Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

2020 status report building integrated photovoltaics BIPV

Recording at https://youtu.be/gTHO3LItQwM
BIPV Status Report 2020, developed by SUPSI and Becquerel Institute.
Practical handbook to all stakeholders of the BIPV development process, providing insights on the topic from the different perspectives specific to each actor.

Paolo Corti from SUPSI explains the lessons learned in 40 years of BIPV evolution;
Philippe Macé from Becquerel Institute develops the topic of market and value-chain: risks & opportunities;
Elina Bosch from Becquerel Institute explains the cost evaluation of BIPV: cost breakdown & extra cost;
Finally, Pierluigi Bonomo from SUPSI lets us know about the perspectives for BIPV.

  • Login to see the comments

2020 status report building integrated photovoltaics BIPV

  1. 1. Status Report BIPV 2020 A practical handbook for Solar buildings’ stakeholders Scan the QR code to download the  BIPV Status Report 2020 or connect  to solarchitecture.ch for more info
  2. 2. BIPV Status Report Word Cloud
  3. 3. Agenda  Lesson learned in 40 years of evolution Paolo Corti, SUPSI  Market and value chain: risks and opportunities Philippe Macé, Becquerel Institute  Cost evaluation of BIPV: cost breakdown and extra cost Elina Bosch, Becquerel Institute  Which perspective for BIPV? Pierluigi Bonomo, SUPSI  Q&A Session
  4. 4. Lesson learned in 40 years of evolution Paolo Corti Researcher, Innovative Building Skin Team Swiss BIPV Competence Centre Wohnanlage Richter. e‐periodica.ch Library P. Fabra. Roberts and  Guariento MFH in Männedorf. Solaxess Mercado Bejar. Onyx Solar EXPO 2020 Dubai. Sunovation CP Pregassona. Alsolis
  5. 5. The house becomes a solar collector Wohnhaus Solaris, Zurich. HBF Architects Sergio Los, architect and thinker
  6. 6. Rural House Galley. CSEM Adaptation & balance: new & tradition
  7. 7. Product and mounting system database
  8. 8. The challenge now is to support the BIPV market growth Town Hall, Freiburg. Ingenhoven Architects
  9. 9. Market & value chain: risks and opportunities Philippe Macé Head of Business Intelligence at Becquerel  Institute Grosspeter Tower, Basel. NICE Solar
  10. 10.  High variety of BIPV applications are possible.  For each of these applications, multiple BIPV products exist on the market, with their own specifications.  In the segment of residential buildings, cold roofs are the most common BIPV installations.  In the segment of commercial buildings, façade BIPV systems are much more common, as well as BIPV skylights. The BIPV market is heterogeneous 4 1 2 3 Cold roof  Ventilated façade External integrated devices (louvers, balustrades,…) 1 2 3 3 6 5 4 5 6 Skylight Prefabricated system Curtain wall Source: SUPSI
  11. 11. The BIPV market peaked about 10 years ago 71 186 417 1’200 2’171 637 679 496 363 154 160 136 210 0 500 1’000 1’500 2’000 2’500 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 MW   Historical BIPV market grew significantly from 2008 to 2011.  This can be explained by generous support schemes for BIPV.  BUT the definition of BIPV applied in those years is incomparable to today’s definition.  The modification and/or disappearance of these incentives caused the BIPV market to sharply slow down. Historical annual BIPV market in Europe Source: Becquerel Institute
  12. 12. Perspectives for the European BIPV market are favourable 347 483 726 0 100 200 300 400 500 600 700 800 2021 2022 2023 MW  The BIPV market should keep on growing, potentially reaching 500 MWp by 2022.  Main markets: France, Netherlands, Switzerland, United Kingdom.  All BIPV segments are expected to grow.  In particular, the residential segment is expected to lead the market, via BIPV roofing solutions. Projected annual BIPV market in Europe (in MWp) Source: Becquerel Institute
  13. 13. The BIPV market could soon represent a business opportunity of >1B€ 725 960 1369 0 200 400 600 800 1000 1200 1400 1600 2021 2022 2023 Million €  In 2021, the BIPV market should represent a total value of more than 600 M€ at least.  It could pass the 1 B€ threshold in 2022, and the 1,5 B€ by 2023.  This steady BIPV market growth should be led by cost reductions, increased customization possibilities, and a pressure to improve buildings’ sustainability. Value of the projected annual BIPV market in  Europe (in €) Source: Becquerel Institute
  14. 14. Stakeholders’ overview  There is no market-pull: usual actors of the construction sector have only a low interest in BIPV adoption.  Policymakers also have a tremendous influence on the adoption of BIPV, but only have a medium interest.  Difference in both interest and influence between building occupants and building owners, which can hinder the process.  New actors with both skills in construction and PV have a strong influence as they could bridge the knowledge gaps. INTEREST OF STAKEHOLDERS LOW HIGH MEDIUM LOW HIGH Grid operators Maintenance Recycling companies Facility managers General contractors Architects Project investors Policymakers (BI)PV  manufacturers &  suppliers INFLUENCE OF STAKEHOLDERS Construction  companies Building occupants BIPV system  installers Building owner Experts on both PV  and construction  aspects Influence‐Interest stakeholders’ matrix relative to  the adoption of BIPV in a project
  15. 15. The value proposition  of BIPV can seem  blurry, especially due  to the cost gap with  conventional PV and  construction  materials Lack of knowledge &  resistance to change  within the building  sector, creating  difficulties to  collaborate Lack of standardized  product qualification  procedures Other investment  strategies can be  more cost‐efficient to  reach nZEB  requirements Key remaining challenges & weaknesses How to solve it? Education, e.g. through guidelines Digital tools How to solve it? Detailed project’s cost competitiveness assessment Strengthening of nZEB regulation How to solve it? New procedures How to solve it? Detailed project’s cost competitiveness assessment
  16. 16.  Design technical systems that favour an easy reparability and replaceability of components  Think modular and prefabricated to reduce costs  Develop standards combining both electrical and construction features  Consider BIPV as early as possible in the development process  Support digitization of procedures How to boost the BIPV market?
  17. 17. Cost evaluation of BIPV: cost breakdown and extra cost Elina Bosch Business Analyst at Becquerel Institute Copenhagen Inter. School. C.F. Moller Architects
  18. 18. What is competitiveness for BIPV?  Construction component  Construction system  Electricity generating unit  Investment
  19. 19.  On average, BIPV roof components are more expensive than conventional roof construction elements  In many cases, the cheapest BIPV products can come at a lower cost than high-end conventional construction materials (e.g. slate tiles) Cost evaluation of BIPV: as a roof construction component Tailor‐made BIPV module – Average component cost In‐roof mounted conventional PV module – Average  component cost Solar tile – Average component cost Conventional roof construction components – Component cost range Low‐end  concrete tiles High‐end metal  sheets
  20. 20. Cost evaluation of BIPV: as a facade construction component  On average, BIPV facade components are more expensive than conventional facade construction elements  Yet, the cheapest BIPV products can come at a lower cost than high-end conventional construction materials (e.g. stone) a‐Si‐based curtain wall – Average component cost c‐Si‐based curtain wall – Average component cost CIGS‐based ventilated facade – Average component  cost Conventional facade construction components – Component cost range a‐Si‐based ventilated facade – Average component  cost c‐Si‐based ventilated facade – Average component  cost Low‐end  fibrocement High‐end  stone
  21. 21. Cost evaluation of BIPV: as a roof construction system  Most conventional roofing solutions can be challenged by BIPV solutions.  In particular, the BIPV solutions based on “in-roof mounting systems” can be very competitive  Tailor-made BIPV solutions are more expensive but can provide the advantage of a better aesthetical integration, and possibly additional building-related functionalities. CIGS on metal sheet ‐ Average system cost Tailor‐made BIPV system – Average system cost In‐roof mounted conventional PV system – Average  system cost Solar tile – Average system cost Conventional roof construction system – System cost  range Low‐end  metal sheets High‐end  fibrocement
  22. 22. Cost evaluation of BIPV: as a facade construction system  BIPV façade systems can be competitive with some conventional systems, in particular high-end systems.  Average façade system costs are based on a wider range of costs due to the variety of projects’ characteristics (size, complexity, type and thickness of the modules). a‐Si‐based curtain wall – Average system cost c‐Si‐based curtain wall – Average system cost CIGS‐based ventilated facade – Average system cost Conventional facade construction system – System cost  range a‐Si‐based ventilated facade – Average system cost c‐Si‐based ventilated facade – Average system cost Low‐end  metal High‐end  insulated  glass
  23. 23. Total cost and revenue of ownership approach This approach allows to determine whether an investment in a BIPV system is attractive or not, compared to investing in a competing conventional building envelope solution REVENUES * Initial investment Extra cost of BIPV compared to a conventional construction solution * Operation and maintenance costs * Savings on the electricity bill for self- consumed electricity * Excess electricity fed- back to the grid COSTS Competitiveness [€/m²] ; When positive, it indicates that it is worth investing the extra costs associated to the BIPV system since they will be compensated by the extra revenues
  24. 24. Total end user cost Extra cost Installation &  development Mounting structure BoS Module Offset  construction  material cost €/m² Extra cost Fixed cost Determining the extra cost  Allows to take into account the multifunctionality of BIPV  Allows to compare easily and rapidly the competitiveness of BIPV compared to a conventional construction system
  25. 25. Typical residential rooftop ‐ Installed BIPV capacity : 6‐8 kWp  ‐ Surface covered by the system : 50 m² ‐ Annual self‐consumption rate : 30% BIPV tiles In‐roof mounted conventional PV system Roofing BIPV solutions in the residential segment are globally already competitive. Generated electricity largely covers the marginal extra cost due to BIPV and even generates revenues of more than 200€ per installed square meter of BIPV (over the entire lifetime of the system), in the case of an “in-roof mounting system”. Competitiveness of residential BIPV roof solutions
  26. 26. CIGS ventilated facade c‐Si ventilated facade Typical commercial facade: ‐ Installed BIPV capacity : 36‐41 kWp  ‐ Surface covered by the system : 270 m² ‐ Annual self‐consumption rate : 90% Compared with BIPV systems on roofs:  non-optimal irradiation conditions on the façade  substantially higher than average end user costs The Netherlands & France:  Quite low compensable retail electricity prices  Less optimal irradiation than in southern European countries Italy:  High irradiation  Relatively high retail electricity prices. Switzerland:  BIPV specific direct incentives  Relatively generous feed-in premium. Competitiveness of commercial BIPV facade solutions
  27. 27. Dr. Pierluigi Bonomo Head of Innovative Building Skin Team Swiss BIPV Competence Centre Which perspective for BIPV? Photo: LVMH
  28. 28. Many perspectives Kingsgate House, Chealsea. Photo: Pierluigi Bonomo  Architecture  Product Technology  Manufacturing  Regulatory framework  Digital process  Cost Competitiveness  Knowledge/Awareness “Solar cells are like the leaves  in autumn…” Architect “Solar cells are permanently  shaded” Electric Engineer
  29. 29. Technology and manufacturing Top: TISO. Photo: SUPSI. Bottom: BIPV facade under construction in Lugano. Photo: Pierluigi Bonomo  Integrated design and manufacturing  Construction and electric joint innovation  Flexibility & automation in production line  Systems evolution for building skin  Market readiness and successful products “BIPV refers to systems and  concepts in which the  photovoltaic element takes,  in addition to the function of  producing electricity, the role  of a building element” 1982 2021
  30. 30.  PRODUCT: multifunctional, cost- competitive solutions  QUALITY: streamline the qualification and testing process for products  PROCESS: BIM-based digital collaboration “bringing down the cost of  multifunctional building‐ integrated photovoltaic  (BIPV) systems” www.bipvboost.eu Photo: Onyx Solar Research, demonstration & market
  31. 31.  Green Deal & Renovation Wave  Renewable Energy Directive (REDII)  Energy Efficiency Directive (EED)  Energy Performance of Buildings Directive (EPBD)  Construction Products Regulation (CPR) Source: EnerBIM  “just as with climate  change, the pandemic  underlines that no matter  how much we are part of  the cause, we can be part  of the solution” F. Timmermans Policies, towards a EU framework for BIPV
  32. 32.  Thanks to the interdisciplinary initiative, solar progressed from satellites to buildings  A co-creation platform of architects, engineers, industries and designers is already on ground  BIPV calls for a collective effort to imagine and build a future that is sustainable Source: EnerBIM  “I want NextGeneration  EU to kickstart a  renovation wave ... But  this is not just an  environmental or  economic project: it needs  to be a new cultural  project for Europe” Ursula Von der Leyen https://europa.eu/new‐european‐bauhaus/about‐initiative_en BIPV, interdisciplinary movement
  33. 33. Which perspective? “Architecture depends on its time. Technology and architecture are so closely related. Our real hope is that someday the one will be the expression of the other”. L. Mies van der Rohe, 1950
  34. 34. BIPV Matchmaking Event Invitation The H2020 PV Impact project is organizing its 5th matchmaking event, aiming to foster interactions between PV research and industry stakeholders and facilitate the development of new innovative and collaborative projects with the construction sector. https://pvimpact.eu/matchmaking‐events/Online‐Matchmaking‐Event‐Building‐ Integrated‐PV‐BIPV/
  35. 35. Q&A Session Scan the QR code to download the  BIPV Status Report 2020 or connect  to solarchitecture.ch for more info

×