Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Non invasive guided gdt

Hội nghị Gây Mê Hồi Sức HCM năm 2018

  • Login to see the comments

  • Be the first to like this

Non invasive guided gdt

  1. 1. Non-Invasive Guided GDT Suraphong Lorsomradee, MD.,PhD. Associate Professor, Division of Cardiac Anesthesia, Chiang Mai University Hospital THAILAND GDT EducASIA: Simple Bedside Monitor
  2. 2. Dynamic Clinical Monitoring
  3. 3. Lorsomradee, et al: J Cardiothorac Vasc Anesth. Aug;21(5):492-6, 2007 Change in Position Leg Elevation
  4. 4. Lorsomradee, et al: Anaesthesia. Oct;62(10):979-83, 2007 Vasoconstrictor
  5. 5. PEEP & Preload Lorsomradee, et al: J Cardiothorac Vasc Anesth. Aug 21(5):492-6., 2007
  6. 6. Painful Surgical Stimuli Sternotomy SuctionSomatic PainWound dressing IntubationRetractor Other
  7. 7. Myocardial ischemia Cell death Myocardial dysfunction Myocardial stunning reperfusion no reperfusion Sublethal Reperfusion injury Delayed Reperfusion injury Early lethal Reperfusion injury Cell death during reperfusion These factors may interfere myocardial perfusion and aggravate perioperative myocardial ischemia , lethal reperfusion injury and irreversible cell death.
  8. 8. CardioprotectionPrevention of myocardial ischemia has traditionally focused on maintaining Myocardial oxygen balance Heart rate contractility afterload CBF: normal region CBF: ischemic region subendocardium Ischemia Beta-blocker Alpha2 agonist Ca-channel blocker
  9. 9. Introduction Physical Findings (Non-specific) Clinical signs of hypovolemia are neither sensitive nor specific in the critically ill patient. Increased sympathetic tone - Tachycardia, hyperpnea, - Diaphoresis Decrease organ perfusion - Decrease urine output, ileus, - Altered sensorium, - Lactic acidosis - Hypotension occurs late
  10. 10. blood pressure Bloodvolume blood pressure Bloodvolume Pain Hypertension Emotional Shock Hypotension Deep sedation BP BP
  11. 11. SV HR Vascular tone Blood Viscosity Invasive BP Monitoring
  12. 12. Arterial Pulse Cardiac Output (APCO) Transesophageal Echocardiography (TEE) Thermodilution (Swan-Ganz) Cardiac Output
  13. 13. Non-invasive Blood Pressure (NIBP) Electrocardiography (ECG) Pulse Oximetry (SpO2) Routine Non-Invasive Monitor
  14. 14. ECG-SpO2 Estimated Continuous Cardiac Output
  15. 15. PEP(Pre-ejection Period) Reflects cardiac contractility PEP ↓ ⇒ SV ↑ PWTT1 Reflects Blood Pressure PWTT1 ↓ ⇒ SV ↑ PWTT2 Reflects SVR PWTT2 ↓ ⇒ SV ↑ PWTT ↓ SV ↑
  16. 16. ↑ Contractility PWTT ↓ SV ↑ ↑ SVR PWTT ↑ SV ↓
  17. 17. Inverse Correlation between PWTT and SV -8 -6 -4 -2 0 2 4 -100 -80 -60 -40 -20 0 20 40 60 80 100 ΔPWTT[ms] ΔSV[cc] y=-0.0511*x-0.876 r=-0.71(p<0.001) n=560 Animal Experiment: Correlation between the change of PWTT and SV since the starting time (Sugo. et. al. IEEE, 1998) Positive inotropic: Dobutamine Negative inotropic: Propranolol/pentobarbital Vasoconstriction: Phenylephrine Vasodilation: Nitroglycerin Hypovolemia: Removal/ transfusion of blood
  18. 18. Accuracy Evaluation Multicenter Study esCCO system v.s. ICO (thermodilution) No. of Patient=213 No. of Data=541 Average of difference between esCCO and ICO=0.08(L), σ=1.07
  19. 19. esCCO Set up & Calibration
  20. 20. Non-invasive Blood Pressure (NIBP) Electrocardiography (ECG) Pulse Oximetry (SpO2) PWTT ~ SV Non-Invasive Cardiac Output
  21. 21. • ECG Electrode: Avoid hair or reused • Site of ECG: Respiratory rate (RR) • Signal Interferance: Electrocauterization ECG Reliability
  22. 22. SpO2 Reliability • SpO2 Interferance : Nail polish, etc : Motion • Sensor Position: Hand or foot? (PWTT longer) • Perfusion Index (PI): Adult > 1 % Pediatric > 0.7 %
  23. 23. Perfusion Index (PI) Adult > 1 % Pediatric > 0.7 %
  24. 24. Perfusion Index (PI) Reliability • Perfusion Index (PI): Adult > 1 % Pediatric > 0.7 % • Interferance: Cold or Vasoconstriction NIBP measurement
  25. 25. • Patient Setting • Calibration PWTT
  26. 26. esCO = K × (α × PWTT + β) × HR α is an experimental constant, β is calculated based on Pulse-Pressure of IBP or NIBP, K is calculated based on a given CO value.* esSV
  27. 27. Bedside Monitor
  28. 28. Trend Graph esCCO,APCO
  29. 29. Trend Graph PWTTV,NK_PPV,Vigileo_SVV NK_PPV Vigileo_SVV PWTTV
  30. 30. Tips and Tricks Hemodynamic Monitoring • Trend • Change after intervention • Titration
  31. 31. Response to increase cardiac load obtained by leg elevation The ability of the heart to improve its performance via Frank-Starling mechanism Anesth Analg 2006;103:289 –96
  32. 32. SevofluranePropofol Anesthetic Induced Physiological Change Length-dependent Regulation of Myocardial Function Anesthesiology 2001;95:357-63 Both technique: Passive leg elevation or Frank-Starring mechanism are preserved in perioperative period.
  33. 33. DesfluranePropofol Anesthetic Induced Physiological Change Length-dependent Regulation of Myocardial Function Anesthesiology 2001;95:357-63 Both technique: Passive leg elevation or Frank-Starring mechanism are preserved in perioperative period.
  34. 34. Fluid Challenge CCO esCCO
  35. 35. “Fluid Challenge Test” PGDT Treatment Protocol
  36. 36. UK NHS/ NICE Protocol (Kuper) Kuper M, Gold SJ, Callow C, et al. BMJ. 2011;342:d3016. Sample PGDT Treatment Protocol
  37. 37. Estimated Stroke Volume esSV “Fluid Challenge Test”
  38. 38. Estimated Stroke Volume esSV
  39. 39. Estimated Stroke Volume esSV 30 48 56 64 72 80 84
  40. 40. Estimated Stroke Volume esSV
  41. 41. Complications from Unguided Hemodynamic Optimisation
  42. 42. Bellamy MC. Br J Anaesth. 2006;97:755-757. Complications Volume Load OPTIMAL Edema Organ dysfunction Adverse outcome Hypoperfusion Organ dysfunction Adverse outcome OverloadedHypovolemic Optimal Volume Administration (and the impact of excessive and insufficient administration)
  43. 43. Evolution of Fluid Management The “Conventional” approach is trying to predict the amount of volume / fluids needed based upon a the duration and severity of a particular procedure Stolting et. al. Basics of Anesthesia, 5th ed. Elsevier - China, p. 349, 200 Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005; 103: 419-28 7 The “Restrictive” fluid approach is based on minimizing fluids based on Blood Pressure “Goal-Directed Therapy” approach considers optimizing volume / fluids via the Frank Starling Curve and individualizing to goals
  44. 44. Early Goal-directed Therapy Supplemental oxygen ± endotracheal intubation and mechanical ventilation Central venous and arterial catheterization CVP Crystalloid Colloid <8 mm Hg MAP 8-12 mm Hg Vasoactive agents <65 mm Hg >90 mm Hg ScvO2 ≥65 and ≤90 mm Hg Goals achieve d ≥70% Hospital admission Yes No Sedation and/or paralysis (if intubated) Transfusion of red cells to hematocrit ≥30% <70% Inotropic agents <70% ≥70% Rivers et al NEJM 2001;345:1368 Volume Pressor Inotrope
  45. 45. StaticCardiac filling pressure Marik P E et al. Chest 2008;134:172-178Osman D. Crit Care Med 2007; 37:64-8 Preload ≠ Fluid Responsiveness CVP SVV & PPV Dynamic
  46. 46. SVVStroke Volume Variation Pulse Pressure VariationPPV Preload
  47. 47. SVV PPV 10-15% PVI 15-20%
  48. 48. Fluid Challenge SVV esSVV
  49. 49. SVV ≥ 12 % SVV < 12 % 200 ml fluid challenge over 5 min Measure and record Cardiac index (CI) CI > 2.5 CI ≤ 2.5 Start dopamine And titration Until CI > 2.5 GDT group Measure and record SVV Give vasopressors No MAP ≥ 65 mmHg Yes A comparison of return of gastrointestinal function between perioperative goal-directed therapy and traditional fluid therapy in major abdominal surgery patients : A prospective randomized controlled study
  50. 50. Control GDT p Value Age (y) 54 ± 10 58 ± 13 0.402 Body mass index (kg/m2) 21 ± 2 22 ± 3 0.097 ASA Classification 2 ± 0 2 ± 0 Operation time (min) 244 ± 97 282 ± 123 0.519 Total blood loss (ml) 850 ± 1409 900 ± 667 0.930 Fluid replacement - Crystalloid (ml) 3144 ± 4097 1807 ± 696 0.351 - Colloid (ml) 1163 ± 650 879 ± 488 0.874 - PRC (ml) 765 ± 644 572 ± 357 0.161 - FFP (ml) 912 ± 863 755 ± 228 0.119 - Total (ml) 4135 ± 5636 3080 ± 1266 0.617 Lactate (mmol/L) - Preoperative 1.34 ± 0.45 1.51 ± 0.68 0.560 - Postoperative 4.74 ± 3.89 3.57 ± 1.37 0.481 Return of bowel function (d) 3.0 ± 1.4 0.8 ± 0.6 0.031* Length of stay in hospital (d) 14.0 ± 7.7 13.1 ± 6.1 0.799 A comparison of return of gastrointestinal function between perioperative goal- directed therapy and traditional fluid therapy in major abdominal surgery patients : A prospective randomized controlled study
  51. 51. Control GDT
  52. 52. PVI ≥ 17 % PVI < 17 % 200 ml fluid challenge over 5 min Estimated Cardiac index esCCI esCCI > 2.5 esCCI ≤ 2.5 Start dopamine And titration Until esCCI > 2.5 GDT group Measure and record PVI Give vasopressors No MAP ≥ 65 mmHg Yes A comparison of return of gastrointestinal function between perioperative goal-directed therapy and traditional fluid therapy in major abdominal surgery patients : A prospective randomized controlled study University Hospital
  53. 53. Control PVI guided GDT
  54. 54. Secondary Care Hospital
  55. 55. Control (n=50) GDT (n=50) significance Operation time (hr) 120.74 (±96.09) 115 (±60.27) 0.721 Blood loss (ml) 196.32 (±195.86) 297.20 (±425.50) 0.131 IV type (0.9% NaCl) 50 (100%) 50 (100%) 0.656 IV fluid (ml) 1,256.00 (±1290.61) 1,809 (±1047.43) 0.021* delta lactate 13.99 (±11.97) 12.95 (±12.13) 0.668 Urine output (ml) 70 (±73.76) 98.62 (±68.87) 0.048* Return of bowel sound (hr) 98.66 (±33.37) 67.40 (±22.25) 0.000* Soft diet (hr) 157.68 (±46.62) 110.18 (±25.61) 0.000* Length of stay (day) 12.90 (±6.91) 9.68 (±2.88) 0.003* Cost of treatment (Baht) 94,518.07 (±75313.11) 54,667.25 (±23358.44) 0.023* Secondary Care Hospital
  56. 56. ● ●● ● ● ● ● ● ● ● ● ● = [(38 - 17) x 80] / 1.2 = 1400 dyn.s/cm5 SVR = [(MAP-CVP) x 80] / CO
  57. 57. Cardiac Output Stroke Volume Contractility AfterloadPreload Heart Rate MacrocirculationMicrocirculation By optimizing the Cardiac function, Volume, and Vessel tone…we can optimize the Macrocirculation … then we focus more into the microcirculation
  58. 58. = [(1.39 x Hb x SaO2)+(0.003 x PaO2)] x CI x 10 = [(1.39 x 6.2 x 0.97)+(0.003 x 100)] x 2.3 x 10 = 199.1 ml O2/min/m2 DO2I = CaO2 x CI x 10
  59. 59. The End Thank you for your attention

×