SlideShare a Scribd company logo
1 of 28
Voltage Drop Problems from
2009 NABCEP Study Guide
        SolPowerPeople, Inc.
             Austin, TX

          March 19, 2012
Problem 47
Problem 47
Problem 47


 Use Chapter 9, Table 8 of the NEC to determine wire resistance.
  Choose from the stranded, uncoated copper wire.
CHOOSE
            FROM
            UNCOATED
            COPPER IN
            ohm/kFT




INDICATES
STRANDE
D
Problem 47

          Distance* x Imp x wire resistance/1000 ft.
VD% =
                  System voltage
*Distance is round-trip          One way distance = 60 feet
                                 Im = 7 amps
                                 System voltage = 24 V

          2 x 60ft x 7 amps x 0.491 ohms/1000 ft.
VD% =                                                          = 0.017
                          24 V
                                         You can guess at the size conductor that will
                                         work and then plug in values for wire
                                         resistance from ch9 table 8. Here we have
                                         guessed that #6 will work, which it does.
Problem 47
            Distance* x Imp x wire resistance/1000 ft.
 VD =
                    System voltage


                                      One way distance = 60 feet
                                      Im = 7 amps
*Distance is round-trip               System voltage = 24 V


                2 x 60ft x 7 amps x 0.778 ohms/1000 ft.
     VD =                                                                      = 0.027
                               24 V
                                      While we have determined that #6 is less than 2% (1.7%
                                      actually), we still don’t know if that is the smallest conductor
                                      that will stay below 2%. We must plug in the resistance of the
                                      next smallest conductor, #8 at 0.778 ohms. Result is that #8
                                      has too much resistance and puts us over 2% (at 2.7%) so #6
                                      is the correct answer.
Problem 47
 Another thing to consider with this problem is that the
  answer implies that we are to be using the nominal
  system voltage to calculate the %VD. Later, in problem
  50, the voltage drop calculation is done with the actual
  Vmp of the modules instead of system voltage. This,
  presumably, is done because the question states “under
  maximum POWER conditions” instead of just when “Im is
  flowing” or “when current is the maximum power current”.

 I believe this distinction is made to illustrate the difference
  in voltage drop calculations between systems that have
  MPPT tracking versus those that do not (hence being
  held down closer to the nominal system voltage).
Problem 49
Problem 49
Problem 49
Problem 49

 Calculating the necessary Ω/kFT, using V = 24 V, I = 7 A, %VD = 1, and d = 5
 gives 3.42, which corresponds to 14 AWG copper, which has the next lowest
 value.




Referring the Figure provided, if the length from the junction box to the circuit combiner is five
feet, the smallest wire size needed to keep the voltage drop in this circuit less than 1% when
the current in the circuit is the maximum power current, is

a. 14 AWG copper
b. 12 AWG copper
c. 10 AWG copper
d. 8 AWG copper
Problem 49
 System Voltage 24 VDC
 1% VD in our 24 VDC system is 0.01 x 24 = 0.24 VDC
 Imp = 7 amps
 One Way Distance = 5 feet


        VD = 2 x one way distance x Imp x wire resistance/1000 ft.


Wire Resistance/1Kft (Rc) =             VD
                                                         x 1000

                              (2 x one way distance x Imp)

            0.24
Rc =                     =     0.24          x 1000 = 3.42 Ω/kFT
          2 x 5ft x 7A         70

 Therefore, conductor resistance needs to be < 3.42 ohm/1000 ft.
Problem 49



Referring to the Figure, if the length from the junction box to the circuit
combiner is five feet, the smallest wire size needed to keep the voltage drop in
this circuit less than 1% when the current in the circuit is the maximum power
current, is

a. 14 AWG copper
b. 12 AWG copper
c. 10 AWG copper
d. 8 AWG copper
Problem 50
Problem 50
Problem 50
If the distance from the junction box to the combiner box is 60 feet, to keep the
voltage drop between the module junction box and the source circuit combiner
box less than 2% under maximum power conditions at STC, the smallest wire
size that can be used for each source circuit in the system in the Figure
provided is

a. 10 AWG copper
b. 8 AWG copper
c. 6 AWG copper
d. 4 AWG copper




 In this case, the problem is asking you to use the maximum power
    voltage as the system voltage, likely because of the use of a MPPT
    charge controller.
Problem 50
VD = 2 x one way distance x Imp x resistance/1000 ft.

                                       VD
Conductor Resistance =                                  X 1000
                         (2 x one way distance x Imp)

Voltage Drop of 2% of 34.2 V = 34.2 x 0.02 = 0.684 V


            0.684             0.684
 Rc =                    =               x 1000 = 0.814
          2 x 60 x 7            840


Wire resistance < 0.814 Ω/kFT
Problem A


 What conductor should you use in the PV output circuit in
  a two string system with 12 modules per string, each
  module with a Vmp of 34.2V and Imp of 8.2A? The
  distance from the combiner box to the DC disco is 200
  feet. Keep the voltage drop under 2%.
Problem A
  What conductor should you use in the PV output circuit in
   a two string system with 12 modules per string, each
   module with a Vmp of 34.2V and Imp of 8.2A? The
   distance from the combiner box to the DC disco is 200
   feet. Keep the voltage drop under 2%.
        Distance x Imp x wire resistance/1000 ft.
VD =
                System voltage

    2(200)x 2(8.2)x 1.24/1000=8.1
    34.2 x 12 = 410.4
    8.1/410.4 = 1.9%

    2(200) x 2(8.2) x 1.98 / 1000 = 12.98
    12.98/410.4 = 3.1%

    Therefore #10 is the smallest conductor that will
    work.
Problem B


 What is the smallest size conductor you can have from
  an AC disconnect of a 2000W/120V Inverter to the main
  panel if it is 150 feet away? Assume maximum voltage
  drop of 1%.
Problem B
   What is the smallest size conductor you can have from
     an AC disconnect of a 2000W/120V Inverter to the main
     panel if it is 150 feet away? Assume maximum voltage
     drop of 1%.

                                      VD
Conductor Resistance =                                  X 1000
                         (2 x one way distance x Imp)


    2000/120=16.666 amps
                                                            2AWG with a resistance
  .01 x 120 = 1.2 V (voltage loss at 1%)                    of .194

  (1.2 / (16.66 x 300)) x 1000 = .240 ohms/kFT
Problem C


 What AWG would you use to design for less that 2%
  voltage drop between a PV output circuit and DC
  disconnect, assuming the distance between is 14 feet
  and the system consists of 4 modules in series with an
  Imp. 8.2A and a Vmp of 27.6V?
Problem C
 What AWG would you use to design for less that 2%
  voltage drop between a PV output circuit and DC
  disconnect, assuming the distance between is 14 feet
  and the system consists of 4 modules in series with an
  Imp. 8.2A and a Vmp of 27.6V?
                                                        VD
                  Conductor Resistance =
                                           (2 x one way distance x Imp)



  2% voltage drop = 0.02 x (4 x 27.6) = 2.2 V
  Imp = 8.2 amps
  Distance = 28 feet
  System Voltage = 110.4
  (2.2/(28 x 8.2)) x 1000 = 9.58 ohms/kFT
  18AWG at 7.95 is the smallest conductor in
  the table.
Problem D


 In a system consisting of 3 series strings of 14 modules,
  each with a Vmp of 29.5V and an Imp of 7.8A, what is the
  smallest conductor available to allow for less than 1.5%
  voltage drop between a PV output circuit and the DC
  disconnect that is 32 feet away?
Problem D
   In a system consisting of 3 series strings of 14 modules,
     each with a Vmp of 29.5V and an Imp of 7.8A, what is the
     smallest conductor available to allow for less than 1.5%
     voltage drop between a PV output circuit and the DC
     disconnect that is 32 feet away?

                                                   VD
             Conductor Resistance =                                  X 1000
                                      (2 x one way distance x Imp)


                              (6.195V/(64 x 23.4A)) x 1000 = 4.13 ohms/kft
29.5 x 14 = 413 V                                    or
Imp = 3 x 7.8A = 23.4 A       64 x 23.4 x 3.14 / 1000 / 413 = 1.13%
Distance = 32 x 2 = 64
1.5% x 413 = 6.195V           Answer: 14AWG with resistance of 3.14
Problem E


 What wire size would you use to design for less than 1%
  voltage drop over a 160 foot distance from a 3000W/240
  V inverter to the main distribution panel?
Problem F


 Which size conductor would be required to design for
  less than 1% voltage drop from the 8A PV output circuit
  to the DC disconnect stand alone system with a 24V
  battery bank, assuming the distance is 22 ft?

More Related Content

What's hot

Giao trinh linh kien dien tu gtvt
Giao trinh linh kien dien tu gtvtGiao trinh linh kien dien tu gtvt
Giao trinh linh kien dien tu gtvt
Phi Phi
 
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdfỨng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
Man_Ebook
 
Bai thuc hanh 1 4
Bai thuc hanh 1 4Bai thuc hanh 1 4
Bai thuc hanh 1 4
Gió Lạnh
 
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdfĐiều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
Man_Ebook
 
02 pemasangandbtigafasa-150416202456-conversion-gate01
02 pemasangandbtigafasa-150416202456-conversion-gate0102 pemasangandbtigafasa-150416202456-conversion-gate01
02 pemasangandbtigafasa-150416202456-conversion-gate01
Nor Idayu
 
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google AssistantĐồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
Daren Harvey
 
Các loại mã đường truyền và ứng dụng neptune
Các loại mã đường truyền và ứng dụng neptuneCác loại mã đường truyền và ứng dụng neptune
Các loại mã đường truyền và ứng dụng neptune
給与 クレジット
 

What's hot (20)

Mã đường truyền
Mã đường truyềnMã đường truyền
Mã đường truyền
 
Giao trinh linh kien dien tu gtvt
Giao trinh linh kien dien tu gtvtGiao trinh linh kien dien tu gtvt
Giao trinh linh kien dien tu gtvt
 
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đĐề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
Đề tài: Thiết kế mạng lưới điện 1 nguồn và 6 phụ tải, HAY, 9đ
 
Đề tài: Vận hành máy phát điện trong nhà máy thủy điện, HAY
Đề tài: Vận hành máy phát điện trong nhà máy thủy điện, HAYĐề tài: Vận hành máy phát điện trong nhà máy thủy điện, HAY
Đề tài: Vận hành máy phát điện trong nhà máy thủy điện, HAY
 
Kĩ thuật đo lường
Kĩ thuật đo lường Kĩ thuật đo lường
Kĩ thuật đo lường
 
Chuong 5 he thong thong tin quang
Chuong 5 he thong thong tin quangChuong 5 he thong thong tin quang
Chuong 5 he thong thong tin quang
 
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdfỨng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
Ứng dụng phần mềm ETAP trong công nghệ lưới điện thông minh.pdf
 
Báo cáo chuyên đề HỆ THỐNG SCADA QUẢN LÝ, GIÁM SÁT ĐIỆN NĂNG
Báo cáo chuyên đề HỆ THỐNG SCADA QUẢN LÝ, GIÁM SÁT ĐIỆN NĂNG Báo cáo chuyên đề HỆ THỐNG SCADA QUẢN LÝ, GIÁM SÁT ĐIỆN NĂNG
Báo cáo chuyên đề HỆ THỐNG SCADA QUẢN LÝ, GIÁM SÁT ĐIỆN NĂNG
 
Bai thuc hanh 1 4
Bai thuc hanh 1 4Bai thuc hanh 1 4
Bai thuc hanh 1 4
 
Tài liệu contactor tiếng việt
Tài liệu contactor tiếng việtTài liệu contactor tiếng việt
Tài liệu contactor tiếng việt
 
Thuyetminh bms ket noi voi he thong hvac
Thuyetminh bms ket noi voi he thong hvacThuyetminh bms ket noi voi he thong hvac
Thuyetminh bms ket noi voi he thong hvac
 
Đề tài: Thiết kế cung cấp điện cho nhà máy cơ khí Quang Trung
Đề tài: Thiết kế cung cấp điện cho nhà máy cơ khí Quang TrungĐề tài: Thiết kế cung cấp điện cho nhà máy cơ khí Quang Trung
Đề tài: Thiết kế cung cấp điện cho nhà máy cơ khí Quang Trung
 
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdfĐiều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
Điều khiển thiết bị điện công nghiệp - Trần Quang Thọ, Nguyễn Vinh Quan.pdf
 
02 pemasangandbtigafasa-150416202456-conversion-gate01
02 pemasangandbtigafasa-150416202456-conversion-gate0102 pemasangandbtigafasa-150416202456-conversion-gate01
02 pemasangandbtigafasa-150416202456-conversion-gate01
 
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google AssistantĐồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
Đồ án Điều khiển thiết bị điện thông qua trợ lý ảo Google Assistant
 
Đề tài: Bộ điều chỉnh điện áp dòng điện xoay chiều 3 pha, 9đ
Đề tài: Bộ điều chỉnh điện áp dòng điện xoay chiều 3 pha, 9đĐề tài: Bộ điều chỉnh điện áp dòng điện xoay chiều 3 pha, 9đ
Đề tài: Bộ điều chỉnh điện áp dòng điện xoay chiều 3 pha, 9đ
 
CẤU TẠO NGUYÊN LÝ CỦA RƠLE THỜI GIAN
CẤU TẠO NGUYÊN LÝ CỦA RƠLE THỜI GIANCẤU TẠO NGUYÊN LÝ CỦA RƠLE THỜI GIAN
CẤU TẠO NGUYÊN LÝ CỦA RƠLE THỜI GIAN
 
GIỚI THIỆU CHUNG VỀ BMS
GIỚI THIỆU CHUNG VỀ BMSGIỚI THIỆU CHUNG VỀ BMS
GIỚI THIỆU CHUNG VỀ BMS
 
Thiết kế bộ điều khiển cho bộ nghịch lưu ba pha trên hệ tọa độ tĩnh
Thiết kế bộ điều khiển cho bộ nghịch lưu ba pha trên hệ tọa độ tĩnhThiết kế bộ điều khiển cho bộ nghịch lưu ba pha trên hệ tọa độ tĩnh
Thiết kế bộ điều khiển cho bộ nghịch lưu ba pha trên hệ tọa độ tĩnh
 
Các loại mã đường truyền và ứng dụng neptune
Các loại mã đường truyền và ứng dụng neptuneCác loại mã đường truyền và ứng dụng neptune
Các loại mã đường truyền và ứng dụng neptune
 

Viewers also liked

041813 rs 120 rule and test taking strat
041813 rs 120 rule and test taking strat 041813 rs 120 rule and test taking strat
041813 rs 120 rule and test taking strat
solpowerpeople
 
012413 passive solar design
012413 passive solar design012413 passive solar design
012413 passive solar design
solpowerpeople
 
"Grid-Interactive Systems- A Matter of Energy Storage" w/ Dr Jeffery Lee Joh...
"Grid-Interactive Systems- A Matter of Energy Storage" w/  Dr Jeffery Lee Joh..."Grid-Interactive Systems- A Matter of Energy Storage" w/  Dr Jeffery Lee Joh...
"Grid-Interactive Systems- A Matter of Energy Storage" w/ Dr Jeffery Lee Joh...
solpowerpeople
 
053013 pv system site assessment (1)
053013 pv system site assessment (1)053013 pv system site assessment (1)
053013 pv system site assessment (1)
solpowerpeople
 
Ohms Law
Ohms LawOhms Law
Ohms Law
ufaq kk
 
Short circuit current calculations
Short circuit current calculationsShort circuit current calculations
Short circuit current calculations
Ronald Santos
 
Dol starter by kantiakapil
Dol  starter by kantiakapilDol  starter by kantiakapil
Dol starter by kantiakapil
Kapil Kantia
 

Viewers also liked (20)

PV Monitoring Systems w/Arturo Zarate
PV Monitoring Systems w/Arturo ZaratePV Monitoring Systems w/Arturo Zarate
PV Monitoring Systems w/Arturo Zarate
 
041813 rs 120 rule and test taking strat
041813 rs 120 rule and test taking strat 041813 rs 120 rule and test taking strat
041813 rs 120 rule and test taking strat
 
NABCEP Exam Prep Review for PV Installation & Tech Sales 
NABCEP Exam Prep Review for PV Installation & Tech Sales NABCEP Exam Prep Review for PV Installation & Tech Sales 
NABCEP Exam Prep Review for PV Installation & Tech Sales 
 
#Solar mooc 2009 nabcep study guide solutions 1-29
#Solar mooc 2009 nabcep study guide solutions 1-29#Solar mooc 2009 nabcep study guide solutions 1-29
#Solar mooc 2009 nabcep study guide solutions 1-29
 
Changes to 2014 NEC Interconnection Rule 705.12
Changes to 2014 NEC Interconnection Rule 705.12Changes to 2014 NEC Interconnection Rule 705.12
Changes to 2014 NEC Interconnection Rule 705.12
 
Using sohcahtoa
Using sohcahtoaUsing sohcahtoa
Using sohcahtoa
 
012413 passive solar design
012413 passive solar design012413 passive solar design
012413 passive solar design
 
"Grid-Interactive Systems- A Matter of Energy Storage" w/ Dr Jeffery Lee Joh...
"Grid-Interactive Systems- A Matter of Energy Storage" w/  Dr Jeffery Lee Joh..."Grid-Interactive Systems- A Matter of Energy Storage" w/  Dr Jeffery Lee Joh...
"Grid-Interactive Systems- A Matter of Energy Storage" w/ Dr Jeffery Lee Joh...
 
053013 pv system site assessment (1)
053013 pv system site assessment (1)053013 pv system site assessment (1)
053013 pv system site assessment (1)
 
Distribution System Voltage Drop and Power Loss Calculation
Distribution System Voltage Drop and Power Loss CalculationDistribution System Voltage Drop and Power Loss Calculation
Distribution System Voltage Drop and Power Loss Calculation
 
Ohms Law
Ohms LawOhms Law
Ohms Law
 
Determination of Voltage Regulation and Power system losses
Determination of Voltage Regulation and Power system lossesDetermination of Voltage Regulation and Power system losses
Determination of Voltage Regulation and Power system losses
 
Short circuit current calculations
Short circuit current calculationsShort circuit current calculations
Short circuit current calculations
 
2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...
2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...
2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...
 
10 important safety changes in 2014 nec
10 important safety changes in 2014 nec10 important safety changes in 2014 nec
10 important safety changes in 2014 nec
 
Project PPT
Project PPTProject PPT
Project PPT
 
Dol starter by kantiakapil
Dol  starter by kantiakapilDol  starter by kantiakapil
Dol starter by kantiakapil
 
Calculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlabCalculating the efficiency and regulation of transformer using matlab
Calculating the efficiency and regulation of transformer using matlab
 
Methods of Voltage Control
Methods of Voltage ControlMethods of Voltage Control
Methods of Voltage Control
 
Presentation1
Presentation1Presentation1
Presentation1
 

Similar to #Solar mooc voltage drop calculations

Symmetrical Components Fault Calculations
Symmetrical Components Fault CalculationsSymmetrical Components Fault Calculations
Symmetrical Components Fault Calculations
michaeljmack
 
What is electronics
What is electronicsWhat is electronics
What is electronics
Mrinal Pal
 
Electrical Systems Safety
Electrical Systems SafetyElectrical Systems Safety
Electrical Systems Safety
Talia Carbis
 

Similar to #Solar mooc voltage drop calculations (20)

UNDERGROUND CABLES --------- DESCRIPTION
UNDERGROUND CABLES --------- DESCRIPTIONUNDERGROUND CABLES --------- DESCRIPTION
UNDERGROUND CABLES --------- DESCRIPTION
 
Igbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converterIgbt gate driver power supply flyback converter
Igbt gate driver power supply flyback converter
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
 
LE Calculations 2
LE Calculations 2LE Calculations 2
LE Calculations 2
 
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
 
unit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.pptunit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.ppt
 
Design of Two CMOS Differential Amplifiers
Design of Two CMOS Differential AmplifiersDesign of Two CMOS Differential Amplifiers
Design of Two CMOS Differential Amplifiers
 
Lec 06 (2017).pdf
Lec 06 (2017).pdfLec 06 (2017).pdf
Lec 06 (2017).pdf
 
High voltage module
High voltage moduleHigh voltage module
High voltage module
 
presentations for the project of solar energy
presentations for the project of solar energypresentations for the project of solar energy
presentations for the project of solar energy
 
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrdChapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
Chapterhj jkhjhjhjh kjhjhjhljh jhkjhjhgftf rdrd
 
17 mse010 loss in pv plant
17 mse010 loss in pv plant17 mse010 loss in pv plant
17 mse010 loss in pv plant
 
Symmetrical Components Fault Calculations
Symmetrical Components Fault CalculationsSymmetrical Components Fault Calculations
Symmetrical Components Fault Calculations
 
Ultra Slim Relays
Ultra Slim RelaysUltra Slim Relays
Ultra Slim Relays
 
What is electronics
What is electronicsWhat is electronics
What is electronics
 
Home automation relays
Home automation relaysHome automation relays
Home automation relays
 
Home automation relays
Home automation relaysHome automation relays
Home automation relays
 
Ohmslawweb
OhmslawwebOhmslawweb
Ohmslawweb
 
Introduction to mv switchgear
Introduction to mv switchgearIntroduction to mv switchgear
Introduction to mv switchgear
 
Electrical Systems Safety
Electrical Systems SafetyElectrical Systems Safety
Electrical Systems Safety
 

More from solpowerpeople

#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
solpowerpeople
 

More from solpowerpeople (10)

Metering Solutions
Metering SolutionsMetering Solutions
Metering Solutions
 
Inter row shading 4-19-12
Inter row shading 4-19-12Inter row shading 4-19-12
Inter row shading 4-19-12
 
PV Installations & Errors
PV Installations & ErrorsPV Installations & Errors
PV Installations & Errors
 
Webinar 03 electrical installation of pv system
Webinar 03 electrical installation of pv system Webinar 03 electrical installation of pv system
Webinar 03 electrical installation of pv system
 
Webinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsystWebinar 02 demonstration of pv system design pvsyst
Webinar 02 demonstration of pv system design pvsyst
 
#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
#SolarMOOC: Webinar on Project Management of Solar PV with Jeffery Lee Johnso...
 
What is a triangle
What is a triangleWhat is a triangle
What is a triangle
 
Final trig problem solution
Final trig problem solutionFinal trig problem solution
Final trig problem solution
 
#Solarmooc Arctan Solution
#Solarmooc Arctan Solution#Solarmooc Arctan Solution
#Solarmooc Arctan Solution
 
#Solar mooc problem set 1 alternate exercise 1 solution.
#Solar mooc problem set 1 alternate exercise 1 solution.#Solar mooc problem set 1 alternate exercise 1 solution.
#Solar mooc problem set 1 alternate exercise 1 solution.
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

#Solar mooc voltage drop calculations

  • 1. Voltage Drop Problems from 2009 NABCEP Study Guide SolPowerPeople, Inc. Austin, TX March 19, 2012
  • 4. Problem 47  Use Chapter 9, Table 8 of the NEC to determine wire resistance. Choose from the stranded, uncoated copper wire.
  • 5. CHOOSE FROM UNCOATED COPPER IN ohm/kFT INDICATES STRANDE D
  • 6. Problem 47 Distance* x Imp x wire resistance/1000 ft. VD% = System voltage *Distance is round-trip One way distance = 60 feet Im = 7 amps System voltage = 24 V 2 x 60ft x 7 amps x 0.491 ohms/1000 ft. VD% = = 0.017 24 V You can guess at the size conductor that will work and then plug in values for wire resistance from ch9 table 8. Here we have guessed that #6 will work, which it does.
  • 7. Problem 47 Distance* x Imp x wire resistance/1000 ft. VD = System voltage One way distance = 60 feet Im = 7 amps *Distance is round-trip System voltage = 24 V 2 x 60ft x 7 amps x 0.778 ohms/1000 ft. VD = = 0.027 24 V While we have determined that #6 is less than 2% (1.7% actually), we still don’t know if that is the smallest conductor that will stay below 2%. We must plug in the resistance of the next smallest conductor, #8 at 0.778 ohms. Result is that #8 has too much resistance and puts us over 2% (at 2.7%) so #6 is the correct answer.
  • 8. Problem 47  Another thing to consider with this problem is that the answer implies that we are to be using the nominal system voltage to calculate the %VD. Later, in problem 50, the voltage drop calculation is done with the actual Vmp of the modules instead of system voltage. This, presumably, is done because the question states “under maximum POWER conditions” instead of just when “Im is flowing” or “when current is the maximum power current”.  I believe this distinction is made to illustrate the difference in voltage drop calculations between systems that have MPPT tracking versus those that do not (hence being held down closer to the nominal system voltage).
  • 12. Problem 49 Calculating the necessary Ω/kFT, using V = 24 V, I = 7 A, %VD = 1, and d = 5 gives 3.42, which corresponds to 14 AWG copper, which has the next lowest value. Referring the Figure provided, if the length from the junction box to the circuit combiner is five feet, the smallest wire size needed to keep the voltage drop in this circuit less than 1% when the current in the circuit is the maximum power current, is a. 14 AWG copper b. 12 AWG copper c. 10 AWG copper d. 8 AWG copper
  • 13. Problem 49 System Voltage 24 VDC 1% VD in our 24 VDC system is 0.01 x 24 = 0.24 VDC Imp = 7 amps One Way Distance = 5 feet VD = 2 x one way distance x Imp x wire resistance/1000 ft. Wire Resistance/1Kft (Rc) = VD x 1000 (2 x one way distance x Imp) 0.24 Rc = = 0.24 x 1000 = 3.42 Ω/kFT 2 x 5ft x 7A 70 Therefore, conductor resistance needs to be < 3.42 ohm/1000 ft.
  • 14. Problem 49 Referring to the Figure, if the length from the junction box to the circuit combiner is five feet, the smallest wire size needed to keep the voltage drop in this circuit less than 1% when the current in the circuit is the maximum power current, is a. 14 AWG copper b. 12 AWG copper c. 10 AWG copper d. 8 AWG copper
  • 17. Problem 50 If the distance from the junction box to the combiner box is 60 feet, to keep the voltage drop between the module junction box and the source circuit combiner box less than 2% under maximum power conditions at STC, the smallest wire size that can be used for each source circuit in the system in the Figure provided is a. 10 AWG copper b. 8 AWG copper c. 6 AWG copper d. 4 AWG copper  In this case, the problem is asking you to use the maximum power voltage as the system voltage, likely because of the use of a MPPT charge controller.
  • 18. Problem 50 VD = 2 x one way distance x Imp x resistance/1000 ft. VD Conductor Resistance = X 1000 (2 x one way distance x Imp) Voltage Drop of 2% of 34.2 V = 34.2 x 0.02 = 0.684 V 0.684 0.684 Rc = = x 1000 = 0.814 2 x 60 x 7 840 Wire resistance < 0.814 Ω/kFT
  • 19. Problem A  What conductor should you use in the PV output circuit in a two string system with 12 modules per string, each module with a Vmp of 34.2V and Imp of 8.2A? The distance from the combiner box to the DC disco is 200 feet. Keep the voltage drop under 2%.
  • 20. Problem A  What conductor should you use in the PV output circuit in a two string system with 12 modules per string, each module with a Vmp of 34.2V and Imp of 8.2A? The distance from the combiner box to the DC disco is 200 feet. Keep the voltage drop under 2%. Distance x Imp x wire resistance/1000 ft. VD = System voltage 2(200)x 2(8.2)x 1.24/1000=8.1 34.2 x 12 = 410.4 8.1/410.4 = 1.9% 2(200) x 2(8.2) x 1.98 / 1000 = 12.98 12.98/410.4 = 3.1% Therefore #10 is the smallest conductor that will work.
  • 21. Problem B  What is the smallest size conductor you can have from an AC disconnect of a 2000W/120V Inverter to the main panel if it is 150 feet away? Assume maximum voltage drop of 1%.
  • 22. Problem B  What is the smallest size conductor you can have from an AC disconnect of a 2000W/120V Inverter to the main panel if it is 150 feet away? Assume maximum voltage drop of 1%. VD Conductor Resistance = X 1000 (2 x one way distance x Imp) 2000/120=16.666 amps 2AWG with a resistance .01 x 120 = 1.2 V (voltage loss at 1%) of .194 (1.2 / (16.66 x 300)) x 1000 = .240 ohms/kFT
  • 23. Problem C  What AWG would you use to design for less that 2% voltage drop between a PV output circuit and DC disconnect, assuming the distance between is 14 feet and the system consists of 4 modules in series with an Imp. 8.2A and a Vmp of 27.6V?
  • 24. Problem C  What AWG would you use to design for less that 2% voltage drop between a PV output circuit and DC disconnect, assuming the distance between is 14 feet and the system consists of 4 modules in series with an Imp. 8.2A and a Vmp of 27.6V? VD Conductor Resistance = (2 x one way distance x Imp) 2% voltage drop = 0.02 x (4 x 27.6) = 2.2 V Imp = 8.2 amps Distance = 28 feet System Voltage = 110.4 (2.2/(28 x 8.2)) x 1000 = 9.58 ohms/kFT 18AWG at 7.95 is the smallest conductor in the table.
  • 25. Problem D  In a system consisting of 3 series strings of 14 modules, each with a Vmp of 29.5V and an Imp of 7.8A, what is the smallest conductor available to allow for less than 1.5% voltage drop between a PV output circuit and the DC disconnect that is 32 feet away?
  • 26. Problem D  In a system consisting of 3 series strings of 14 modules, each with a Vmp of 29.5V and an Imp of 7.8A, what is the smallest conductor available to allow for less than 1.5% voltage drop between a PV output circuit and the DC disconnect that is 32 feet away? VD Conductor Resistance = X 1000 (2 x one way distance x Imp) (6.195V/(64 x 23.4A)) x 1000 = 4.13 ohms/kft 29.5 x 14 = 413 V or Imp = 3 x 7.8A = 23.4 A 64 x 23.4 x 3.14 / 1000 / 413 = 1.13% Distance = 32 x 2 = 64 1.5% x 413 = 6.195V Answer: 14AWG with resistance of 3.14
  • 27. Problem E  What wire size would you use to design for less than 1% voltage drop over a 160 foot distance from a 3000W/240 V inverter to the main distribution panel?
  • 28. Problem F  Which size conductor would be required to design for less than 1% voltage drop from the 8A PV output circuit to the DC disconnect stand alone system with a 24V battery bank, assuming the distance is 22 ft?