SlideShare a Scribd company logo
1 of 37
Energy, Work, and Simple Machines Or How I Learned To Build Things
ENERGY AND WORK If you had a job moving boxes around a warehouse, you would know something about work and energy. You have probably thought on more than one occasion that physics is hard work and that you expend a lot of energy solving problems.  Your meaning of the words work and energy is different from their meaning in physics.
ENERGY When describing an object, you might say that it is blue, it is 2 m tall, and it can produce a change. This property, the ability to produce change in itself or the environment, is called  energy .  The energy of an object can take many forms, including thermal energy, chemical energy, and energy of motion.
ENERGY The energy of an object resulting from motion is called  kinetic energy .  To describe kinetic energy mathematically, you need to use motion expressions and Newton’s second law of motion,  F= ma.
ENERGY AND MOTION Start with an object of mass  m , moving at speed  v o . Now apply a force  F , to the object to accelerate it to a new speed,  v 1 . The equation to describe this is: v 1 2  = v o 2  + 2ad To see how energy is expressed in this relationship, you need to do some rearranging. First add a negative  v o 2  to both sides. v 1 2  - v o 2  = 2ad
ENERGY OF MOTION Using Newton’s second law of motion, substitute  F/m  for  a . v 1 2  - v o 2  = 2Fd/m And finally, multiply both sides of the equation by 1/2  m. 1/2mv 1 2  - 1/2mv o 2  = Fd
ENERGY OF MOTION On the left-hand side are the terms that describe the energy of the system. This energy results from motion and is represented by the symbol  KE , for kinetic. KE = 1/2m v 2 Because mass and velocity are both properties of the system, kinetic energy describes a property of the system. In contrast, the right-hand side of the equation refers to the environment: a force exerted and the resulting displacement.
ENERGY OF MOTION Thus, some agent in the environment changed a property of the system. The process of changing the energy of the system is called  work , and it is represented by the symbol  W . W = Fd
ENERGY OF MOTION Substituting  K  and  W  into the equation, you obtain  KE 1  - KE o  = W.  The left-hand side is simply the difference or change in kinetic energy  and can be expressed by using a delta.  KE = W In other words, this equation says that when work is done on an object, a change in kinetic energy results.
ENERGY OF MOTION This hypothesis,   KE = W, has been tested and proven correct. It is called the  work-energy theorem . A unit of energy is called a  joule , in honor of James Prescott Joule. If a 2-kg object moves at 1 m/s, it has a kinetic energy of 1 J.
While the change in kinetic energy described the change in a property of an object, the term  Fd , describes something done to the object.   An agent in the environment exerted a force  F  that displaced the object an amount  d . The work done on an object by external forces changes the amount of energy the object has.
Energy Transfer Looking at the equations we have just learned, notice that the direction of energy transfer can go both ways. If the environment does work on the system, then  W  is positive and the energy of the system increases. If, however, the system does work on the environment, then  W  is negative, and the energy of the system decreases . Work transfers energy between an environment and a system. Energy transfers can go either direction. Energy Transfer Work System Environment
Calculating Work The equation for work is  W = Fd , however this equation holds only for constant forces exerted in the direction of the motion. What happens if the force is exerted perpendicular to the direction of motion ? An everyday example is the motion of a planet around the sun. If the orbit is circular, then the force is always perpendicular to the direction of motion. Consequently, the speed of the planet doesn't change. Therefore, its kinetic energy is also constant. Using the equation  ΔKE = W, you see for constant  KE  that  ΔKE =  0 and thus  W  = 0.  This means that if  F  and  d  are at right angles, then  W  = 0.
CONSTANT FORCE AT AN ANGLE You’ve learned that a force exerted in the direction of motion does an amount of work given by  W = Fd . A force perpendicular to the motion does no work. What work does a force exerted at an angle do? You push on the handle of a lawnmower at a 25-degree angle, with a force of 125 N. You know that a force can be replaced by its components.
CONSTANT FORCE AT AN ANGLE The 125-N force,  F , exerted in the direction of the handle has two components. The magnitude of the horizontal component, F x , is related to the magnitude of the force,  F , by a cosine function: cos 25° = F x /F. By solving for F x , you obtain F x  = F cos 25° = 113 N.
CONSTANT FORCE AT AN ANGLE Using the same method, the vertical component is F y  = -F sin 25.0° = -52.8 N, where the negative sign shows that the force is down . Because the displacement is in the  x  direction, only the  x -component does work. The  y -component does no work. The work you do when you exert a force at an angle to the motion is equal to the component of the force in the direction of the displacement times the distance moved.
 
CONSTANT FORCE AT AN ANGLE The magnitude of the component force acting in the direction of displacement is found by multiplying the magnitude of force  F   by the cosine of the angle between  F  and the direction of the displacement, F x  = F cos θ.  Thus the work done is represented the following way. W = F cos θ d = Fd cos θ
 
CONSTANT FORCE AT AN ANGLE Other agents exert forces on the lawn mower. Which of these agents do work.  Earth’s gravity acts downward, friction exerts a horizontal force opposite the motion, and are perpendicular (or in friction's case, 180º) to the motion so do no work. The work done by friction is negative. Negative work done by a force reduces the energy of the system. Stop pushing on the mower, and it quickly stops moving; its energy would be reduced. Positive work done by a force increases the energy; negative work reduces it.
POWER Until now, none of the discussions of work has mentioned the time it takes to move an object. The work done by a person lifting a box of books is the same whether the box is lifted onto a shelf in 2 seconds or 20 minutes. Although the work done is the same, the power is different. Power  is the rate of doing work. That is, power is the rate at which energy is transferred.
 
POWER To calculate power, use the following formula Power is measured in watts (W). One watt is one joule of energy transferred in one second. Because a watt is such a small unit, power is often measured in kilowatts (kW). A kilowatt is 1000 watts.
Machines Everyone uses some machines ever day. Some are simple tools, such as bottle openers and screwdrivers; others are complex, such as bicycles and automobiles. Machines, whether powered by engines or people, make tasks easier.  A  machine  eases the load by changing either the magnitude or the direction of a force as it transmits energy to the task.
Consider the bottle opener.  When you use the opener, you lift the handle, thereby doing work on the opener.  The opener lifts the cap, doing work on it.  The work you do is called the  input work , W i . The work the machine does is called the  output work , W o .   Work, as you recall, is the transfer of energy by mechanical means.  You put work into a machine, in this case, the bottle opener.  That is, you transfer energy to the opener. The opener, in turn, does work on the cap, transferring energy to it .
The opener is not a source of energy, so the cap cannot receive more energy than you put into the opener.  Thus, the output work can never be greater than the input work .  The machine simply aids in the transfer of energy from you to bottle cap.
Mechanical Advantage The force you exert on a machine is called the  effort force , F e .  The force exerted by the machine is called the  resistance force , F r .  The ratio of resistance force to effort force, F r /F e , is called the  mechanical advantage  (MA) of the machine. MA = F r F e
F r F e
Many machines, such as the bottle opener, have a mechanical advantage greater than one.  When the mechanical advantage is greater than one, the machine increases the force you apply .  You can write the mechanical advantage of a machine in another way using the definition of work. The input work is product of the effort force you exert, F e , and the distance your hand moved, d e .  A machine can increase force, but it can not increase energy .  An ideal machine transfers all the energy, so the output work equals the input work .  W o =W i or F r d r =F e d e
This equation can be rewritten F r /F e =d e /d r .  We know that the mechanical advantage is given by MA = F r /F e .  For an ideal machine, the mechanical advantage is called the ideal mechanical advantage, IMA.  Note that you measure distances moved to calculate the ideal mechanical advantage,  IMA , but you measure the forces exerted to find the actual mechanical advantage,  MA . IMA =   d e d r
Efficiency In a real machine, not all of the input work is available as output work. Some of the energy transferred by the work may be "lost" to thermal energy. Any energy removed from the system means less output work from the machine.  Consequently, the machine is less efficient at accomplishing the task.  The  efficiency  of a machine is defined as the ratio of output work to input work. efficiency = W o W i x 100%
An ideal machine has equal output and input work, W o /W i =1, and its efficiency is 100 %.  All real machines have efficiencies less than 100%.  Lower efficiency means that a greater effort force is needed to exert the same resistance force as a comparable machine of higher efficiency. efficiency =  F r /F e d e /d r x 100% efficiency =  MA IMA x 100%
Simple Machines Most machines, no matter how complex, are combinations of one or more of the six simple machines. They are the lever, pulley, wheel and axle, inclined plane, wedge, and screw.
 
The lever is the only simple machines that has more than one variation. p. 235
Gears, one of the simple machines used in a bicycle, are really a form of the wheel and axle. The  IMA  of all machines is the ratio of distances moved.   For levers and wheel and axles this ratio can be replaced by the distance between the place where the force is applied and the pivot point . A common version of the wheel and axle is a pair of gears on a rotating shaft. The IMA is the ratio of the radii of the two gears. Figure  10-10.
Compound Machine A  compound machine  consists of two or more simple machines linked so that the resistance force of one machine becomes the effort force of the second. The mechanical advantage of a compound machine is the product of the mechanical advantages of the simple machines it is made up of.   MA  =  MA machine 1  x  MA machine 2

More Related Content

What's hot

Work,power and energy
Work,power and energyWork,power and energy
Work,power and energySheikh Amman
 
Work, energy & power physics
Work, energy & power physics Work, energy & power physics
Work, energy & power physics sashrilisdi
 
2.3 - Work Energy & Power
2.3 - Work Energy & Power2.3 - Work Energy & Power
2.3 - Work Energy & Powersimonandisa
 
Lecture Ch 06
Lecture Ch 06Lecture Ch 06
Lecture Ch 06rtrujill
 
Work force energy ppt final wiki
Work force energy ppt final wikiWork force energy ppt final wiki
Work force energy ppt final wikimike_mcmahon
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 classFC Barcelona
 
Work, Energy and Power
Work, Energy and PowerWork, Energy and Power
Work, Energy and PowerShynaKochar1
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energyKharen Adelan
 
Work, power and energy
Work, power and energyWork, power and energy
Work, power and energyitutor
 
2.3 work, energy & power 2017
2.3 work, energy & power 20172.3 work, energy & power 2017
2.3 work, energy & power 2017Paula Mills
 
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11Physics Chapter 4 work, energy, and power By:Ryan, Grade 11
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11luthor101
 
A work, energy and power
A work, energy and powerA work, energy and power
A work, energy and powerdukies_2000
 

What's hot (20)

Work power and Energy
Work  power and EnergyWork  power and Energy
Work power and Energy
 
Work power and energy
Work power and energyWork power and energy
Work power and energy
 
Work,power and energy
Work,power and energyWork,power and energy
Work,power and energy
 
Work, energy & power physics
Work, energy & power physics Work, energy & power physics
Work, energy & power physics
 
2.3 - Work Energy & Power
2.3 - Work Energy & Power2.3 - Work Energy & Power
2.3 - Work Energy & Power
 
Lecture Ch 06
Lecture Ch 06Lecture Ch 06
Lecture Ch 06
 
Work force energy ppt final wiki
Work force energy ppt final wikiWork force energy ppt final wiki
Work force energy ppt final wiki
 
Work and energy physics 9 class
Work and energy physics 9 classWork and energy physics 9 class
Work and energy physics 9 class
 
Work & energy
Work & energyWork & energy
Work & energy
 
Work and energy
Work and energyWork and energy
Work and energy
 
Energy, Work & Power
Energy, Work & PowerEnergy, Work & Power
Energy, Work & Power
 
Work, Energy and Power
Work, Energy and PowerWork, Energy and Power
Work, Energy and Power
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
 
Work, energy and power
Work, energy and powerWork, energy and power
Work, energy and power
 
Work, power and energy
Work, power and energyWork, power and energy
Work, power and energy
 
2.3 work, energy & power 2017
2.3 work, energy & power 20172.3 work, energy & power 2017
2.3 work, energy & power 2017
 
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11Physics Chapter 4 work, energy, and power By:Ryan, Grade 11
Physics Chapter 4 work, energy, and power By:Ryan, Grade 11
 
Work energy-power
Work energy-powerWork energy-power
Work energy-power
 
Work & Energy
Work & EnergyWork & Energy
Work & Energy
 
A work, energy and power
A work, energy and powerA work, energy and power
A work, energy and power
 

Similar to Energy, Work, and Simple Machines - Chapter 10

2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquidsAntony Jaison
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquidsarunjyothi247
 
9th Work & Energy.ppt
9th Work & Energy.ppt9th Work & Energy.ppt
9th Work & Energy.pptFouziaDilshad
 
Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy" Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy" Arun Murali
 
Work and energy part a
Work and energy part aWork and energy part a
Work and energy part aAngelo Aquino
 
02 UNIT-2 (WORK & ENERGY) .pptx
02 UNIT-2 (WORK & ENERGY) .pptx02 UNIT-2 (WORK & ENERGY) .pptx
02 UNIT-2 (WORK & ENERGY) .pptxFatimaAfzal56
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswariPoonam Singh
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswariPoonam Singh
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswariPoonam Singh
 
Physics Unit 4
Physics Unit 4Physics Unit 4
Physics Unit 4furmannv
 
work_energy_and_power.ppt
work_energy_and_power.pptwork_energy_and_power.ppt
work_energy_and_power.pptMusaRadhi1
 
Ch 6 Work & Energy
Ch 6 Work & EnergyCh 6 Work & Energy
Ch 6 Work & EnergyScott Thomas
 

Similar to Energy, Work, and Simple Machines - Chapter 10 (20)

Module No. 10
Module No. 10Module No. 10
Module No. 10
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
 
2 work energy power to properties of liquids
2 work energy power to properties of liquids2 work energy power to properties of liquids
2 work energy power to properties of liquids
 
9th Work & Energy.ppt
9th Work & Energy.ppt9th Work & Energy.ppt
9th Work & Energy.ppt
 
Slide1
Slide1Slide1
Slide1
 
Energy, work and power
Energy, work and powerEnergy, work and power
Energy, work and power
 
Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy" Power Point Presentation ''Work Power Energy"
Power Point Presentation ''Work Power Energy"
 
Work and energy part a
Work and energy part aWork and energy part a
Work and energy part a
 
02 UNIT-2 (WORK & ENERGY) .pptx
02 UNIT-2 (WORK & ENERGY) .pptx02 UNIT-2 (WORK & ENERGY) .pptx
02 UNIT-2 (WORK & ENERGY) .pptx
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswari
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswari
 
Work and energy by ayushman maheswari
Work and energy by ayushman maheswariWork and energy by ayushman maheswari
Work and energy by ayushman maheswari
 
Work, energy and power
Work, energy and powerWork, energy and power
Work, energy and power
 
Physics Unit 4
Physics Unit 4Physics Unit 4
Physics Unit 4
 
IIT JEE NOTES work, energy and power BY ANURAG TYAGI CLASSES
IIT JEE NOTES  work,  energy  and  power  BY ANURAG TYAGI CLASSES IIT JEE NOTES  work,  energy  and  power  BY ANURAG TYAGI CLASSES
IIT JEE NOTES work, energy and power BY ANURAG TYAGI CLASSES
 
work_energy_and_power.ppt
work_energy_and_power.pptwork_energy_and_power.ppt
work_energy_and_power.ppt
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Ch 6 Work & Energy
Ch 6 Work & EnergyCh 6 Work & Energy
Ch 6 Work & Energy
 
Mechanical energy
Mechanical energyMechanical energy
Mechanical energy
 
Kinetic theory
Kinetic theory Kinetic theory
Kinetic theory
 

More from Galen West

Chapter 14 - Gases
Chapter 14 - GasesChapter 14 - Gases
Chapter 14 - GasesGalen West
 
Chapter 4 - The Atom
Chapter 4 - The AtomChapter 4 - The Atom
Chapter 4 - The AtomGalen West
 
Chapter 18 Lenses And Refraction
Chapter 18   Lenses And RefractionChapter 18   Lenses And Refraction
Chapter 18 Lenses And RefractionGalen West
 
Chapter 12 Stoichiometry
Chapter 12   StoichiometryChapter 12   Stoichiometry
Chapter 12 StoichiometryGalen West
 
Chapter 12 - Thermal Energy
Chapter 12 - Thermal EnergyChapter 12 - Thermal Energy
Chapter 12 - Thermal EnergyGalen West
 
Chapter 11 - Reaction Types
Chapter 11 - Reaction TypesChapter 11 - Reaction Types
Chapter 11 - Reaction TypesGalen West
 
Chapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesChapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesGalen West
 
Covalent Bonding - Chapter 8
Covalent Bonding - Chapter 8Covalent Bonding - Chapter 8
Covalent Bonding - Chapter 8Galen West
 
Chapter7 - Test A Answers
Chapter7 - Test A AnswersChapter7 - Test A Answers
Chapter7 - Test A AnswersGalen West
 
Ionic Bonds - Chapter 7
Ionic Bonds  - Chapter 7Ionic Bonds  - Chapter 7
Ionic Bonds - Chapter 7Galen West
 
Momentum - Chapter 9
Momentum - Chapter 9Momentum - Chapter 9
Momentum - Chapter 9Galen West
 
Chemistry Jeopardy
Chemistry JeopardyChemistry Jeopardy
Chemistry JeopardyGalen West
 
Physics Jeopardy
Physics JeopardyPhysics Jeopardy
Physics JeopardyGalen West
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal GravitationGalen West
 
Periodic Table Chapter 14
Periodic Table   Chapter 14Periodic Table   Chapter 14
Periodic Table Chapter 14Galen West
 

More from Galen West (18)

Chapter 14 - Gases
Chapter 14 - GasesChapter 14 - Gases
Chapter 14 - Gases
 
Chapter 4 - The Atom
Chapter 4 - The AtomChapter 4 - The Atom
Chapter 4 - The Atom
 
Chapter 18 Lenses And Refraction
Chapter 18   Lenses And RefractionChapter 18   Lenses And Refraction
Chapter 18 Lenses And Refraction
 
Chapter 12 Stoichiometry
Chapter 12   StoichiometryChapter 12   Stoichiometry
Chapter 12 Stoichiometry
 
Chap16 Light
Chap16   LightChap16   Light
Chap16 Light
 
Chapter 12 - Thermal Energy
Chapter 12 - Thermal EnergyChapter 12 - Thermal Energy
Chapter 12 - Thermal Energy
 
Chapter 11 - Reaction Types
Chapter 11 - Reaction TypesChapter 11 - Reaction Types
Chapter 11 - Reaction Types
 
Chapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesChapter 10 - Chemical Quantities
Chapter 10 - Chemical Quantities
 
Covalent Bonding - Chapter 8
Covalent Bonding - Chapter 8Covalent Bonding - Chapter 8
Covalent Bonding - Chapter 8
 
Chapter7 - Test A Answers
Chapter7 - Test A AnswersChapter7 - Test A Answers
Chapter7 - Test A Answers
 
Ionic Bonds - Chapter 7
Ionic Bonds  - Chapter 7Ionic Bonds  - Chapter 7
Ionic Bonds - Chapter 7
 
Momentum - Chapter 9
Momentum - Chapter 9Momentum - Chapter 9
Momentum - Chapter 9
 
Chemistry Jeopardy
Chemistry JeopardyChemistry Jeopardy
Chemistry Jeopardy
 
Physics Jeopardy
Physics JeopardyPhysics Jeopardy
Physics Jeopardy
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal Gravitation
 
Periodic Table Chapter 14
Periodic Table   Chapter 14Periodic Table   Chapter 14
Periodic Table Chapter 14
 
Friction
FrictionFriction
Friction
 
Models
ModelsModels
Models
 

Recently uploaded

India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportMintel Group
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCRashishs7044
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03DallasHaselhorst
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCRashishs7044
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Seta Wicaksana
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?Olivia Kresic
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCRashishs7044
 
IoT Insurance Observatory: summary 2024
IoT Insurance Observatory:  summary 2024IoT Insurance Observatory:  summary 2024
IoT Insurance Observatory: summary 2024Matteo Carbone
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...ShrutiBose4
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfRbc Rbcua
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCRashishs7044
 

Recently uploaded (20)

India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample Report
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03
 
Corporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information TechnologyCorporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information Technology
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
 
IoT Insurance Observatory: summary 2024
IoT Insurance Observatory:  summary 2024IoT Insurance Observatory:  summary 2024
IoT Insurance Observatory: summary 2024
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdf
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
 

Energy, Work, and Simple Machines - Chapter 10

  • 1. Energy, Work, and Simple Machines Or How I Learned To Build Things
  • 2. ENERGY AND WORK If you had a job moving boxes around a warehouse, you would know something about work and energy. You have probably thought on more than one occasion that physics is hard work and that you expend a lot of energy solving problems. Your meaning of the words work and energy is different from their meaning in physics.
  • 3. ENERGY When describing an object, you might say that it is blue, it is 2 m tall, and it can produce a change. This property, the ability to produce change in itself or the environment, is called energy . The energy of an object can take many forms, including thermal energy, chemical energy, and energy of motion.
  • 4. ENERGY The energy of an object resulting from motion is called kinetic energy . To describe kinetic energy mathematically, you need to use motion expressions and Newton’s second law of motion, F= ma.
  • 5. ENERGY AND MOTION Start with an object of mass m , moving at speed v o . Now apply a force F , to the object to accelerate it to a new speed, v 1 . The equation to describe this is: v 1 2 = v o 2 + 2ad To see how energy is expressed in this relationship, you need to do some rearranging. First add a negative v o 2 to both sides. v 1 2 - v o 2 = 2ad
  • 6. ENERGY OF MOTION Using Newton’s second law of motion, substitute F/m for a . v 1 2 - v o 2 = 2Fd/m And finally, multiply both sides of the equation by 1/2 m. 1/2mv 1 2 - 1/2mv o 2 = Fd
  • 7. ENERGY OF MOTION On the left-hand side are the terms that describe the energy of the system. This energy results from motion and is represented by the symbol KE , for kinetic. KE = 1/2m v 2 Because mass and velocity are both properties of the system, kinetic energy describes a property of the system. In contrast, the right-hand side of the equation refers to the environment: a force exerted and the resulting displacement.
  • 8. ENERGY OF MOTION Thus, some agent in the environment changed a property of the system. The process of changing the energy of the system is called work , and it is represented by the symbol W . W = Fd
  • 9. ENERGY OF MOTION Substituting K and W into the equation, you obtain KE 1 - KE o = W. The left-hand side is simply the difference or change in kinetic energy and can be expressed by using a delta.  KE = W In other words, this equation says that when work is done on an object, a change in kinetic energy results.
  • 10. ENERGY OF MOTION This hypothesis,  KE = W, has been tested and proven correct. It is called the work-energy theorem . A unit of energy is called a joule , in honor of James Prescott Joule. If a 2-kg object moves at 1 m/s, it has a kinetic energy of 1 J.
  • 11. While the change in kinetic energy described the change in a property of an object, the term Fd , describes something done to the object. An agent in the environment exerted a force F that displaced the object an amount d . The work done on an object by external forces changes the amount of energy the object has.
  • 12. Energy Transfer Looking at the equations we have just learned, notice that the direction of energy transfer can go both ways. If the environment does work on the system, then W is positive and the energy of the system increases. If, however, the system does work on the environment, then W is negative, and the energy of the system decreases . Work transfers energy between an environment and a system. Energy transfers can go either direction. Energy Transfer Work System Environment
  • 13. Calculating Work The equation for work is W = Fd , however this equation holds only for constant forces exerted in the direction of the motion. What happens if the force is exerted perpendicular to the direction of motion ? An everyday example is the motion of a planet around the sun. If the orbit is circular, then the force is always perpendicular to the direction of motion. Consequently, the speed of the planet doesn't change. Therefore, its kinetic energy is also constant. Using the equation ΔKE = W, you see for constant KE that ΔKE = 0 and thus W = 0. This means that if F and d are at right angles, then W = 0.
  • 14. CONSTANT FORCE AT AN ANGLE You’ve learned that a force exerted in the direction of motion does an amount of work given by W = Fd . A force perpendicular to the motion does no work. What work does a force exerted at an angle do? You push on the handle of a lawnmower at a 25-degree angle, with a force of 125 N. You know that a force can be replaced by its components.
  • 15. CONSTANT FORCE AT AN ANGLE The 125-N force, F , exerted in the direction of the handle has two components. The magnitude of the horizontal component, F x , is related to the magnitude of the force, F , by a cosine function: cos 25° = F x /F. By solving for F x , you obtain F x = F cos 25° = 113 N.
  • 16. CONSTANT FORCE AT AN ANGLE Using the same method, the vertical component is F y = -F sin 25.0° = -52.8 N, where the negative sign shows that the force is down . Because the displacement is in the x direction, only the x -component does work. The y -component does no work. The work you do when you exert a force at an angle to the motion is equal to the component of the force in the direction of the displacement times the distance moved.
  • 17.  
  • 18. CONSTANT FORCE AT AN ANGLE The magnitude of the component force acting in the direction of displacement is found by multiplying the magnitude of force F by the cosine of the angle between F and the direction of the displacement, F x = F cos θ. Thus the work done is represented the following way. W = F cos θ d = Fd cos θ
  • 19.  
  • 20. CONSTANT FORCE AT AN ANGLE Other agents exert forces on the lawn mower. Which of these agents do work. Earth’s gravity acts downward, friction exerts a horizontal force opposite the motion, and are perpendicular (or in friction's case, 180º) to the motion so do no work. The work done by friction is negative. Negative work done by a force reduces the energy of the system. Stop pushing on the mower, and it quickly stops moving; its energy would be reduced. Positive work done by a force increases the energy; negative work reduces it.
  • 21. POWER Until now, none of the discussions of work has mentioned the time it takes to move an object. The work done by a person lifting a box of books is the same whether the box is lifted onto a shelf in 2 seconds or 20 minutes. Although the work done is the same, the power is different. Power is the rate of doing work. That is, power is the rate at which energy is transferred.
  • 22.  
  • 23. POWER To calculate power, use the following formula Power is measured in watts (W). One watt is one joule of energy transferred in one second. Because a watt is such a small unit, power is often measured in kilowatts (kW). A kilowatt is 1000 watts.
  • 24. Machines Everyone uses some machines ever day. Some are simple tools, such as bottle openers and screwdrivers; others are complex, such as bicycles and automobiles. Machines, whether powered by engines or people, make tasks easier. A machine eases the load by changing either the magnitude or the direction of a force as it transmits energy to the task.
  • 25. Consider the bottle opener. When you use the opener, you lift the handle, thereby doing work on the opener. The opener lifts the cap, doing work on it. The work you do is called the input work , W i . The work the machine does is called the output work , W o . Work, as you recall, is the transfer of energy by mechanical means. You put work into a machine, in this case, the bottle opener. That is, you transfer energy to the opener. The opener, in turn, does work on the cap, transferring energy to it .
  • 26. The opener is not a source of energy, so the cap cannot receive more energy than you put into the opener. Thus, the output work can never be greater than the input work . The machine simply aids in the transfer of energy from you to bottle cap.
  • 27. Mechanical Advantage The force you exert on a machine is called the effort force , F e . The force exerted by the machine is called the resistance force , F r . The ratio of resistance force to effort force, F r /F e , is called the mechanical advantage (MA) of the machine. MA = F r F e
  • 28. F r F e
  • 29. Many machines, such as the bottle opener, have a mechanical advantage greater than one. When the mechanical advantage is greater than one, the machine increases the force you apply . You can write the mechanical advantage of a machine in another way using the definition of work. The input work is product of the effort force you exert, F e , and the distance your hand moved, d e . A machine can increase force, but it can not increase energy . An ideal machine transfers all the energy, so the output work equals the input work . W o =W i or F r d r =F e d e
  • 30. This equation can be rewritten F r /F e =d e /d r . We know that the mechanical advantage is given by MA = F r /F e . For an ideal machine, the mechanical advantage is called the ideal mechanical advantage, IMA. Note that you measure distances moved to calculate the ideal mechanical advantage, IMA , but you measure the forces exerted to find the actual mechanical advantage, MA . IMA = d e d r
  • 31. Efficiency In a real machine, not all of the input work is available as output work. Some of the energy transferred by the work may be "lost" to thermal energy. Any energy removed from the system means less output work from the machine. Consequently, the machine is less efficient at accomplishing the task. The efficiency of a machine is defined as the ratio of output work to input work. efficiency = W o W i x 100%
  • 32. An ideal machine has equal output and input work, W o /W i =1, and its efficiency is 100 %. All real machines have efficiencies less than 100%. Lower efficiency means that a greater effort force is needed to exert the same resistance force as a comparable machine of higher efficiency. efficiency = F r /F e d e /d r x 100% efficiency = MA IMA x 100%
  • 33. Simple Machines Most machines, no matter how complex, are combinations of one or more of the six simple machines. They are the lever, pulley, wheel and axle, inclined plane, wedge, and screw.
  • 34.  
  • 35. The lever is the only simple machines that has more than one variation. p. 235
  • 36. Gears, one of the simple machines used in a bicycle, are really a form of the wheel and axle. The IMA of all machines is the ratio of distances moved. For levers and wheel and axles this ratio can be replaced by the distance between the place where the force is applied and the pivot point . A common version of the wheel and axle is a pair of gears on a rotating shaft. The IMA is the ratio of the radii of the two gears. Figure 10-10.
  • 37. Compound Machine A compound machine consists of two or more simple machines linked so that the resistance force of one machine becomes the effort force of the second. The mechanical advantage of a compound machine is the product of the mechanical advantages of the simple machines it is made up of. MA = MA machine 1 x MA machine 2