SlideShare a Scribd company logo
1 of 49
Download to read offline
RF Transceiver Module Design
Chapter 3 Nonlinear Effects
李健榮 助理教授
Department of Electronic Engineering
National Taipei University of Technology
Outline
• Nonlinear Effects on an RF Signal
• Analysis of 1-dB-Compression Point (P1dB)
• Analysis of Second-Order Intercept Point (IP2)
• Analysis of Third-Order Intercept Point (IP3)
• Nonlinear Effect of a Cascaded System
• Nonlinear Effect on a Digitally-Modulated Signal
Department of Electronic Engineering, NTUT2/49
Nonlinear Effects
• The distortion of an RF transceiver are resulted from internal
interferences and external interferences.
1) The internal interferences are generated from the nonlinear
effect of its own devices.
2) The external interference are from outside the transceiver
and intercepted by the antenna or EM coupling.
3) Internal distortion is primarily generated from power
amplifier.
Department of Electronic Engineering, NTUT3/49
Power Amplifier Categories
• Linear Amplifier: Class A, B, AB, and C
Classified in terms of current conduction angle
CEv
,maxCEVkneeV QV
,maxCI
Ci
QI
A
AB
BC
Biased Transistor
Input Matching Output Matching
Department of Electronic Engineering, NTUT4/49
Linear Amplifier
Normalized DSi
A
C B AB
0 π 2π
tω
Class Duty Cycle Theoretical Efficiency Linearity
A 100% 50% Excellent
B 50% 78.5% Moderate
AB 50~100% 50~78.5% In-Between Class-A and -B
C 0~50% 100% Poor
Department of Electronic Engineering, NTUT5/49
Nonlinear Amplifier
• Constant-envelop, nonlinear or switching-mode amplifier
• Class D, E, F, S :
Transistor is driven in switching mode, theoretical efficiency 100%.
Department of Electronic Engineering, NTUT
DDV
dcL
pC
0L 0C jX
LRS
t
DSiDSv
6/49
Amplifier AM/AM and AM/PM Distortion
• Modulated Input signal:
• Distorted Output signal:
( ) ( ) ( )( )cosin cv t A t t tω φ= +
( ) ( ) ( ) ( )( ), cos ,out cv t B f A t t f Aω φ θ= + +
outP 40
0
40−
80−
20
0
20−
40−
OutputPower(dBm)
PhaseShift
Input Power (dBm)
10− 5− 0 5 10 15 20 25
Class A
AB
C AB
A
C
AM/AM Distortion AM/PM Distortion
Department of Electronic Engineering, NTUT
( )inv t ( )outv t
7/49
Nonlinear Memoryless Device (I)
• An input-output relationship of a nonlinear memoryless
device can be represented as
( ) ( ) ( ) ( ) ( )2 3 4
0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯
( )inv t ( )outv t
inV
outV
linear
nonlinear
small signal
large signal
linear output
distorted output
f
f
Perfect sinusoid
Harmonics
Department of Electronic Engineering, NTUT8/49
Nonlinear Memoryless Device (II)
Coefficients αi are depending on
1) DC bias, RF characteristics of the active device used in the circuit.
2) Magnitude vin of the signal.
3) When Pin < P1dB (linear region), all can be treated as constant.
• Assume the input and output impedance of the circuit are ,
and ,respectively. Considering a CW input signal with the
voltage ,the input available power is
( )inv t ( )outv t
( ) sin 2in in cv t V f tπ= ( ) ( )2
2in c in in cP f V Z f=
Department of Electronic Engineering, NTUT
( )inZ f
( )outZ f
( ) ( ) ( ) ( ) ( )2 3 4
0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯
9/49
Small-signal Power Gain (Linear Gain)
• For linear operation
where Pin is the available input power and G1 is the available small-signal
power gain, which equals to
( ) ( )1 1 sin 2out in in cv t v t V tα α π= =
( )
( )
2 2 2 2
2 21
1 1
1 1 1
2 2 2
in cout in in in
out in
out out in out out c
Z fV V V Z
P P
Z Z Z Z Z f
α
α α= = = =
( )
( )120log 10log in c
out in
out c
Z f
P P
Z f
α= + + ( ) ( ) ( )1 dBmout c in cP f P f G= +
( )
( )1 120log 10log in c
out c
Z f
G
Z f
α= +
( ) sin 2in in cv t V f tπ=
Department of Electronic Engineering, NTUT
( ) ( ) ( ) ( ) ( )2 3 4
0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯
( )inv t ( )outv t
Assume , we have .( ) ( )in c out cZ f Z f= 1 120logG α=
10/49
Linear Amplification
( ) ( )dBmin cP f
1G
1
1
( ) ( )dBmout cP f
( ) ( )dBmin cP f
1G
( ) ( )dBmout cP f
inP
cf
f
f
1out inP P G= +
Department of Electronic Engineering, NTUT
( )inv t ( )outv t
11/49
Third-order Effect
• For a single-tone input signal,
• α3 < 0 gives gain compression phenomenon
• α3 > 0 gives gain enhancement phenomenon
( ) 1cosinv t A tω=
( ) ( )3 3
1 1 3 1cos cosoutv t A t A tα ω α ω= +
3 3
1 3 1 3 1
3 1
cos cos3
4 4
A A t A tα α ω α ω
 
= + + 
 
Out-of-band Distortion (3rd Harmonic)
3rd-order effect
In-band Distortion
3rd-order effect
Desired Signal
linear effect
( )inv t ( )outv t
( ) ( ) ( )3
1 3out in inv t v t v tα α= +
Department of Electronic Engineering, NTUT12/49
1 dB-Compression Point
• When the input signal becomes stronger, the output signal will
not grow proportionally but with a slower rate. It is a
saturation phenomena.
1 dB
1dBOP
G
1dBIP
( )out cP f
( ) ( )dBmin cP f
1
1
• When the actual output power is 1 dB less than
the linear extrapolated power, it reaches the 1-
dB gain compression point. At this point, the
input power is called the input 1-dB-
compressed power (IP1dB), the output power is
called the output 1-dB-compressed power
(OP1dB) ,and the gain is called the 1-dB-
compressed gain (G1dB).
Department of Electronic Engineering, NTUT
( ) 3 3
1 3 1 3 1
3 1
cos cos3
4 4
outv t A A t A tα α ω α ω
 
= + + 
 
α3 < 0
13/49
Analysis of 1dB-Compression Point (I)
• At P1dB , the output power is compressed 1 dB, i.e.,
• The input voltage magnitude at P1dB as
3
11 1dB 3 1dB
20
1 1dB
3
4 0.891 10
A A
A
α α
α
−+  
= = 
 
( )
3
1 1dB 3 1dB
desired+distorted
desired 1 1dB
3
410log 20log 1 dB
A AP
P A
α α
α
+
= = −
1
1dB
3
0.145A
α
α
=
( )
2
1dB 1 1
1dB
3 3
1
10log 30 10log 0.0725 30 18.6 10log dBm
2 in in in
A
IP
R R R
α α
α α
  
= + = + = +  
   
( )
2
3
3 31 1dB 3 1dB
1 1
1dB
3 3
3
1 0.05754
10log 30 10log 30 17.6 10log dBm
2 out in out
A A
OP
R R R
α α
α α
α α
  
+      = + = + = + 
   
 
 
Department of Electronic Engineering, NTUT
( ) ( )21
1 1 1
3
17.6 10log 1 dBmdB
out
IP G
R
α
α
α
 
= + ⋅ = + − 
 
14/49
Analysis of 1dB-Compression Point (II)
1G
( )dBminP
cf
cf
1out inP P G= +
( )1dB 1 1out in inP P G P G= + = + −
1out inP P G= +
Department of Electronic Engineering, NTUT15/49
Measurement of P1dB
• By network analyzer in the power sweep mode:
Obtain small signal gain and .
• By spectrum analyzer :
Test various input signal power level to measurement the output power spectral
content to obtain output v.s. input power curve.
1 120logG α= 1dBG
Department of Electronic Engineering, NTUT
Network Analyzer
Amplifier
Signal Generator
Amplifier
Spectrum Analyzer
16/49
Distortion Characterization (I)
• Amplifier input-output relation:
• If only one signal is present, the undesired components will
be harmonics of the fundamental, but, if there are more
signals at input, signals will be produced with frequencies
that are mathematical combinations of the frequencies of the
input signals, called intermodulation products (IMPs) or
intermods. It is instructive to study the results when there are
two input signals (although we will eventually consider large
numbers of signals).
( ) ( ) ( ) ( ) ( )2 3 4
0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯
Department of Electronic Engineering, NTUT17/49
Distortion Characterization (II)
• Characterized by 1-dB gain compression, IPs , 2-tone
intermodulation distortions (IMDs)
1cosinv A tω=
,1 1cosout ov G A tω=
,2 2 1cos2outv A tα ω=
,3 3 1cos3outv A tα ω=
Department of Electronic Engineering, NTUT
Single-tone excitation
Nonlinear Harmonics
1f
f
1f
f
12 f 13 f 14 f
18/49
Distortion Characterization (III)
Designed Amplifier
1f 2f
f
1f 2f
f
1 22 f f− 2 12 f f−
1f 2f
f
1 22 f f− 2 12 f f−
1f 2f
f
1 22 f f− 2 12 f f−
IMD from AM/AM distortion
IMD from AM/PM distortion
Department of Electronic Engineering, NTUT
Two-tone excitation
Nonlinear
IM
Products
• Characterized by 1-dB gain compression, IPs , 2-tone IMDs
19/49
Intercept Points
• The nonlinear properties can be described by the concept of
intercept points (IPs). The input intercept point (IIPn) is a
fictitious input power where the desired output signal
component equals in amplitude the undesired component.
( )out nP f
( )out cP f
( ) ( )dBmin cP f
IIPn1dBIP
OIPn
1dBOP
1 dB
1
1 1
n
OutputPower(dBm)
Department of Electronic Engineering, NTUT20/49
Second-Order Nonlinear Effect (I)
• Single-tone excitation:
• For the inclusion of only the linear term and the second term,
the output voltage is
( ) sin 2in cv t A tπ=
( )
( )
2
2
in c
in c
A
P f
Z f
=
( ) ( ) ( ) ( ) ( )
22
1 2 1 2sin 2 sin 2out in in c cv t v t v t A f t A f tα α α π α π= + = +
( ) ( )
2
22
1 2sin 2 sin 2
2
c c
A
A f t A f t
α
α π α π= + −
2 2
2 1 2
1 1
sin cos2
2 2
c cA A t A tα α ω α ω= + −
Out-of-band Distortion
2nd-order effect
DC Offset
2nd-order effect
Desired Signal
linear effect
Department of Electronic Engineering, NTUT
( )in cZ f
( )inv t ( )outv t
cf
f
0
21/49
Second-Order Nonlinear Effect (II)
• Two-tone Excitation: ( ) 1 2sin sininv t A t B tω ω= +
( ) ( ) ( )
2
1 1 2 2 1 2sin sin sin sinoutv t A t B t A t B tα ω ω α ω ω= + + +
( ) [ ]2 2
2 1 1 1 2
1
sin sin
2
A B A t B tα α ω α ω
 
= + + +  
( ) ( )2 1 2 2 1 2cos cosAB t AB tα ω ω α ω ω+ − + +      
2 2
2 1 2 2
1 1
cos2 cos2
2 2
A t B tα ω α ω
 
+ − −  
2 1f f−0 1f 2f 12 f 22 f1 2f f+
a b
c
e
d
fg
g : DC term
a, b : linear term
c : IM (down beating)
d : IM (up beating)
e, f : 2nd harmonic
Department of Electronic Engineering, NTUT
a bg
c d
e f
22/49
Linear and 2nd-order Effects
• Linear effect:
A superscript (1) of denotes that the power content contributed from the first-
order term (linear term).
• 2nd-order effect:
( )
( ) ( )
( )
( )
1
120log 10log in c
out c in c
out c
Z f
P f P f
Z f
α= + +
( )
( ) ( ) ( )1
1 dBmout c in cP f P f G= +
( )1
outP
Department of Electronic Engineering, NTUT
Linear Gain
( )
( )
( ) ( )
( )
( )
( )
( )
2
2
2
2 222
2 2 2 2
2 2
1
1 1 12
2
2 2 2 2 2 2 2
in c in c
out c in
out c in c out c out c
A
Z f Z fA
P f P
Z f Z f Z f Z f
α
α α
 
    = = = 
 
( )
( )
( )
2
220log 3 2 dBm 10log
2
in c
in
out c
Z f
P
Z f
α= − + +
( )
( ) ( ) ( )2
22 2 dBmout c in cP f G P f= +
( )
( )
( )
2
2 2dB 20log 3 10log
2
in c
out c
Z f
G
Z f
α= − +
Slope of 2
23/49
Second-Order Intercept Point
6 dB
6dB
IM2
2nd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
6dB
6 dB
• The 2nd-order products increase twice
as fast as the desired fundamental, the
straight lines cross. At the crossing
point, either for the intermod or the
harmonic, the fundamental and the
2nd-order product have equal output
powers.
• Since the slopes of the straight lines
are known, these crossing points,
called intercept points (IPs), define
the 2nd-order products at low levels.
OIP2H
OIP2IM
IIP2IM IIP2H
6 dB
• Typically, the larger of the input or
output intercept points is specified; so
amplifiers use OIPs and mixers use
IIPs. Some may even add the power
of the two fundamentals, increasing
the value of the IP by 3 dB.
6dB
Department of Electronic Engineering, NTUT24/49
Example
• For an amplifier with 21 dB linear gain and the OIP2H is at 17
dBm, find the output 2nd harmonic power when the
fundamental output signal power is −8 dBm.
( )12 2 dBmH HOIP IIP G= +
OIP2H = 17 dBm
2nd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
IP2H
−8 dBm
25dB
25dB
−33 dBm
−29 dBm −4 dBm
(IIP2H )
( )17 2 21 dBmHIIP= +
( )2 4 dBmHIIP = −
( ) ( ) ( ) ( )2 2 dBmout c out c H out cP f P f OIP P f= − −  
[ ] ( )8 17 8 33 dBm= − − + = −
Department of Electronic Engineering, NTUT25/49
Unequal Input Tone Power
Department of Electronic Engineering, NTUT
( ) ( ) [ ] ( ) ( )2 2 2 2
2 1 1 1 2 2 1 2 2 1 2 2 1 2 2
1 1 1
sin sin cos cos cos2 cos2
2 2 2
outv t A B A t B t AB t AB t A t B tα α ω α ω α ω ω α ω ω α ω α ω
   
= + + + + − + + + − −            
( ) 1 2sin sininv t A t B tω ω= +
• If the amplitude of only one input signal changes, the harmonic of the changing signal
will change by twice as many dB as does the input, but the other harmonic will be
unaffected. The IM amplitudes change by the sum of the changes in the two input
signals; so, if only one fundamental changes, the IMs will change by the same amount.
2IIP1dBIP
2OIP
1dBOP
1f 2f
,i AP
,i BP
2 1f f−0 1f 2f 12 f 22 f1 2f f+
, , 1o A i AP P G= + , , 1o B i BP P G= +
δ
δ
2δ
δδ
26/49
Half-IF Interference (I)
• Input signal with two sinusoidal signals at f2 and f2/2
( ) 2 2
1
sin sin
2
inv t A t B tω ω= +
( )
2
1 2 2 2 2 2
1 1
sin sin sin
2 2
outv t A t B t B tα ω ω α ω ω   
= + + +   
   
( )2 2 2
2 1 2 2 2 1 2 2 2 2 2
1 1 1 1 3
sin cos sin cos cos
2 2 2 2 2
A B A t AB t B t A t AB tα α ω α ω α ω α ω α ω
     
= + + + + − +          
Out-of-band Distortion
2nd-order effect
In-band Distortion
2nd-order effect
Desired Signal
linear effect
DC Offset
2nd-order effect
Department of Electronic Engineering, NTUT
2 1f f−
0 2
1
2
f
f = 2f
22 f1 2f f+
12 f
27/49
Half-IF Interference (II)
2IIP1dBIP
2OIP
1dBOP
2
1
2
f 2f
,i AP
,i BP
2 1f f−0 1f 2f 12 f 22 f1 2f f+
, , 1o A i AP P G= +
, , 1o B i BP P G= +
2
1
2
f 2f 22 f
,o AP
,o BP
Department of Electronic Engineering, NTUT
2
1
2
f
f ≠
2
1
2
f
f =
28/49
Half-IF Rejection
•
where S is the sensitivity or minimum detectable power, CR is the capture ratio,
which is the ratio of the desired signal and the second-order distortion when the
receiver fails to demodulate the signal.
( )
1
Half-IF Rejection 2
2
IIP S CR= − −
Department of Electronic Engineering, NTUT
2IIP1dBIP
2OIP
1dBOP
1G
CR
S
( )2out cP f
( )out cP f
( ) ( )dBmin cP f
Half-IF rejection
(IMR)
2IIP S−
2IIP S CR− −
29/49
Measurement of IP2 (I)
• Mixer: use single-tone cw test
( )2 dBmIFOIP P= ∆ +
( )12 2 dBmRFIIP OIP G P= − = ∆ +LOf RFf
RFP
LOP
IFP
IFf 2 IFf
( )dB∆
Department of Electronic Engineering, NTUT
Spectrum Analyzer
30/49
Measurement of IP2 (II)
• Amplifier : use two-tone cw test
( ) ( ), ,
1
2 3 dBm
2
A B o A o BOIP P P= ∆ + ∆ + + +
( )12 2 dBmIIP OIP G= −
,i AP ,i BP
1f 2f
2 1f f−0 1f 2f 12 f 22 f1 2f f+
,o AP
,o BP
A∆
B∆
Department of Electronic Engineering, NTUT
Signal Generator
Combiner
DUT
Spectrum Analyzer
31/49
Third-Order Nonlinear Effect (I)
• Consider only the first-order and the third-order effect of a
nonlinear device, i.e., .
• Single-tone excitation:
The input signal contains only a sinusoidal signal , where its available
power can be obtained as .
• In-band and out-of-band distortions
The output voltage becomes
3
1 3out in inv v vα α= +
1cosiv A tω=
( )2
2in inP A Z=
Department of Electronic Engineering, NTUT
3 3
1 1 3 1cos cosoutv A t A tα ω α ω= +
3 3
1 3 1 3 1
3 1
cos cos3
4 4
A A t A tα α ω α ω
 
= + + 
 
( ) ( )
( ) ( )1 3 3
1 1 1 3 1cos cos3V V t V tω ω= + +
Out-of-band Distortion
3rd-order effect
In-band Distortion
3rd-order effect
Desired Signal
linear effect
3rd harmonic
32/49
Third-Order Nonlinear Effect (II)
• Gain Compression or Enhancement:
At f1, the amplified linear-term signal has been mixed with the third-order term
If α3 < 0 , the linear gain is compressed, otherwise, it is enhanced
( ) 3
1 1 3 1
3
cos
4
outv f A A tα α ω
 
= + 
 
3 0α >
( ) ( )dBmin cP f
3 0α <
1
1
Department of Electronic Engineering, NTUT33/49
Third-Order Nonlinear Effect (III)
• Two-tone excitation:
Department of Electronic Engineering, NTUT
( ) 1 2 1 2sin sin ,inv t A t B tω ω ω ω= + <
i : DC term
a, b : linear term(desired signal)
+inband distortion
c , d : IM3, adjacent band distortion
e, f : 3rd harmonics
g, h : out of band distortion
( ) ( ) ( )3
1 3out in inv t v t v tα α= +
2 2 3 3
3 3 1 3 1 1 3 2
3 3 9 9
cos cos
2 2 4 4
A B AB A A t B B tα α α α ω α α ω
     
= + + + + +     
     
( ) ( )2 2 3 3
3 1 2 3 2 1 3 1 3 2
3 3 1 1
cos 2 cos 2 cos3 cos3
4 4 4 4
A B t AB t A t B tα ω ω α ω ω α ω α ω+ − + − + +
( ) ( )2 2
3 1 2 3 1 2
3 3
cos 2 cos 2
4 4
A B t AB tα ω ω α ω ω+ + + +
a bi
c d fe
g h
c g
fe
d
a b
h
1 22 f f−
0 1f 2f 13 f 23 f
1 22 f f+2 12 f f− 1 22f f+
( ) ( )2-toneIMR 2 3 2 3in outIIP P OIP P= ∆ = − = −
∆
34/49
Third-order Intercept Point
10 dB
10dB
IM3
3rd harmonic
Fundamental
Fundamental input power (dBm)
Outputpower(dBm)
4.77dB
4.77 dB
OIP3H
OIP3IM
IIP3IM IIP3H
4.77 dB
9.54dB
• The slopes for the 3rd-order products
are steeper than 2nd-order products
since they represent cubic
nonlinearities rather than squares. IMs
and harmonics change 3 dB for each
dB change in the inputs and
fundamental outputs.
• Since the slopes of the straight lines
are known, these crossing points,
called intercept points (IPs), define
the 3rd-order products at low levels.
Department of Electronic Engineering, NTUT
( ) ( )2-toneIMR dB 2 3 inIIP P= ∆ = −
( )2 3 outOIP P= −
• Intermodulation Ratio (IMR)
∆
35/49
Example
• For an amplifier with 9 dB linear gain and the OIP3IM is at 21
dBm, find the output IM3 power when the fundamental input
signal power for each signal is −4 dBm.
( )13 3 dBmIM IMOIP IIP G= + OIP3IM = 21 dBm
IM3
Fundamental
Fundamental input power in each signal (dBm)
Outputpower(dBm)
IP3IM
5 dBm
16dB
32dB
−27 dBm
−4 dBm 12 dBm
(IIP3IM )
( )21 3 9 dBmIMIIP= +
( )3 12 dBmIMIIP =
( ) ( ) ( )3 2 3 dBmIM out c IM out cP P f OIP P f= − −  
( ) ( )5 2 21 5 27 dBm= − − = −
Department of Electronic Engineering, NTUT36/49
Unequal Input Tone Power
Department of Electronic Engineering, NTUT
( ) 1 2 1 2sin sin ,inv t A t B tω ω ω ω= + <
( ) ( ) ( )3 2 2 3 3
1 3 3 3 1 3 1 1 3 2
3 3 9 9
cos cos
2 2 4 4
out in inv t v t v t A B AB A A t B B tα α α α α α ω α α ω     
= + = + + + + +     
     
( ) ( )2 2 3 3
3 1 2 3 2 1 3 1 3 2
3 3 1 1
cos 2 cos 2 cos3 cos3
4 4 4 4
A B t AB t A t B tα ω ω α ω ω α ω α ω+ − + − + +
( ) ( )2 2
3 1 2 3 1 2
3 3
cos 2 cos 2
4 4
A B t AB tα ω ω α ω ω+ + + +
3IIP1dBIP
3OIP
1dBOP
1f 2f
,i AP
,i BP
δ
0 1f 2f 13 f 23 f
, , 1o A i AP P G= + , , 1o B i BP P G= +
δ
2δδδ 2δ
3δ
37/49
Third-order Intermodulation Rejection
• From triangular A-B-C, we have
• From D-E-F, which has slope of 3, we have
• From the relations, we can obtain
third-order intermodulation rejection
1G S IMR CR x+ + = +
13 3 3 3
3
x
IIP S IMR OIP IIP G
 
+ − − = = +  
( )
1
2 3 2
2
IMR IIP S CR= − −
3IIP
3OIP
1dBOP
( ) ( )1 dBminP f
S1G
IMR
CR
A
D
B E C F
Department of Electronic Engineering, NTUT
x
38/49
Measurement of the IP3
• Amplifier : use two-tone cw test
( ), ,
1
3
2
i A i BOIP P P= ∆ + +
1f 2f
,i AP ,i BP
B∆
1f 2f1 22 f f− 2 12 f f−
A∆
,o AP
,o BP
0
Department of Electronic Engineering, NTUT
Signal Generator
Combiner
DUT
Spectrum Analyzer
39/49
Relationship Between Products
• IMs may be predictable from harmonics:
IM2s are 6 dB higher than the 2nd-order harmonics
IM3s are 9.54 dB greater than the 3rd-order harmonics
IP3H exceeds the IP3IM by 4.77 dB
• In addition, we may be able to relate the −1-dB compression
level to the IP3:
( )
3
1 1dB 3 1dB
desired+distorted
desired 1 1dB
3
410log 20log 1 dB
A A
P
P A
α α
α
+
= = − 23
1dB
1
3
0.10875
4
A
α
α
=
3
3, 1 3, 3 3,
3
4
OIP IM IIP IM IIP IMA A Aα α= = 2 1
3,
3
4
3
IIP IMA
α
α
=
2
1dB 1dB
2
3,
0.10875 9.64 dB
3IIP IM IM
A IP
A IIP
= = = −
( )1 3 1 9.64 dB 3 10.64 dBdB IM IMOP IIP G OIP= + − − = −
Department of Electronic Engineering, NTUT
P1dB:
very useful result!
OIP3:
40/49
Cascaded System (I)
• We take a three-stage system as an example of cascaded IP3
and then extend to an N-stage system.
inP 1C 2C 3C
1I 2I′ 3I′
3I′′2I′′
3I′′′
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G 2G 3G
41/49
Cascaded System (II)
1 1inC P G=
( )
3
1
1 2
13
inP G
I
IIP
=
2
1 1
1
3
in
C IIP
I P
 
=  
 
inP
1C
1I
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G
42/49
Cascaded System (III)
2 1 2 1 2inC C G P G G= =
( )
3
1 2
2 1 2 2
13
inP G G
I I G
IIP
′ = =
( ) ( )
3 33
1 21 2
2 2 2
2 23 3
inP G GC G
I
IIP IIP
′′ = =
3 3 3
1 2 1 2
2 2 2
2 13 3
in inP G G P G G
I I I
IIP IIP
′ ′′= + = + 2
2
2 2 1
2 1
1
1
3 3
in
C
I G
P
IIP IIP
=
 
+ 
 
inP 1C 2C
1I
2I′
2I′′
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT
1G 2G
43/49
Cascaded System (IV)
3 1 2 3inC P G G G=
( )
3
1 2
3 2 3 32
13
inP G G
I I G G
IIP
′ ′= =
( )
2
2
3 1 2 1
3 3 3 1 2 3
3 2 1
1
3 3 3
in
G G G
I I I I P G G G
IIP IIP IIP
 
′ ′′= + + = + + 
 
( )
3 3
1 2
3 2 3 32
23
inP G G
I I G G
IIP
′′ ′′= =
( ) ( )
3 3 3 3
2 3 1 2 3
3 2 2
3 33 3
inC G P G G G
I
IIP IIP
′′′= =
3 1 2 3
2 3
1 2 33 2 1 2 1
3 2 1
1
1
33 3 3
tot in
intot
in
tot
C C G G G P
P G G GI IG G G
P IIPIIP IIP IIP
= = =
 
+ + 
 
1 2 1
3 2 1
1 1
3 3 3 3tot
G G G
IIP IIP IIP IIP
= + +
inP 1C 2C 3C
1I 2I′ 3I′
3I′′2I′′
3I′′′
1st stage 2nd stage 3rd stage
Department of Electronic Engineering, NTUT44/49
Cascaded System (V)
• IIP3 of a N-Stage System
• The above equation shows that the IIP3 of an inter-stage is
reduced by a factor of the previous stage subtotal gain. It
means, the back-end stage will enter saturation first.
• OIP3 of a N-Stage System
1
1 1 1 2
1 1 2 3
1 1
3 3 3 3 3
n
kN
k
ntot n
G
G G G
IIP IIP IIP IIP IIP
−
=
=
= = + + +
∏
∑ ⋯
Department of Electronic Engineering, NTUT
( ) ( )1 2 3 2 3 4 3
1 1 1 1 1 1
3 3 3 3 3 3tot T tot T N N N NOIP G IIP G IIP G G G IIP G G G IIP G IIP
= = + + + +
⋅ ⋅ ⋅
⋯
⋯ ⋯
( ) ( ) ( )2 3 1 3 4 2 4 5 3
1 1 1 1
3 3 3 3N N N NG G G OIP G G G OIP G G G OIP OIP
= + + + +
⋅
⋯
⋯ ⋯ ⋯
45/49
Example (I)
• Calculate the cascaded OIP3 of the following stages.
Department of Electronic Engineering, NTUT
21 dBm+ ∞ 25 dBm+
10 dB 3 dB− 10 dB
3OIP
Gain
21 dBm+ ∞ 25 dBm+
15 dB 3 dB− 10 dB
3OIP
Gain
stage 1 stage 2 stage3
Gain (dB) 10 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 15
Gain (linear) 10 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 31.622777
1/IIP3cas (linear) 0.2379221
IIP3cas (linear) 4.2030556
IIP3cas (dBm) 6.2356514
OIP3cas(dBm) 23.235651
stage 1 stage 2 stage3
Gain (dB) 15 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 6 103 15
Gain (linear) 31.622777 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 3.9810717 1.995E+10 31.622777
1/IIP3cas (linear) 0.7523759
IIP3cas (linear) 1.3291229
IIP3cas (dBm) 1.2356514
OIP3cas(dBm) 23.235651
46/49
Example (II)
Department of Electronic Engineering, NTUT
21 dBm+ ∞ 25 dBm+
10 dB 3 dB− 10 dB
3OIP
Gain
21 dBm+ ∞ 25 dBm+
10 dB 3 dB− 15 dB
3OIP
Gain
stage 1 stage 2 stage3
Gain (dB) 10 -3 10
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 15
Gain (linear) 10 0.5011872 10
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 31.622777
1/IIP3cas (linear) 0.2379221
IIP3cas (linear) 4.2030556
IIP3cas (dBm) 6.2356514
OIP3cas(dBm) 23.235651
stage 1 stage 2 stage3
Gain (dB) 10 -3 15
OIP3 (dBm) 21 100 25
IIP3 (dBm) 11 103 10
Gain (linear) 10 0.5011872 31.622777
OIP3(linear, mW) 125.89254 1E+10 316.22777
IIP3(linear, mW) 12.589254 1.995E+10 10
1/IIP3cas (linear) 0.5806201
IIP3cas (linear) 1.7222967
IIP3cas (dBm) 2.3610797
OIP3cas(dBm) 24.36108
47/49
Spectrum Regrowth
• How do we estimate ACPR of a modulated RF signal from 2-
tone measurement
( )
3
2-tone 6 10log dBc
4
m
ACPR IMR
A B
 
= − +  
+ 
where
3 2 mod
2 3 2 2
24 8
m
m m m
A
 
 − −  = +
2
mod
2
4
m
m
B
 
−  
 =
m denotes number of tones
Department of Electronic Engineering, NTUT48/49
Summary
• In this chapter, 2nd-order and 3rd-order nonlinear effects were
introduced. These nonlinearities will result in harmonics and
intermodulation distortions in frequency domain.
• The distortion can be easily defined using frequency-domain
parameters related to signal power. It is easier to qualify the
distortion by frequency components than time-domain
waveforms. The nonlinearities can be described by P1dB and
intercept points.
• The cascaded formula was also derived to show that the IIP3
of an inter-stage is reduced by a factor of the previous stage
subtotal gain. It means, the back-end stage will enter saturation
first.
Department of Electronic Engineering, NTUT49/49

More Related Content

What's hot

What's hot (20)

Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
Saw filters
Saw filtersSaw filters
Saw filters
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
PA linearity
PA linearityPA linearity
PA linearity
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 

Viewers also liked

Viewers also liked (16)

[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similar to RF Module Design - [Chapter 3] Linearity

Surrey dl 1, 3
Surrey dl  1, 3Surrey dl  1, 3
Surrey dl 1, 3
ozzie73
 
Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
aicdesign
 
chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technical
shreenathji26
 

Similar to RF Module Design - [Chapter 3] Linearity (20)

射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW system
 
Rf2008 test 1
Rf2008 test 1Rf2008 test 1
Rf2008 test 1
 
Slide11 icc2015
Slide11 icc2015Slide11 icc2015
Slide11 icc2015
 
DSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptxDSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptx
 
1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf1-Digital filters (FIR).pdf
1-Digital filters (FIR).pdf
 
13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
 
ece477_7.ppt
ece477_7.pptece477_7.ppt
ece477_7.ppt
 
Introduction to Electronic Circuit
Introduction to Electronic CircuitIntroduction to Electronic Circuit
Introduction to Electronic Circuit
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Ch2- OpAmps.pdf
Ch2- OpAmps.pdfCh2- OpAmps.pdf
Ch2- OpAmps.pdf
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
power amplifiers
power amplifierspower amplifiers
power amplifiers
 
Surrey dl 1, 3
Surrey dl  1, 3Surrey dl  1, 3
Surrey dl 1, 3
 
Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Final Project
Final ProjectFinal Project
Final Project
 
chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technical
 
F5 b c_g_instruction manual
F5 b c_g_instruction manualF5 b c_g_instruction manual
F5 b c_g_instruction manual
 
Application of Non-linear Electronics in Digital Communication
Application of Non-linear Electronics in Digital CommunicationApplication of Non-linear Electronics in Digital Communication
Application of Non-linear Electronics in Digital Communication
 
Large Signal Amplifier
Large Signal AmplifierLarge Signal Amplifier
Large Signal Amplifier
 

More from Simen Li

More from Simen Li (9)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 

Recently uploaded

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 

Recently uploaded (20)

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 

RF Module Design - [Chapter 3] Linearity

  • 1. RF Transceiver Module Design Chapter 3 Nonlinear Effects 李健榮 助理教授 Department of Electronic Engineering National Taipei University of Technology
  • 2. Outline • Nonlinear Effects on an RF Signal • Analysis of 1-dB-Compression Point (P1dB) • Analysis of Second-Order Intercept Point (IP2) • Analysis of Third-Order Intercept Point (IP3) • Nonlinear Effect of a Cascaded System • Nonlinear Effect on a Digitally-Modulated Signal Department of Electronic Engineering, NTUT2/49
  • 3. Nonlinear Effects • The distortion of an RF transceiver are resulted from internal interferences and external interferences. 1) The internal interferences are generated from the nonlinear effect of its own devices. 2) The external interference are from outside the transceiver and intercepted by the antenna or EM coupling. 3) Internal distortion is primarily generated from power amplifier. Department of Electronic Engineering, NTUT3/49
  • 4. Power Amplifier Categories • Linear Amplifier: Class A, B, AB, and C Classified in terms of current conduction angle CEv ,maxCEVkneeV QV ,maxCI Ci QI A AB BC Biased Transistor Input Matching Output Matching Department of Electronic Engineering, NTUT4/49
  • 5. Linear Amplifier Normalized DSi A C B AB 0 π 2π tω Class Duty Cycle Theoretical Efficiency Linearity A 100% 50% Excellent B 50% 78.5% Moderate AB 50~100% 50~78.5% In-Between Class-A and -B C 0~50% 100% Poor Department of Electronic Engineering, NTUT5/49
  • 6. Nonlinear Amplifier • Constant-envelop, nonlinear or switching-mode amplifier • Class D, E, F, S : Transistor is driven in switching mode, theoretical efficiency 100%. Department of Electronic Engineering, NTUT DDV dcL pC 0L 0C jX LRS t DSiDSv 6/49
  • 7. Amplifier AM/AM and AM/PM Distortion • Modulated Input signal: • Distorted Output signal: ( ) ( ) ( )( )cosin cv t A t t tω φ= + ( ) ( ) ( ) ( )( ), cos ,out cv t B f A t t f Aω φ θ= + + outP 40 0 40− 80− 20 0 20− 40− OutputPower(dBm) PhaseShift Input Power (dBm) 10− 5− 0 5 10 15 20 25 Class A AB C AB A C AM/AM Distortion AM/PM Distortion Department of Electronic Engineering, NTUT ( )inv t ( )outv t 7/49
  • 8. Nonlinear Memoryless Device (I) • An input-output relationship of a nonlinear memoryless device can be represented as ( ) ( ) ( ) ( ) ( )2 3 4 0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯ ( )inv t ( )outv t inV outV linear nonlinear small signal large signal linear output distorted output f f Perfect sinusoid Harmonics Department of Electronic Engineering, NTUT8/49
  • 9. Nonlinear Memoryless Device (II) Coefficients αi are depending on 1) DC bias, RF characteristics of the active device used in the circuit. 2) Magnitude vin of the signal. 3) When Pin < P1dB (linear region), all can be treated as constant. • Assume the input and output impedance of the circuit are , and ,respectively. Considering a CW input signal with the voltage ,the input available power is ( )inv t ( )outv t ( ) sin 2in in cv t V f tπ= ( ) ( )2 2in c in in cP f V Z f= Department of Electronic Engineering, NTUT ( )inZ f ( )outZ f ( ) ( ) ( ) ( ) ( )2 3 4 0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯ 9/49
  • 10. Small-signal Power Gain (Linear Gain) • For linear operation where Pin is the available input power and G1 is the available small-signal power gain, which equals to ( ) ( )1 1 sin 2out in in cv t v t V tα α π= = ( ) ( ) 2 2 2 2 2 21 1 1 1 1 1 2 2 2 in cout in in in out in out out in out out c Z fV V V Z P P Z Z Z Z Z f α α α= = = = ( ) ( )120log 10log in c out in out c Z f P P Z f α= + + ( ) ( ) ( )1 dBmout c in cP f P f G= + ( ) ( )1 120log 10log in c out c Z f G Z f α= + ( ) sin 2in in cv t V f tπ= Department of Electronic Engineering, NTUT ( ) ( ) ( ) ( ) ( )2 3 4 0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯ ( )inv t ( )outv t Assume , we have .( ) ( )in c out cZ f Z f= 1 120logG α= 10/49
  • 11. Linear Amplification ( ) ( )dBmin cP f 1G 1 1 ( ) ( )dBmout cP f ( ) ( )dBmin cP f 1G ( ) ( )dBmout cP f inP cf f f 1out inP P G= + Department of Electronic Engineering, NTUT ( )inv t ( )outv t 11/49
  • 12. Third-order Effect • For a single-tone input signal, • α3 < 0 gives gain compression phenomenon • α3 > 0 gives gain enhancement phenomenon ( ) 1cosinv t A tω= ( ) ( )3 3 1 1 3 1cos cosoutv t A t A tα ω α ω= + 3 3 1 3 1 3 1 3 1 cos cos3 4 4 A A t A tα α ω α ω   = + +    Out-of-band Distortion (3rd Harmonic) 3rd-order effect In-band Distortion 3rd-order effect Desired Signal linear effect ( )inv t ( )outv t ( ) ( ) ( )3 1 3out in inv t v t v tα α= + Department of Electronic Engineering, NTUT12/49
  • 13. 1 dB-Compression Point • When the input signal becomes stronger, the output signal will not grow proportionally but with a slower rate. It is a saturation phenomena. 1 dB 1dBOP G 1dBIP ( )out cP f ( ) ( )dBmin cP f 1 1 • When the actual output power is 1 dB less than the linear extrapolated power, it reaches the 1- dB gain compression point. At this point, the input power is called the input 1-dB- compressed power (IP1dB), the output power is called the output 1-dB-compressed power (OP1dB) ,and the gain is called the 1-dB- compressed gain (G1dB). Department of Electronic Engineering, NTUT ( ) 3 3 1 3 1 3 1 3 1 cos cos3 4 4 outv t A A t A tα α ω α ω   = + +    α3 < 0 13/49
  • 14. Analysis of 1dB-Compression Point (I) • At P1dB , the output power is compressed 1 dB, i.e., • The input voltage magnitude at P1dB as 3 11 1dB 3 1dB 20 1 1dB 3 4 0.891 10 A A A α α α −+   = =    ( ) 3 1 1dB 3 1dB desired+distorted desired 1 1dB 3 410log 20log 1 dB A AP P A α α α + = = − 1 1dB 3 0.145A α α = ( ) 2 1dB 1 1 1dB 3 3 1 10log 30 10log 0.0725 30 18.6 10log dBm 2 in in in A IP R R R α α α α    = + = + = +       ( ) 2 3 3 31 1dB 3 1dB 1 1 1dB 3 3 3 1 0.05754 10log 30 10log 30 17.6 10log dBm 2 out in out A A OP R R R α α α α α α    +      = + = + = +          Department of Electronic Engineering, NTUT ( ) ( )21 1 1 1 3 17.6 10log 1 dBmdB out IP G R α α α   = + ⋅ = + −    14/49
  • 15. Analysis of 1dB-Compression Point (II) 1G ( )dBminP cf cf 1out inP P G= + ( )1dB 1 1out in inP P G P G= + = + − 1out inP P G= + Department of Electronic Engineering, NTUT15/49
  • 16. Measurement of P1dB • By network analyzer in the power sweep mode: Obtain small signal gain and . • By spectrum analyzer : Test various input signal power level to measurement the output power spectral content to obtain output v.s. input power curve. 1 120logG α= 1dBG Department of Electronic Engineering, NTUT Network Analyzer Amplifier Signal Generator Amplifier Spectrum Analyzer 16/49
  • 17. Distortion Characterization (I) • Amplifier input-output relation: • If only one signal is present, the undesired components will be harmonics of the fundamental, but, if there are more signals at input, signals will be produced with frequencies that are mathematical combinations of the frequencies of the input signals, called intermodulation products (IMPs) or intermods. It is instructive to study the results when there are two input signals (although we will eventually consider large numbers of signals). ( ) ( ) ( ) ( ) ( )2 3 4 0 1 2 3 4out in in in inv t v t v t v t v tα α α α α= + + + + +⋯ Department of Electronic Engineering, NTUT17/49
  • 18. Distortion Characterization (II) • Characterized by 1-dB gain compression, IPs , 2-tone intermodulation distortions (IMDs) 1cosinv A tω= ,1 1cosout ov G A tω= ,2 2 1cos2outv A tα ω= ,3 3 1cos3outv A tα ω= Department of Electronic Engineering, NTUT Single-tone excitation Nonlinear Harmonics 1f f 1f f 12 f 13 f 14 f 18/49
  • 19. Distortion Characterization (III) Designed Amplifier 1f 2f f 1f 2f f 1 22 f f− 2 12 f f− 1f 2f f 1 22 f f− 2 12 f f− 1f 2f f 1 22 f f− 2 12 f f− IMD from AM/AM distortion IMD from AM/PM distortion Department of Electronic Engineering, NTUT Two-tone excitation Nonlinear IM Products • Characterized by 1-dB gain compression, IPs , 2-tone IMDs 19/49
  • 20. Intercept Points • The nonlinear properties can be described by the concept of intercept points (IPs). The input intercept point (IIPn) is a fictitious input power where the desired output signal component equals in amplitude the undesired component. ( )out nP f ( )out cP f ( ) ( )dBmin cP f IIPn1dBIP OIPn 1dBOP 1 dB 1 1 1 n OutputPower(dBm) Department of Electronic Engineering, NTUT20/49
  • 21. Second-Order Nonlinear Effect (I) • Single-tone excitation: • For the inclusion of only the linear term and the second term, the output voltage is ( ) sin 2in cv t A tπ= ( ) ( ) 2 2 in c in c A P f Z f = ( ) ( ) ( ) ( ) ( ) 22 1 2 1 2sin 2 sin 2out in in c cv t v t v t A f t A f tα α α π α π= + = + ( ) ( ) 2 22 1 2sin 2 sin 2 2 c c A A f t A f t α α π α π= + − 2 2 2 1 2 1 1 sin cos2 2 2 c cA A t A tα α ω α ω= + − Out-of-band Distortion 2nd-order effect DC Offset 2nd-order effect Desired Signal linear effect Department of Electronic Engineering, NTUT ( )in cZ f ( )inv t ( )outv t cf f 0 21/49
  • 22. Second-Order Nonlinear Effect (II) • Two-tone Excitation: ( ) 1 2sin sininv t A t B tω ω= + ( ) ( ) ( ) 2 1 1 2 2 1 2sin sin sin sinoutv t A t B t A t B tα ω ω α ω ω= + + + ( ) [ ]2 2 2 1 1 1 2 1 sin sin 2 A B A t B tα α ω α ω   = + + +   ( ) ( )2 1 2 2 1 2cos cosAB t AB tα ω ω α ω ω+ − + +       2 2 2 1 2 2 1 1 cos2 cos2 2 2 A t B tα ω α ω   + − −   2 1f f−0 1f 2f 12 f 22 f1 2f f+ a b c e d fg g : DC term a, b : linear term c : IM (down beating) d : IM (up beating) e, f : 2nd harmonic Department of Electronic Engineering, NTUT a bg c d e f 22/49
  • 23. Linear and 2nd-order Effects • Linear effect: A superscript (1) of denotes that the power content contributed from the first- order term (linear term). • 2nd-order effect: ( ) ( ) ( ) ( ) ( ) 1 120log 10log in c out c in c out c Z f P f P f Z f α= + + ( ) ( ) ( ) ( )1 1 dBmout c in cP f P f G= + ( )1 outP Department of Electronic Engineering, NTUT Linear Gain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 222 2 2 2 2 2 2 1 1 1 12 2 2 2 2 2 2 2 2 in c in c out c in out c in c out c out c A Z f Z fA P f P Z f Z f Z f Z f α α α       = = =    ( ) ( ) ( ) 2 220log 3 2 dBm 10log 2 in c in out c Z f P Z f α= − + + ( ) ( ) ( ) ( )2 22 2 dBmout c in cP f G P f= + ( ) ( ) ( ) 2 2 2dB 20log 3 10log 2 in c out c Z f G Z f α= − + Slope of 2 23/49
  • 24. Second-Order Intercept Point 6 dB 6dB IM2 2nd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) 6dB 6 dB • The 2nd-order products increase twice as fast as the desired fundamental, the straight lines cross. At the crossing point, either for the intermod or the harmonic, the fundamental and the 2nd-order product have equal output powers. • Since the slopes of the straight lines are known, these crossing points, called intercept points (IPs), define the 2nd-order products at low levels. OIP2H OIP2IM IIP2IM IIP2H 6 dB • Typically, the larger of the input or output intercept points is specified; so amplifiers use OIPs and mixers use IIPs. Some may even add the power of the two fundamentals, increasing the value of the IP by 3 dB. 6dB Department of Electronic Engineering, NTUT24/49
  • 25. Example • For an amplifier with 21 dB linear gain and the OIP2H is at 17 dBm, find the output 2nd harmonic power when the fundamental output signal power is −8 dBm. ( )12 2 dBmH HOIP IIP G= + OIP2H = 17 dBm 2nd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) IP2H −8 dBm 25dB 25dB −33 dBm −29 dBm −4 dBm (IIP2H ) ( )17 2 21 dBmHIIP= + ( )2 4 dBmHIIP = − ( ) ( ) ( ) ( )2 2 dBmout c out c H out cP f P f OIP P f= − −   [ ] ( )8 17 8 33 dBm= − − + = − Department of Electronic Engineering, NTUT25/49
  • 26. Unequal Input Tone Power Department of Electronic Engineering, NTUT ( ) ( ) [ ] ( ) ( )2 2 2 2 2 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 1 1 sin sin cos cos cos2 cos2 2 2 2 outv t A B A t B t AB t AB t A t B tα α ω α ω α ω ω α ω ω α ω α ω     = + + + + − + + + − −             ( ) 1 2sin sininv t A t B tω ω= + • If the amplitude of only one input signal changes, the harmonic of the changing signal will change by twice as many dB as does the input, but the other harmonic will be unaffected. The IM amplitudes change by the sum of the changes in the two input signals; so, if only one fundamental changes, the IMs will change by the same amount. 2IIP1dBIP 2OIP 1dBOP 1f 2f ,i AP ,i BP 2 1f f−0 1f 2f 12 f 22 f1 2f f+ , , 1o A i AP P G= + , , 1o B i BP P G= + δ δ 2δ δδ 26/49
  • 27. Half-IF Interference (I) • Input signal with two sinusoidal signals at f2 and f2/2 ( ) 2 2 1 sin sin 2 inv t A t B tω ω= + ( ) 2 1 2 2 2 2 2 1 1 sin sin sin 2 2 outv t A t B t B tα ω ω α ω ω    = + + +        ( )2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 1 1 1 3 sin cos sin cos cos 2 2 2 2 2 A B A t AB t B t A t AB tα α ω α ω α ω α ω α ω       = + + + + − +           Out-of-band Distortion 2nd-order effect In-band Distortion 2nd-order effect Desired Signal linear effect DC Offset 2nd-order effect Department of Electronic Engineering, NTUT 2 1f f− 0 2 1 2 f f = 2f 22 f1 2f f+ 12 f 27/49
  • 28. Half-IF Interference (II) 2IIP1dBIP 2OIP 1dBOP 2 1 2 f 2f ,i AP ,i BP 2 1f f−0 1f 2f 12 f 22 f1 2f f+ , , 1o A i AP P G= + , , 1o B i BP P G= + 2 1 2 f 2f 22 f ,o AP ,o BP Department of Electronic Engineering, NTUT 2 1 2 f f ≠ 2 1 2 f f = 28/49
  • 29. Half-IF Rejection • where S is the sensitivity or minimum detectable power, CR is the capture ratio, which is the ratio of the desired signal and the second-order distortion when the receiver fails to demodulate the signal. ( ) 1 Half-IF Rejection 2 2 IIP S CR= − − Department of Electronic Engineering, NTUT 2IIP1dBIP 2OIP 1dBOP 1G CR S ( )2out cP f ( )out cP f ( ) ( )dBmin cP f Half-IF rejection (IMR) 2IIP S− 2IIP S CR− − 29/49
  • 30. Measurement of IP2 (I) • Mixer: use single-tone cw test ( )2 dBmIFOIP P= ∆ + ( )12 2 dBmRFIIP OIP G P= − = ∆ +LOf RFf RFP LOP IFP IFf 2 IFf ( )dB∆ Department of Electronic Engineering, NTUT Spectrum Analyzer 30/49
  • 31. Measurement of IP2 (II) • Amplifier : use two-tone cw test ( ) ( ), , 1 2 3 dBm 2 A B o A o BOIP P P= ∆ + ∆ + + + ( )12 2 dBmIIP OIP G= − ,i AP ,i BP 1f 2f 2 1f f−0 1f 2f 12 f 22 f1 2f f+ ,o AP ,o BP A∆ B∆ Department of Electronic Engineering, NTUT Signal Generator Combiner DUT Spectrum Analyzer 31/49
  • 32. Third-Order Nonlinear Effect (I) • Consider only the first-order and the third-order effect of a nonlinear device, i.e., . • Single-tone excitation: The input signal contains only a sinusoidal signal , where its available power can be obtained as . • In-band and out-of-band distortions The output voltage becomes 3 1 3out in inv v vα α= + 1cosiv A tω= ( )2 2in inP A Z= Department of Electronic Engineering, NTUT 3 3 1 1 3 1cos cosoutv A t A tα ω α ω= + 3 3 1 3 1 3 1 3 1 cos cos3 4 4 A A t A tα α ω α ω   = + +    ( ) ( ) ( ) ( )1 3 3 1 1 1 3 1cos cos3V V t V tω ω= + + Out-of-band Distortion 3rd-order effect In-band Distortion 3rd-order effect Desired Signal linear effect 3rd harmonic 32/49
  • 33. Third-Order Nonlinear Effect (II) • Gain Compression or Enhancement: At f1, the amplified linear-term signal has been mixed with the third-order term If α3 < 0 , the linear gain is compressed, otherwise, it is enhanced ( ) 3 1 1 3 1 3 cos 4 outv f A A tα α ω   = +    3 0α > ( ) ( )dBmin cP f 3 0α < 1 1 Department of Electronic Engineering, NTUT33/49
  • 34. Third-Order Nonlinear Effect (III) • Two-tone excitation: Department of Electronic Engineering, NTUT ( ) 1 2 1 2sin sin ,inv t A t B tω ω ω ω= + < i : DC term a, b : linear term(desired signal) +inband distortion c , d : IM3, adjacent band distortion e, f : 3rd harmonics g, h : out of band distortion ( ) ( ) ( )3 1 3out in inv t v t v tα α= + 2 2 3 3 3 3 1 3 1 1 3 2 3 3 9 9 cos cos 2 2 4 4 A B AB A A t B B tα α α α ω α α ω       = + + + + +            ( ) ( )2 2 3 3 3 1 2 3 2 1 3 1 3 2 3 3 1 1 cos 2 cos 2 cos3 cos3 4 4 4 4 A B t AB t A t B tα ω ω α ω ω α ω α ω+ − + − + + ( ) ( )2 2 3 1 2 3 1 2 3 3 cos 2 cos 2 4 4 A B t AB tα ω ω α ω ω+ + + + a bi c d fe g h c g fe d a b h 1 22 f f− 0 1f 2f 13 f 23 f 1 22 f f+2 12 f f− 1 22f f+ ( ) ( )2-toneIMR 2 3 2 3in outIIP P OIP P= ∆ = − = − ∆ 34/49
  • 35. Third-order Intercept Point 10 dB 10dB IM3 3rd harmonic Fundamental Fundamental input power (dBm) Outputpower(dBm) 4.77dB 4.77 dB OIP3H OIP3IM IIP3IM IIP3H 4.77 dB 9.54dB • The slopes for the 3rd-order products are steeper than 2nd-order products since they represent cubic nonlinearities rather than squares. IMs and harmonics change 3 dB for each dB change in the inputs and fundamental outputs. • Since the slopes of the straight lines are known, these crossing points, called intercept points (IPs), define the 3rd-order products at low levels. Department of Electronic Engineering, NTUT ( ) ( )2-toneIMR dB 2 3 inIIP P= ∆ = − ( )2 3 outOIP P= − • Intermodulation Ratio (IMR) ∆ 35/49
  • 36. Example • For an amplifier with 9 dB linear gain and the OIP3IM is at 21 dBm, find the output IM3 power when the fundamental input signal power for each signal is −4 dBm. ( )13 3 dBmIM IMOIP IIP G= + OIP3IM = 21 dBm IM3 Fundamental Fundamental input power in each signal (dBm) Outputpower(dBm) IP3IM 5 dBm 16dB 32dB −27 dBm −4 dBm 12 dBm (IIP3IM ) ( )21 3 9 dBmIMIIP= + ( )3 12 dBmIMIIP = ( ) ( ) ( )3 2 3 dBmIM out c IM out cP P f OIP P f= − −   ( ) ( )5 2 21 5 27 dBm= − − = − Department of Electronic Engineering, NTUT36/49
  • 37. Unequal Input Tone Power Department of Electronic Engineering, NTUT ( ) 1 2 1 2sin sin ,inv t A t B tω ω ω ω= + < ( ) ( ) ( )3 2 2 3 3 1 3 3 3 1 3 1 1 3 2 3 3 9 9 cos cos 2 2 4 4 out in inv t v t v t A B AB A A t B B tα α α α α α ω α α ω      = + = + + + + +            ( ) ( )2 2 3 3 3 1 2 3 2 1 3 1 3 2 3 3 1 1 cos 2 cos 2 cos3 cos3 4 4 4 4 A B t AB t A t B tα ω ω α ω ω α ω α ω+ − + − + + ( ) ( )2 2 3 1 2 3 1 2 3 3 cos 2 cos 2 4 4 A B t AB tα ω ω α ω ω+ + + + 3IIP1dBIP 3OIP 1dBOP 1f 2f ,i AP ,i BP δ 0 1f 2f 13 f 23 f , , 1o A i AP P G= + , , 1o B i BP P G= + δ 2δδδ 2δ 3δ 37/49
  • 38. Third-order Intermodulation Rejection • From triangular A-B-C, we have • From D-E-F, which has slope of 3, we have • From the relations, we can obtain third-order intermodulation rejection 1G S IMR CR x+ + = + 13 3 3 3 3 x IIP S IMR OIP IIP G   + − − = = +   ( ) 1 2 3 2 2 IMR IIP S CR= − − 3IIP 3OIP 1dBOP ( ) ( )1 dBminP f S1G IMR CR A D B E C F Department of Electronic Engineering, NTUT x 38/49
  • 39. Measurement of the IP3 • Amplifier : use two-tone cw test ( ), , 1 3 2 i A i BOIP P P= ∆ + + 1f 2f ,i AP ,i BP B∆ 1f 2f1 22 f f− 2 12 f f− A∆ ,o AP ,o BP 0 Department of Electronic Engineering, NTUT Signal Generator Combiner DUT Spectrum Analyzer 39/49
  • 40. Relationship Between Products • IMs may be predictable from harmonics: IM2s are 6 dB higher than the 2nd-order harmonics IM3s are 9.54 dB greater than the 3rd-order harmonics IP3H exceeds the IP3IM by 4.77 dB • In addition, we may be able to relate the −1-dB compression level to the IP3: ( ) 3 1 1dB 3 1dB desired+distorted desired 1 1dB 3 410log 20log 1 dB A A P P A α α α + = = − 23 1dB 1 3 0.10875 4 A α α = 3 3, 1 3, 3 3, 3 4 OIP IM IIP IM IIP IMA A Aα α= = 2 1 3, 3 4 3 IIP IMA α α = 2 1dB 1dB 2 3, 0.10875 9.64 dB 3IIP IM IM A IP A IIP = = = − ( )1 3 1 9.64 dB 3 10.64 dBdB IM IMOP IIP G OIP= + − − = − Department of Electronic Engineering, NTUT P1dB: very useful result! OIP3: 40/49
  • 41. Cascaded System (I) • We take a three-stage system as an example of cascaded IP3 and then extend to an N-stage system. inP 1C 2C 3C 1I 2I′ 3I′ 3I′′2I′′ 3I′′′ 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 2G 3G 41/49
  • 42. Cascaded System (II) 1 1inC P G= ( ) 3 1 1 2 13 inP G I IIP = 2 1 1 1 3 in C IIP I P   =     inP 1C 1I 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 42/49
  • 43. Cascaded System (III) 2 1 2 1 2inC C G P G G= = ( ) 3 1 2 2 1 2 2 13 inP G G I I G IIP ′ = = ( ) ( ) 3 33 1 21 2 2 2 2 2 23 3 inP G GC G I IIP IIP ′′ = = 3 3 3 1 2 1 2 2 2 2 2 13 3 in inP G G P G G I I I IIP IIP ′ ′′= + = + 2 2 2 2 1 2 1 1 1 3 3 in C I G P IIP IIP =   +    inP 1C 2C 1I 2I′ 2I′′ 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT 1G 2G 43/49
  • 44. Cascaded System (IV) 3 1 2 3inC P G G G= ( ) 3 1 2 3 2 3 32 13 inP G G I I G G IIP ′ ′= = ( ) 2 2 3 1 2 1 3 3 3 1 2 3 3 2 1 1 3 3 3 in G G G I I I I P G G G IIP IIP IIP   ′ ′′= + + = + +    ( ) 3 3 1 2 3 2 3 32 23 inP G G I I G G IIP ′′ ′′= = ( ) ( ) 3 3 3 3 2 3 1 2 3 3 2 2 3 33 3 inC G P G G G I IIP IIP ′′′= = 3 1 2 3 2 3 1 2 33 2 1 2 1 3 2 1 1 1 33 3 3 tot in intot in tot C C G G G P P G G GI IG G G P IIPIIP IIP IIP = = =   + +    1 2 1 3 2 1 1 1 3 3 3 3tot G G G IIP IIP IIP IIP = + + inP 1C 2C 3C 1I 2I′ 3I′ 3I′′2I′′ 3I′′′ 1st stage 2nd stage 3rd stage Department of Electronic Engineering, NTUT44/49
  • 45. Cascaded System (V) • IIP3 of a N-Stage System • The above equation shows that the IIP3 of an inter-stage is reduced by a factor of the previous stage subtotal gain. It means, the back-end stage will enter saturation first. • OIP3 of a N-Stage System 1 1 1 1 2 1 1 2 3 1 1 3 3 3 3 3 n kN k ntot n G G G G IIP IIP IIP IIP IIP − = = = = + + + ∏ ∑ ⋯ Department of Electronic Engineering, NTUT ( ) ( )1 2 3 2 3 4 3 1 1 1 1 1 1 3 3 3 3 3 3tot T tot T N N N NOIP G IIP G IIP G G G IIP G G G IIP G IIP = = + + + + ⋅ ⋅ ⋅ ⋯ ⋯ ⋯ ( ) ( ) ( )2 3 1 3 4 2 4 5 3 1 1 1 1 3 3 3 3N N N NG G G OIP G G G OIP G G G OIP OIP = + + + + ⋅ ⋯ ⋯ ⋯ ⋯ 45/49
  • 46. Example (I) • Calculate the cascaded OIP3 of the following stages. Department of Electronic Engineering, NTUT 21 dBm+ ∞ 25 dBm+ 10 dB 3 dB− 10 dB 3OIP Gain 21 dBm+ ∞ 25 dBm+ 15 dB 3 dB− 10 dB 3OIP Gain stage 1 stage 2 stage3 Gain (dB) 10 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 15 Gain (linear) 10 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 31.622777 1/IIP3cas (linear) 0.2379221 IIP3cas (linear) 4.2030556 IIP3cas (dBm) 6.2356514 OIP3cas(dBm) 23.235651 stage 1 stage 2 stage3 Gain (dB) 15 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 6 103 15 Gain (linear) 31.622777 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 3.9810717 1.995E+10 31.622777 1/IIP3cas (linear) 0.7523759 IIP3cas (linear) 1.3291229 IIP3cas (dBm) 1.2356514 OIP3cas(dBm) 23.235651 46/49
  • 47. Example (II) Department of Electronic Engineering, NTUT 21 dBm+ ∞ 25 dBm+ 10 dB 3 dB− 10 dB 3OIP Gain 21 dBm+ ∞ 25 dBm+ 10 dB 3 dB− 15 dB 3OIP Gain stage 1 stage 2 stage3 Gain (dB) 10 -3 10 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 15 Gain (linear) 10 0.5011872 10 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 31.622777 1/IIP3cas (linear) 0.2379221 IIP3cas (linear) 4.2030556 IIP3cas (dBm) 6.2356514 OIP3cas(dBm) 23.235651 stage 1 stage 2 stage3 Gain (dB) 10 -3 15 OIP3 (dBm) 21 100 25 IIP3 (dBm) 11 103 10 Gain (linear) 10 0.5011872 31.622777 OIP3(linear, mW) 125.89254 1E+10 316.22777 IIP3(linear, mW) 12.589254 1.995E+10 10 1/IIP3cas (linear) 0.5806201 IIP3cas (linear) 1.7222967 IIP3cas (dBm) 2.3610797 OIP3cas(dBm) 24.36108 47/49
  • 48. Spectrum Regrowth • How do we estimate ACPR of a modulated RF signal from 2- tone measurement ( ) 3 2-tone 6 10log dBc 4 m ACPR IMR A B   = − +   +  where 3 2 mod 2 3 2 2 24 8 m m m m A    − −  = + 2 mod 2 4 m m B   −    = m denotes number of tones Department of Electronic Engineering, NTUT48/49
  • 49. Summary • In this chapter, 2nd-order and 3rd-order nonlinear effects were introduced. These nonlinearities will result in harmonics and intermodulation distortions in frequency domain. • The distortion can be easily defined using frequency-domain parameters related to signal power. It is easier to qualify the distortion by frequency components than time-domain waveforms. The nonlinearities can be described by P1dB and intercept points. • The cascaded formula was also derived to show that the IIP3 of an inter-stage is reduced by a factor of the previous stage subtotal gain. It means, the back-end stage will enter saturation first. Department of Electronic Engineering, NTUT49/49