input Referenced Added Noise Carrier VCO Department of Electronic Engineering, NTUT29/82
  • 30. LO Frequency Pulling • DCTs have an output frequency equal to that of the oscillator signal source frequency. The interference causes perturbations in the VCO that are not corrected by the PLL control loop. This undesirable remodulation of the VCO signal frequency will degrade the quality of the signal transmitted. Amp LPF Amp LPF PA Differential Quadrature LO I Q BaseBanddigitalprocessing &Digital-to-Analogconverter 0 ° 90 ° Transmitter radiated signal coupled input VCO signal source Antenna Network DC supply and ground conducted into VCO signal source network Electromagnetic Shielding Carrier VCO Department of Electronic Engineering, NTUT30/82
  • 31. Remodulation from Pulling • Overcome Remodulation: Shielding Grounding Decreased VCO sensitivity to electromagnetic signals and the use of subharmonic, higher harmonic, or translated reference signal frequency. Lowering the inductive and capacitive coupling coefficient of the VCO resonant network, use of differential VCO, and integrated implementation with a lower coupling area profile. • These are combined with multiple layers of isolation shielding between the antenna and the VCO to form a remodulation rejection system. Department of Electronic Engineering, NTUT31/82
  • 32. Required Isolation in ICs Substrate modulator PA LO ωLO paraC PLL synthesizer Isolation > 90~110 dB PA < 30 dBm (1W) LO < 10 dBm In the experiment, LO phase noise degrades when the injection power is as low as −80 dBm. Department of Electronic Engineering, NTUT32/82
  • 33. Substrate Coupling and Isolation • Dominant Diffusion capacitive coupling Impact ionization Inductive coupling (power grid fluctuations) • Less significant Gate-induced drain leakage (GIDL) Photon-induced reverse current Diode junction leakage current Department of Electronic Engineering, NTUT33/82
  • 34. Diffusion Capacitive Coupling • SPICE models such elements with "CJ0" and "CJSW" (source/drain-to- substrate capacitance). • Metal-to-metal capacitors: Largest parasitic capacitance to the substrate, hence if these devices are used for implementing large on-chip capacitors, they can act as significant substrate noise- injectors. • As technology feature size reduces, higher doping concentration leads to higher depletion capacitance and hence more coupling effects. ( ) 1 2 1 22 js b q N N C V N N ε ψ   =   + +  Department of Electronic Engineering, NTUT34/82
  • 35. Impact Ionization • Reduced transistor feature sizes increase the electric field in the channel and therefore impact ionization currents are becoming more significant compared to other injection mechanisms. • In saturation, impact ionization takes place with a high electric field in the depleted region. For a p-type substrate, the generated holes are swept to the substrate generating an effective drain-to-substrate current. Recent experimental evidence suggests that hot-electron induced substrate currents are the dominant cause of substrate noise in NMOSFETs up to at least one hundred megahertz. • Shorter device channel lengths in advanced technologies are likely to increase the impact ionization currents due to increased channel fields and smaller oxide thickness and drain junction depth. Department of Electronic Engineering, NTUT35/82
  • 36. Inductive Coupling - Power Grid Fluctuations • Due to parasitic effects (mainly bond wire inductance), power supply lines become very noisy because of currents drawn by the switching digital circuits. These currents induce large voltage glitches when they switch (Ldi/dt noise) at substrate and well contacts. In addition, the power grid noise can be also capacitively coupled through metal-to-substrate parasitic capacitance. Department of Electronic Engineering, NTUT36/82
  • 37. Isolation in Silicon Substrate (Baseline) • The baseline: D = 120 µm Isolation ~ 29 dB As the frequency increases, the isolation is getting more and more worse. In the following slides, some isolation techniques were applied to compare the isolations. Baseline Isolation Department of Electronic Engineering, NTUT37/82
  • 38. Isolation Techniques – P+ Guard Ring • P+ ring: D = 120 µm W = 3 µm / d = 10 µm Isolation ~ 65 dB • Guard rings sink the noise currents P+ ring w/ low ohmic contact Isolation w/ P+-ring Department of Electronic Engineering, NTUT38/82
  • 39. Isolation Techniques – N+ Guard Ring • N+ ring: D = 120 µm W = 3 µm / d = 10 µm Isolation ~ 65 dB • Good isolation at low frequencies due to the high capacitive impedance of the p-n junction between n-ring and p-sub. Isolation w/ N+-ring Department of Electronic Engineering, NTUT39/82
  • 40. Isolation Techniques – Deep N-Well Ring • DNW ring: D = 120 µm W = 3 µm / d = 10 µm Isolation ~ 90 – 70 dB • Good isolation at low freq. • The DNW isolation degrades with increasing the frequency slower than the n-well due to that DNW is lightly doped than the regular n+ well.(p- n junction capacitance with the p substrate is smaller than that of the n+ well) Isolation w/ DNW N+-ring Department of Electronic Engineering, NTUT40/82
  • 41. Isolation Techniques – Deep Trench • Deep trench: D = 120 µm W = 3 µm / d = 10 µm Isolation ~ 65 dB • A deep trench is a trench in the silicon substrate approximately 10 µm deep that is filled with oxide. • The oxide in the deep trench acts as a high impedance insulator that forces the substrate noise current to dive deep in the substrate. Department of Electronic Engineering, NTUT41/82
  • 42. Isolation v.s. Distance D – Baseline Department of Electronic Engineering, NTUT42/82
  • 43. Isolation v.s. D – P+ Guard Ring Department of Electronic Engineering, NTUT43/82
  • 44. Isolation v.s. Ring Enclosure d Department of Electronic Engineering, NTUT44/82
  • 45. Isolation v.s. Ring Enclosure Width w Department of Electronic Engineering, NTUT4582
  • 46. Adopt the Offset PLL • Using an offset PLL eliminates remodulation by increasing the PLL loop bandwidth to include the signal modulation radiated. 0 °90 ° Quad Generator ReferencePhase Frequency Detector Narrow band LPF Synthesizer control Offset VCO Ft or 2*Ft F = Ft or 2*Ft +/− Ft Fr Very Wideband LPF Carrier VCO control Ft or 2*Ft Department of Electronic Engineering, NTUT46/82
  • 47. Using DDS • An alternative direct-launch architecture that does not have a VCO operating at the transmitter output frequency uses direct digital signal synthesis (DDS). • Briefly stated, a high-frequency clocking signal is used to generate an output signal source without the use of an oscillator operating at the output frequency. DDS can be an all- band signal source for SDR, assuming that it is technically practical for up to 6-GHz operation with acceptable power dissipation. Department of Electronic Engineering, NTUT47/82
  • 48. Cartesian and Polar Implementation • The advantage of polar processing is direct phase encoding on the signal source and the potential of an efficiency enhancement implementation in the amplitude modulation. First, the bandwidth associated with the magnitude and phase signals are multiples of the Cartesian equivalent signals. Second, the magnitude and phase terms are very different, which causes divergent signal processing effects, including potential time alignment imperfections. These bandwidth and time alignment effects require additional complexity and consideration for each mode of operation. Quadphase - Q Q Magitude = ( ) ( ) 1/22 2 = I t +Q t   InPhase - I Cartesian ( )A t ( ) ( ) ( )Phase= t = arctan Q t /I tθ    ( )v t Q 90° -90° 180° ( )A t ( )tθ ( )v t I 0° Polar Department of Electronic Engineering, NTUT48/82
  • 49. RF Power Amplification (I) • Power Sources: Portable equipment: < 4 W of peak power (3.6- to 9-V dc battery) Fixed-base station equipment: < 100 W of peak power (110-V ac source) Vehicle mobile class: 10-W or higher (12-V dc battery) • As the number of modes and bands increases, the size, cost, and performance of a bank of single solutions will become prohibitive without technology advancement in the passive frequency-determining elements needed for matching at each port of the power transfer gain stages within the transmitter system. Department of Electronic Engineering, NTUT49/82
  • 50. RF Power Amplification (II) • Combining bands to expand the RF PA across applications with an acceptable compromise of optimized single-solution performance. • Multi-mode operation would be divided between TDD or FDD. • The TDD switches between transmitter and receiver operation modes, where only one is active at any given time. Amp LPF Amp LPF Differential Quadrature BaseBanddigitalprocessing &Digital-to-Analogconverter I Q 0º 90º PA Tx RxF = F Mulitiplexer Amp LPF RxFDifferential Quadrature LNA 0º 90º Amp LPF I Q BaseBanddigitalprocessing &Analog-to-Digitalconverter TxF Department of Electronic Engineering, NTUT50/82
  • 51. RF Power Amplification (III) • The FDD has simultaneous transmitter and receiver operation at different frequencies. Another incremental step would use programmable frequency-matching or device- operating conditions to expand the band or mode of application associated with a common RF power amplifier implementation. Amp LPF Amp LPF Differential Quadrature BaseBanddigitalprocessing &Digital-to-Analogconverter I Q 0º 90º PA Tx RxF = F Duplexer Amp LPF RxFDifferential Quadrature LNA 0º 90º Amp LPF I Q BaseBanddigitalprocessing &Analog-to-Digitalconverter TxF Department of Electronic Engineering, NTUT51/82
  • 52. RF Power Amplification (IV) • The RF signal levels associated with power amplifiers can reach levels greater than the dc voltage source used for program control. • If the RF signal voltage is greater than that of the dc control range of the varactor, its capacitance is a function of the RF signal in combination with the dc control voltage. The capacitance is a function of the RF signal and is no longer constant at all times. This can result in modulation of the programmable element’s impedance value and distortion in the RF signals. Department of Electronic Engineering, NTUT52/82
  • 53. RF Power Amplification (V) • A single RF PA would be an RF PA with continuous operation across all frequencies and optimized power dissipation at every multi-mode format across all operating power levels. In addition, it would provide acceptable linear performance and harmonic content for any mode or band of operation. • As the bandwidth approaches from 100 MHz to 6 GHz, a cascade of wide bandwidth-matching network gain stages becomes a complex design. Programmable elements could become part of the solution to provide a design that would compete successfully with a band of multi-mode or band- optimized performance solutions. • However, a vector combined distributed implementation (distributed amplifier) can provide wideband performance with a modest increase in complexity. Department of Electronic Engineering, NTUT53/82
  • 54. Transmitter Efficiency • A linear class B amplifier peak power occurs ideally when the peak output voltage is equal to that of the dc supply voltage: • A modulation format with a peak-to-average ratio of 3 dB would have an efficiency reduction by a factor of 2. • Supply Modulation: Modulating the dc supply voltage as a function of the encoded output power magnitude to provide peak operating efficiency at all power levels. There are a number of supply modulation variations, such as envelope following, envelope elimination and restoration, and polar modulation format. 0.785 4 4 out out in dc P V P V π π η = = = = Department of Electronic Engineering, NTUT54/82
  • 55. Transmitter Linearization • Error vector magnitude (EVM) and adjacent channel power ratio (ACPR) are used to measure the performance. • ACPR: A measure of the unintended generation of electromagnetic energy from the transmitter network into frequency bands adjacent to the intended operating frequency band. • A transmitter frequency-domain mask is defined by standards to limit transmitter adjacent channel interference signal level. The source of the unwanted adjacent channel energy is nonlinear distortion products within the RF power amplifier. Department of Electronic Engineering, NTUT55/82
  • 56. Reducing Nonlinear Distortion • Reducing the output power reduces the ACPR at the expense of RF power amplifier efficiency, which is not always a practical solution. • Linearization adds complexity to the amplifier to compensate or cancel generation of the distortion components. Linearization Tech. Advantages Disadvantages Feedback 35 dB improvement Not depend on carrier frequency Narrowband, < 1 MHz Instability potential Dependent on output termination Feed-forward 35 dB improvement Not depend on carrier frequency Wideband < 100 MHz Efficiency performance Complexity Predistortion Reduced hardware Table-based Wideband < 10 MHz Limited improvement (~15 dB) Department of Electronic Engineering, NTUT56/82
  • 57. Transmitter Stability • When a circuit becomes unstable, it produces output signals at frequencies not represented within the input signal. The most common form of unstable behavior in a circuit is positive feedback, where the output is coupled to the input at a level higher than the original input signal. As the bandwidth of operation increases, these unintended feedback paths become more difficult to avoid. • When an RF power amplifier is working, the operating condition is changing as a function of the input signal level. Therefore, the s-parameters are time-varying functions, making complete stability analysis more difficult to define. Department of Electronic Engineering, NTUT57/82
  • 58. Broadband LO Generation • Perhaps the greatest challenge for SDRs is the generation of LO oscillator signals over broad, continuous frequency ranges. • Given that direct conversion is the receiver topology of choice, quadrature generation must be part of the solution. This is an area that requires innovation to achieve SDR performance. Department of Electronic Engineering, NTUT58/82
  • 59. Phase-Locked Loops (I) • PLLs are the most common implementations of frequency synthesizers. A VCO is phase-locked to a stable reference frequency (typically, a xtal) through a feedback path. VCO architectures: Ring oscillators have found applications in some wireless LAN standards and broadband TV tuner applications. However, the LC-tuned oscillator is most commonly used in applications with stringent phase noise requirements. • In addition to the benefits of the PLL integration into CMOS processes, they typically exhibit good performance in terms of phase noise, current drain, area, and spurious performance. The greatest challenge for PLLs is making them tunable over a broad frequency range. Tuning ranges of 20% are typical but can be as high as 30%. Recent results suggest that ranges approaching 50% are possible. Department of Electronic Engineering, NTUT59/82
  • 60. Phase-Locked Loops (II) • Even a 50% tuning range is not enough, there are a multitude of approaches for extending the frequency range of PLL systems. One approach is to have multiple VCOs, which in most cases can share the same PLL circuitry. • The size of inductors places a practical limit on the number of VCOs and therefore the achievable frequency range. Whether on- or off-chip, cost and manufacturing issues prevent the use of huge banks of VCOs to cover wide tuning ranges. • Another way to get a broad tuning range is to have one or more VCOs and multipliers, dividers, or mixers combinations. Inevitably, the addition of these circuits comes at the cost of higher power consumption for equivalent noise and spurious performance. Department of Electronic Engineering, NTUT60/82
  • 61. Direct Digital Synthesizer (DDS) • DDSs have a broad frequency tuning range, fine frequency resolution, and very fast switching • ROM consumes a large amount of power. • Synthesized frequency is lower than the reference frequency. Acc. Output ACC n m LPF outF refF DACROM ROM Output DAC Output Acc.Output ROMOutput DACOutput outF Department of Electronic Engineering, NTUT61/82
  • 62. Digital-to-Time Converter • Use of a digital-to-time converter (DTC) to construct an output frequency from the phase information in the accumulator to lower power consumption. Acc. Output ACC K n m Tap0 TapX Phase Detector Charge Pump LPF vtuneTapped Delay Line Tap0 Tap1 Tap2 …… TapX-1 TapX Tap Selection Logic …… Digital-to-Time Converter outF refF Department of Electronic Engineering, NTUT62/82
  • 63. Example (I) • A highly reconfigurable low-power transceiver implemented in a 90-nm CMOS process. • The RFIC processes signals of multiple wireless protocols from 100 MHz to 2.5 GHz with −6 dBm and a voltage gain of 48 dB. • The transmitter has better than 40 dB of carrier suppression, 35 dB of sideband suppression, and an EVM of 1% at 800 MHz. • The frequency synthesizer uses direct digital synthesis to achieve instantaneous frequency switching and a phase noise of −115 dBc/Hz at 25 kHz offset for a 500-MHz carrier frequency. Department of Electronic Engineering, NTUT63/82
  • 64. Rx DDS Reference PLL/VCO PMA VGA BQ DCOC MUX Tx TEST POINTS SPI ButterworthForward pole 2 Input Buffer Tx Forward DDS ReferenceTx Reverse DDSCartesian Rev Amp/Mixer Cartesian BB Forward Reference Example (II) Programmable LPF, 4 kHz ~ 10 MHzDDS DDS DDS PLL DCR DCT Cal. Cal. external connection to an ADC and digital processing. external connection to an DAC and digital processing. Programmable LPF, 4 kHz ~ 10 MHz, 10% BW step 90 dB VGA power control For external LNA Chopping Department of Electronic Engineering, NTUT64/82
  • 65. Quadradture Mixers • The quadrature mixers on RX inputs 1, 3, and 5 are nonchopped passive mixers built with a quad ring of CMOS transmission gates. • The quadrature mixers on RX inputs 2 and 4 use dynamic matching to improve IP2, flicker noise, and dc offset. The chopping mixers are built with three mixers in, where each mixer is built with a quad ring of CMOS transmission gates. RFp LOm OUTp LOp OUTm RFm RFp RFm CHOPp CHOPm LOp LOm OUTm OUTp Department of Electronic Engineering, NTUT65/82
  • 66. Baseband Filters (I) • Baseband filters that support multiple bandwidths are implemented along with gain control and dc offset correction. • A filter bandwidth is programmable from 4 kHz to 10 MHz in 6.25% steps or less. Sufficient margin is built into the design to allow for a 20% change in RC tolerance and still maintain the bandwidth range of 4 kHz to 10 MHz. • Bandwidth selection is implemented by adjusting the resistor and capacitor values in the filter design. Department of Electronic Engineering, NTUT66/82
  • 67. Baseband Filters (II) • Baseband filter gain control is accomplished at three points: A programmable resistor divider at the input of the PMA allows attenuation in four 6-dB steps. The PMA has a maximum gain of 32 dB and a minimum gain of −10 dB. The VGA has a gain range of 8 dB, and the output buffer has a programmable gain control of 0 to 18 dB in 6-dB steps. The entire baseband filter lineup has a maximum gain of 64 dB and a minimum gain of −4 dB. • A notable feature of the baseband filter is the use of chopper stabilization to mitigate the undesirable effects that occur in direct-conversion receivers when designed in a CMOS process. Department of Electronic Engineering, NTUT67/82
  • 68. Chopper Stabilization • Chopper stabilization is implemented around the first-stage amplifier of each two-stage op-amp (OPA’s input-referred voltage offset and flicker noise performance are heavily dependent on the first stage of the OPA). • The chopper frequency is derived from the crystal input and can be selected as a divide by 1, 2, 4, or 8 of the crystal frequency. Flicker noise is essentially eliminated when chopping is enabled, and thus narrowband protocols will see improvement in receiver sensitivity. Department of Electronic Engineering, NTUT68/82
  • 69. DC Offset Correction • Dc offset correction circuitry (DCOC) is implemented as a complete control loop that corrects dc offsets automatically at the output of the baseband filter. • DCOC consists of a 1-bit ADC (comparator), control logic, and a 5-bit current-mode DAC that injects current into the feedback resistors of the VGA to adjust the offset voltage. • The control logic implements a successive approximation algorithm that converges on the correct 5-bit word that compensates for the filter’s dc offset. Department of Electronic Engineering, NTUT69/82
  • 70. Performance of This Transceiver Summary of the Transceiver Performance Frequency range 100 MHz ~ 2.5 GHz RX NF 7 dB RX gain 48 dB RX IIP2 +60 dBm RX IIP3 -6 dBm RX current 40 mA TX output power +6 dBm TX sideband suppression 35 dBc TX current 40~90 mA EVM (pi/4 DQPSK 3.5 Msps) 1%@800 MHz LO phase noise −115 dBc/Hz@25 kHz LO frequency resolution 15 Hz LO current per DDS 80 mA Department of Electronic Engineering, NTUT70/82
  • 71. Adaptive Multi-mode RF Front-ends • To provide various services from different wireless communication standards with high capacities and high data rates, integrated multi-functional wireless devices are required. • In the current multi-standard scenario, transceivers are mostly implemented by replicating the radio-frequency (RF) front end for each operating standard and by sharing partially the analog baseband circuitry, but with a number of additional switches. Although this approach allows for an optimal performance optimization across the bands, the increase in hardware required to implement such a multifunctional wireless device increases the total silicon area and cost and may reduce the use time compared to single-standard implementations. Department of Electronic Engineering, NTUT71/82
  • 72. Sharing Building Blocks • By sharing building blocks between different applications and standards, portable wireless devices potentially gain advantage over existing devices: They use a smaller chip area and have a potential for lower overall cost. This requires the development of adaptive circuits and systems that are able to trade off power consumption for performance on the fly. Realization of adaptivity functions requires scaling of current consumption to the demands of the signal processing task. Department of Electronic Engineering, NTUT72/82
  • 73. Adaptive Multi-mode Low-power Design • Mobile wireless equipment today is shaped by user and application demands and RF microelectronics. • Main drivers for mobile wireless devices are related to cost, which depends on volume of production, size of mobile units, engineering bill of materials, power consumption, and performance. Power consumption depends on available frequency spectrum, functionality, and performance. Performance depends on applications, standards, and protocols. Wireless systems for new applications require an extension of the capabilities for the RF devices of today, creating an opportunity for low-power adaptive and multifunctional RF ICs. Department of Electronic Engineering, NTUT73/82
  • 74. Low-power and Adaptive RF Circuit • A variety of applications: Supporting the transfer of text, audio, graphic, and video data, maintaining connection with many other devices, position aware, and perhaps wearable. • A combination of multiple functional requirements and limited energy supply from a battery is an argument for the design of both adaptive low-power hardware and software. • An adaptive design approach poses unique challenges: From hardware design to application software, and ultimately throughout all layers of the underlying communication protocol. Department of Electronic Engineering, NTUT74/82
  • 75. Adaptive Topology adaptive analog RF front-end LNA I-mixer Q-mixer Quadrature generation VCO VGA VGA A/D A/D DSP Memory CPU adaptive analog base-band adaptive digital back-end ( )x t ( )y t ( )I t ( )Q t Setting the performance parameters of an RF front end by means of adaptive circuitry is a way to manage power consumption in the RF path of a receiver. An adaptive LNA, an adaptive mixer, and an adaptive VCO allow more efficient use of scarce battery resources. Furthermore, adaptive analog baseband and digital back-end circuits enable complete hardware adaptivity (monitoring and adjust TRX parameters). Department of Electronic Engineering, NTUT75/82
  • 76. Multi-mode and Adaptive RF Circuit (I) • GSM, UMTS, Bluetooth, 802.11a/b/g, GPS, and DVB-H are some of the standards likely to be present in the multi-standard, multi-mode, multi-band mobile terminals of the future. • The design of multi-functional wireless devices is accompanied by various challenges: System challenges: Single high-performance, low-power terminal that is cheaper than a compound of separate single-mode terminals. Circuit design challenges: For full integration of multifunctional devices include on-chip image rejection and provision of wide bandwidth and dynamic range. Technological challenges include the integration of low-cost and high- performance-scaled silicon devices on a chip. Department of Electronic Engineering, NTUT76/82
  • 77. Multi-mode and Adaptive RF Circuit (II) • Multi-standard modules can be implemented in various ways: As stand-alone circuits that are designed for the worst-case condition of the most demanding standard. As multiple circuits (i.e., one per standard). Even though simpler to implement, this approach requires more silicon area. Moreover, when multiple standards operate simultaneously, power consumption increases. As stand-alone adaptive circuits. When different standards do not operate simultaneously, circuit blocks of a multi-mode handset can be beneficiary shared, offering power and area savings compared to other multi-standard receiver implementations, such as multi-standard receivers implemented using circuits designed for the worst-case condition and multi-standard receivers implemented with one receiver circuit per standard. Department of Electronic Engineering, NTUT77/82
  • 78. Multi-mode and Adaptive RF Circuit (III) • For adaptive LNAs and mixers, power consumption is traded off for dynamic range, whereas adaptive oscillators trade off power consumption for phase noise and oscillation frequency. • After a signal is down-converted to the baseband, it is filtered, amplified, and digitized. To accommodate multiple radio standards with different bandwidths and modulation schemes, multi-mode LPFs need to compromise bandwidth, center frequency, selectivity, and group delay for optimal dynamic range and power consumption. Multi-mode ADCs have to sample signals belonging to different standards, tailoring different sample rates, dynamic range, and linearity requirements. Department of Electronic Engineering, NTUT78/82
  • 79. Multi-mode Receiver Concept (I) • Wireless devices may use a common receiver if the protocols of the radio standards support intersystem operability. DCS1800 LNA LNA LNA WCDMA WLAN,DECT Bluetooth MMA-QD IC I-IF Q-IF VCO buffer buffer 2-stage Polyphase filter Differential amplifier Differential amplifier I-mixer Q-mixer Impedance matching, packaging, and prefiltering requirements are relaxed and simplified by using multiple LNAs. An RF switch selects the mode of interest. If the VCO and mixer performance is adequate to cover the range of signals anticipated for each application, the quadrature downconverter enables a multi-standard receiver realization with a single circuit block (multi-mode adaptive quadrature down- converter, MMA-QD IC). Department of Electronic Engineering, NTUT79/82
  • 80. Multi-mode Receiver Concept (II) • Adaptivity to Requirements for Various Standards Referred to LNA Input DCS1800 WCDMA WLAN Bluetooth DECT f0 (GHz) 1.8 2.1 2.4 2.4 2.4 NF (dB) 9 6 10 23 18 IIP3 (dBm) −9 −9 −12 −16 −20 PN@1MHz (dBc/Hz) −123 −110 −110 −110 −100 Receiver Noise and Linearity Specification per Mode of Operation Specification Demanding mode DCS1800/WCDMA Moderate mode WLAN 802.11b Relaxed mode BT/DECT NF (dB) 6 10 18 IIP3 (dBm) −9 −19 −16 PN@1MHz (dBc/Hz) −123 −110 −100 Department of Electronic Engineering, NTUT80/82
  • 81. Multi-mode Receiver Concept (III) • Referring to the channel spacing of the standards considered, zero-IF and low-IF receiver configurations may be supported. For example, the multi-mode adaptive quadrature down- converter may operate in zero-IF mode for all standards considered except the 200-kHz narrowband GSM (DCS1800 band) standard where low-IF operation would be favored (due to flicker nosie). • The standards considered are chosen to illustrate the feasibility of the adaptivity design concept for multi-mode receivers. Department of Electronic Engineering, NTUT81/82
  • 82. Multi-mode Receiver Concept (IV) • Given the multi-mode receiver requirements and the specifications for the LNA and baseband circuitry, the noise figure and linearity performance of the quadrature down- converter can be determined for each mode of operation using the cascaded NF and IIP3 formulas. The demanding-mode performance is met with a 0-dB gain of the down-converter with an accompanying NF tuning range (NFTR) of 14.6 dB and an IIP3 tuning range (IIP3TR) of 7.6 dB. Note that by trading off the performance of the LNA and baseband circuitry, a different (more relaxed or more demanding) set of down- converter requirements results. Required Performance for the Multi-mode Quad-Downconverter for 0 dB of Gain Specification Demanding mode DCS1800/WCDMA Moderate mode WLAN 802.11b Relaxed mode BT/DECT NFqd (dB) 12.7 19.75 28.8 IIP3qd (dBm) 6.74 3.35 −0.87 Department of Electronic Engineering, NTUT82/82