SlideShare a Scribd company logo
1 of 37
WDM Principles
February 2014

1

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
How to increase network
capacity?
Space
Division
Multiplexing
(SDM)
• Add fiber &
equipment
• Time & Cost

Time
Division
Multiplexing
(TDM)
• PDH/SDH (STM16->STM-64(10G)>STM-256(40G)
• Cost & Complexity

Wavelength
Division
Multiplexing
(WDM)
• Economical, mature
& quick

2

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
What’s WDM?
• A technology that utilizes the properties of
refracted light to both combine and
separate optical signals based on their
wavelengths within the optical spectrum
• Different signals with specific wavelength
are multiplexed into a fiber for
transmission

3

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
What’s WDM? , Contd.,
Gas Station

Free Way

Petrol Car

Freeway
Petrol Car
Gas Station
Gray Car
Colored Car
Driveway

: Fiber
: Supervisory Signal
: Optical relay
: Client Service
: Service in different channels (wavelength)
: Optical wavelength
4

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Advantages of WDM
• Ultra high capacity
• Data transparency transmission
– Doesn’t change the structure or any byte in the frame
for the client signal

• Long haul transmission
• Compatible with existing optical fibers
• High performance-to-cost-ratio (unit traffic cost)
– However, projects get long time to break-even

• High networking flexibility, economy and reliability
• Smooth expansion
5

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
WDM system key technologies
• Optical multiplexer (MUX) and demultiplexer
• Optical Amplifier (Amp)
• Supervisory channel
• Optical Source

6

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Optical Multiplexer Unit:
Multiplex several services
with different wavelength
into one main path signal

Optical Amplifier:
Amplifies the optical
signal

1

A

P

A
OLA

nm
OSC

Optical Transponder
Unit: Access the client
services & convert the
wavelength compiled with
ITU standard

OTU1

P
P

OA

n

A

P

P
OA

OTUn

Optical Line
Amplifier

O
M
U

2

1

A

1, 2..n

P
OTU2

System structure

1, 2..n

A
OTU1

Optical De-multiplexer
Unit: De-multiplex one
main path signal into
several individual signals

nm
OSC

O
D
U

2

n

OTU2

OTUn

OSC

Optical Supervisory
Channel: Terminate &
Re-generation. Not
amplification.

A
P

Active
Passive
7

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
OTU- Optical Transponder Unit
Optical to
Electrical
conversion

O
Non-color
E
(Not defined by ITU-T)
E
O
Ex:1310 nm short reach SMF
1550 nm long reach SMF Wavelength conversion
850 nm MMF

Electrical to
Optical
conversion

Color
(Defined by ITU-T)
Ex:1: 1550.51 nm
2 :1551.23 nm

Can’t use these in WDM
without OTU

SMF-Single Mode Fiber
MMF-Multi Mode Fiber
8

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Loss
• Passive => Loss (power reduction)
– Ex:- Input power to the MUX 0 dB. Output power from
the MUX -6 dB. Therefore the loss is 6 dB

• Loss can be due to splicing, distance, bending,
aging, connectors

Source: http://www.thefoa.org/tech/lossbudg.htm

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU

9
Transmission Modes
• Single fiber unidirectional
– 2 optical fibers

• Single fiber bidirectional
– Only 1 optical fiber
– Ex:- CWDM, to reduce cost

Coarse WDM

10

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Application modes
• Open system
– NO special requirements for multiplex terminal
optical interface
– Only requirement is that these interfaces meet
the optical interface standards defined in ITU-T

• Integrated system
– Doesn’t adopt wavelength conversion technology
– Requires that the wavelength of the optical signal
at the multiplex terminal confirms to the
specifications for the WDM system
11

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
c=f
• c = velocity of light in a vacuum = 3 x 108 m/s (constant)
• f = frequency (Hz)
•  = wavelength (m)
• f1/
• Refractive index n = c / v
• v = speed of light in a material
• In an optical fiber, since the n of core is higher than n of
cladding the light refracts

12

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Fiber cable types
• G.652
• G.653
– Main application: submarine

• G.655
– Best fiber for WDM
– Expensive

13

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Single vs. multi mode

Source: http://osd.com.au/multimode-versus-singlemode/

High Attenuation (3 dB/km)
High dispersion
Expensive today (because of less demand)

Attenuation = 0.22 dB.km (G.652 @ 1550nm)
No mode dispersion

Mode=Path of light
14

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
WDM network topologies
• Point to Point
• Ring
• Mesh

Cost 
Complexity 
Reliability 

15

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
CWDM vs. DWDM
DWDM
CWDM

Source: http://www.cable360.net/tech/strategy/businesscases/30007.html

CWDM- Coarse WDM, DWDM-Dense WDM

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU

16
Since f  1 / ,
channel
spacing can
be denotes as
both distance
and frequency

CWDM vs. DWDM, cont.,
Types

CWDM

DWDM

Channel spacing (Grid)

20 nm (fixed)

100 GHz/ 50 GHz/ 25 GHz

1311~1611 nm
(All bands)

C-band:
1529nm~1561nm
L-band:
1570nm~1603nm

18 x 10 Gbps

192 x 10 Gbps

Laser

Un-cooled Laser

Cooled Laser

Cost

70%

100%

100 km (max)

5000 km

Band

Capacity (max)

Application
As CWDM
works in all 5
bands,
amplification is
NOT possible

17

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Linear and non-linear effects
• Linear ( distance)
– Attenuation
– Dispersion

• Non-Linear
– Four Way Mixing
(FWM)

• Chromatic
• Polarization

18

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Attenuation

Lowest loss
band

Water peak

Source: http://osd.com.au/multimode-versus-singlemode/

19

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Dispersion
•

Physical phenomenon of signal distortion caused when various modes
carrying signal energy or different frequencies of the signal have different
group velocity and disperse from each other during propagation

•

Digital modulation -> carrier frequency+ multiple other frequencies ->

different speeds -> Inter Symbol Interference (ISI) -> Bit errors
•
Color

2 types
–

Mode dispersion
•

–

Dominant in MMF

Chromatic dispersion (CD)
•
•

Dominant in SMF
Ex:- Rainbow
–

•

Light through water traverse at different speeds

Dispersion affects the own channel
Source: http://www.bubblews.com/news/2058509-somewhere-over-the-rainbow
20

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Chromatic dispersion
A phenomenon that the phase velocity and group velocity of light propagating
in a transparent medium depend on the optical frequency. A related
quantitative measure is the Group Velocity Dispersion (GVD)

Source: https://www.upc.edu/patents/TO/ict-and-electronic-technologies/chromatic-dispersion-1.jpg
21

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Chromatic dispersion, cont.,
G.655: little
dispersion to
avoid FWM

G.652: widely
used, need
DCF for high
rate
transmission

Dispersion
coefficient

G.653

17 ps/nm/km

4.5 ps/nm/km

1310

1550

Wavelength/nm

22

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Dispersion Compensation Fiber
(DCF)

DCM (Dispersion Compensation
Module) . Usually placed at
bottom of rack

Source: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5719

Dispersion-> DCF ->Dispersion
longer fiber distance -> attenuation  -> Optical Amplifiers -> noise  -> S/N
If the total accumulated dispersion (ps/nm) is less than 800 for 10 Gbps/STM-64, then DCM is not required
23

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Polarization Mode Dispersion
(PMD)
• Resulting from different propagation
velocities of 2 states of cross polarization of
optical signal in fiber
• Can’t avoid
• Due to
– Manufacturing process
– Installation/usage (temperature, vibration,
bending (DCM)

Source: http://www.fiberoptics4sale.com/wordpress/optical-fiber-dispersion/

• Both PMD and CD are sensitive at higher bit
rates
24

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Optical source
• Key requirements
– Large dispersion tolerance value
– Standard and stable wavelength
• ITU-T recommends the maximum deviation of the
channel frequency to be <=10% of channel
spacing

25

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Modulators
• Direct
• Electro-Absorption (EA) External
– Ex:- for 40 G

• Mach-Zehnder (M-Z) External
– Ex:- for 40 G

• Coherent
– Ex:- for 100 G
– No DCM required
26

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Comparison of modulators
Types

Direct

EA

M-Z

Coherent

Max.
dispersion
tolerance
(ps/nm)

1200-4000

7200-12800

>12800

40000

Cost

moderate

expensive

Very
expensive

Very
expensive

good

better

best

best

Wavelength
stability

27

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
S (signal)
OA

Amplifier

• Compensates the loss
• Any analog signal system has noise. Optical signal is
also analog
• More Amps-> more accumulated noise (N)->S/N->BIR
– Amp keeps Signal (S) constant.

• Solution: re-generation
• Amplification and regeneration gives unlimited distance,
theoretically

28

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Amplifier types
• EDFA - Erbium Doped Fiber Amplifier
– Widely used

• RFA - Raman Fiber Amplifier
– Uses non-linearity effect
– Uses high power class 4 laser
• Use APC (Angular Physical Contact) connectors instead of
PC
– Ex:-LC/APC (Lucent Connector), SC/APC, FC/APC

– 20 km distance
• Need to maintain splice loss <0.1dB within 1st 10 km and
<0.2dB within next 10 km

– Low noise
– Low gain efficiency (10~12 dB)
29

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
EDFA

Source: http://www.tlc.unipr.it/bononi/ricerca/edfa.html

Source: http://spie.org/x33612.xml

30

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Raman

Source: http://www.globalspec.com/RefArticleImages/157D4FA155A471EB0023715782A949C2_04_04_DWDM-10.jpg

31

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Optical Multiplexer and demultiplexer
• TFF - Thin Film Filter
– when no. of channels<16

• AWG - Arrayed Waveguide Grating
– when no. of channels>=16
– expensive

32

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
TFF
0.1 dB loss. Therefore max. of 16
channels

Has the
lowest power

Source: http://www.fiberoptics4sale.com/wordpress/what-is-multilayer-dielectric-thin-film-filter/

33

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
AWG

All have the same
power

Source: http://docstore.mik.ua/univercd/cc/td/doc/product/mels/cm1500/dwdm/dwdm_ovr.htm

34

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Supervisory technologies
• OSC - Optical Supervisory Channel
– Often used in backbone systems
– Uses OTN (G.709) framing (similar to SDH) on
OUT board
– Costly

• ESC - Electrical Supervisory Channel
– Often used in metropolitan systems
– OTU is mandatory at every site
• OLA sites don’t have OUT. Therefore can’t mange
OLAs with ESC

35

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
Related ITU-T recommendations
•
•
•
•
•
•

G.652
- SMF
G.655
- Dispersion-shifted SMF
G.661/G.662/G.663
- OAs
G.671
- Passive optical components
G.957
- SDH optical interfaces
G.691
- Optical interfaces for single channel STM64, STM-256 systems & other SDH systems
with OA
G.692
- Optical interfaces for multi-channel
systems with OA
G.709
- OTN interfaces
• G.975
- FEC for submarine systems
36

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
About the Author
37

Eng. Anuradha Udunuwara is a Chartered Engineer by profession based in Sri Lanka. He has
over a decade industry experience in strategy, architecture, engineering, design, plan,
implementation and maintenance of CSP Networks using both packet-switched (PS) and
Circuit-Switched (CS) technologies, along with legacy to NGN migration. Eng. Anuradha is a
well-known in the field of CSP industry, both locally and internationally.
Graduated from University of Peradeniya, Sri Lanka in 2001 with an honors in Electrical &
Electronic Engineering, Eng. Anuradha is a corporate member of the Institution of Engineers
Sri Lanka, a professional member of British Computer Society, a member of Institution of
Electrical & Electronic Engineers, a member of Institution of Engineering & Technology
(formerly Institution of Electrical Engineers), a member of the Computer Society of Sri Lanka,
a life member of Sri Lanka Association for the Advancement of Science, a senior member of
the Carrier Ethernet Forum, a member of the Internet Society, a member of the Internet
Strategy Forum, a member of the Internet Strategy Forum Network, a member & a senior
contributor of the Ethernet Academy, a member of the NGN/IMS forum and a member of the
Peradeniya Engineering Faculty Alumni Association. He is also an ITIL foundation certified
and the only MEF-CECP in the country.
In his spare time Anuradha enjoys spending time with his family, playing badminton,
photography, reading and travelling.

Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU

More Related Content

What's hot

DWDM Presentation
DWDM PresentationDWDM Presentation
DWDM Presentation
ayodejieasy
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexing
Bise Mond
 

What's hot (20)

DWDM Presentation
DWDM PresentationDWDM Presentation
DWDM Presentation
 
Ofdm for wireless
Ofdm for wirelessOfdm for wireless
Ofdm for wireless
 
Wdm and dwdm ppt
Wdm and dwdm pptWdm and dwdm ppt
Wdm and dwdm ppt
 
Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber Communication
 
DWDM 101 - BRKOPT-2016
DWDM 101 - BRKOPT-2016DWDM 101 - BRKOPT-2016
DWDM 101 - BRKOPT-2016
 
OTN for Beginners
OTN for BeginnersOTN for Beginners
OTN for Beginners
 
WDM Basics
WDM BasicsWDM Basics
WDM Basics
 
Dense wavelength division multiplexing (dwdm) technique
Dense wavelength division multiplexing (dwdm) techniqueDense wavelength division multiplexing (dwdm) technique
Dense wavelength division multiplexing (dwdm) technique
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexing
 
Optical networking
Optical networkingOptical networking
Optical networking
 
Rise Time Budget Analysis and Design of Components
Rise Time Budget Analysis and Design of ComponentsRise Time Budget Analysis and Design of Components
Rise Time Budget Analysis and Design of Components
 
Dense wavelength division multiplexing
Dense wavelength division multiplexingDense wavelength division multiplexing
Dense wavelength division multiplexing
 
CWDM vs DWDM Technology
CWDM vs DWDM TechnologyCWDM vs DWDM Technology
CWDM vs DWDM Technology
 
Optical Transport Technologies and Trends
Optical Transport Technologies and TrendsOptical Transport Technologies and Trends
Optical Transport Technologies and Trends
 
What is Mode Field Diameter?
What is Mode Field Diameter?What is Mode Field Diameter?
What is Mode Field Diameter?
 
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMALOFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
 
Coherent systems
Coherent systemsCoherent systems
Coherent systems
 
Dwdm
DwdmDwdm
Dwdm
 
Otn network poster_web
Otn network poster_webOtn network poster_web
Otn network poster_web
 
Optical network architecture
Optical network architectureOptical network architecture
Optical network architecture
 

Viewers also liked

Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
Cisco Russia
 
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012. Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
Cisco Russia
 
Преимущества интеграции IP + Optical. Демонстрация решения.
 Преимущества интеграции IP + Optical. Демонстрация решения.  Преимущества интеграции IP + Optical. Демонстрация решения.
Преимущества интеграции IP + Optical. Демонстрация решения.
Cisco Russia
 
Конвергенция пакетной и транспортной инфраструктуры оператора связи.
 Конвергенция пакетной и транспортной инфраструктуры оператора связи.  Конвергенция пакетной и транспортной инфраструктуры оператора связи.
Конвергенция пакетной и транспортной инфраструктуры оператора связи.
Cisco Russia
 
Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
 Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.  Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
Cisco Russia
 
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
Cisco Russia
 
Cisco ONS 15454 MSTP. Обзор нового функционала.
Cisco ONS 15454 MSTP. Обзор нового функционала. Cisco ONS 15454 MSTP. Обзор нового функционала.
Cisco ONS 15454 MSTP. Обзор нового функционала.
Cisco Russia
 
DWDM инфраструктура для сети следующего поколения.
 DWDM инфраструктура для сети следующего поколения.  DWDM инфраструктура для сети следующего поколения.
DWDM инфраструктура для сети следующего поколения.
Cisco Russia
 
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
Cisco Russia
 
Транспортная инфраструктура нового поколения - Cisco nLight ROADM
Транспортная инфраструктура нового поколения - Cisco nLight ROADMТранспортная инфраструктура нового поколения - Cisco nLight ROADM
Транспортная инфраструктура нового поколения - Cisco nLight ROADM
Cisco Russia
 

Viewers also liked (15)

Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
Многоуровневая интеллектуальная плоскость управления – Cisco nLight Control P...
 
Архитектура и уникальные особенности магистральной платформы Cisco NCS 6000
Архитектура и уникальные особенности магистральной платформы Cisco NCS 6000Архитектура и уникальные особенности магистральной платформы Cisco NCS 6000
Архитектура и уникальные особенности магистральной платформы Cisco NCS 6000
 
Развитие сетевой архитектуры для ЦОД Cisco ACI
Развитие сетевой архитектуры для ЦОД Cisco ACIРазвитие сетевой архитектуры для ЦОД Cisco ACI
Развитие сетевой архитектуры для ЦОД Cisco ACI
 
Архитектура Cisco SD-Access для беспроводных корпоративных сетей
Архитектура Cisco SD-Access для беспроводных корпоративных сетейАрхитектура Cisco SD-Access для беспроводных корпоративных сетей
Архитектура Cisco SD-Access для беспроводных корпоративных сетей
 
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012. Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
Модернизация DWDM сети «Укртелеком» для проведения ЕВРО-2012.
 
Преимущества интеграции IP + Optical. Демонстрация решения.
 Преимущества интеграции IP + Optical. Демонстрация решения.  Преимущества интеграции IP + Optical. Демонстрация решения.
Преимущества интеграции IP + Optical. Демонстрация решения.
 
Конвергенция пакетной и транспортной инфраструктуры оператора связи.
 Конвергенция пакетной и транспортной инфраструктуры оператора связи.  Конвергенция пакетной и транспортной инфраструктуры оператора связи.
Конвергенция пакетной и транспортной инфраструктуры оператора связи.
 
Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
 Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.  Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
Архитектура Cisco Unified MPLS: Внедрение MPLS на всех уровнях сети.
 
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
Технология Cisco nLight™ для построения транспортных инфраструктур нового пок...
 
Обзор и новые возможности архитектуры CisconLight. Платформа NCS 2000
Обзор и новые возможности архитектуры CisconLight. Платформа NCS 2000Обзор и новые возможности архитектуры CisconLight. Платформа NCS 2000
Обзор и новые возможности архитектуры CisconLight. Платформа NCS 2000
 
Cisco ONS 15454 MSTP. Обзор нового функционала.
Cisco ONS 15454 MSTP. Обзор нового функционала. Cisco ONS 15454 MSTP. Обзор нового функционала.
Cisco ONS 15454 MSTP. Обзор нового функционала.
 
DWDM & Packet Optical Fundamentals by Dion Leung [APRICOT 2015]
DWDM & Packet Optical Fundamentals by Dion Leung [APRICOT 2015]DWDM & Packet Optical Fundamentals by Dion Leung [APRICOT 2015]
DWDM & Packet Optical Fundamentals by Dion Leung [APRICOT 2015]
 
DWDM инфраструктура для сети следующего поколения.
 DWDM инфраструктура для сети следующего поколения.  DWDM инфраструктура для сети следующего поколения.
DWDM инфраструктура для сети следующего поколения.
 
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
Гибкие перестраиваемые узлы ввода- вывода нового поколения – Cisco nLight ROADM
 
Транспортная инфраструктура нового поколения - Cisco nLight ROADM
Транспортная инфраструктура нового поколения - Cisco nLight ROADMТранспортная инфраструктура нового поколения - Cisco nLight ROADM
Транспортная инфраструктура нового поколения - Cisco nLight ROADM
 

Similar to WDM principles

Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...
eSAT Journals
 
258116349-DWDM-Basic-Presentation.pdf
258116349-DWDM-Basic-Presentation.pdf258116349-DWDM-Basic-Presentation.pdf
258116349-DWDM-Basic-Presentation.pdf
Mohamedshabana38
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
Mohamedshabana38
 

Similar to WDM principles (20)

Introduction to Optical Backbone Networks
Introduction to Optical Backbone NetworksIntroduction to Optical Backbone Networks
Introduction to Optical Backbone Networks
 
Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...
 
Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...Performance analysis of dwdm based fiber optic communication with different m...
Performance analysis of dwdm based fiber optic communication with different m...
 
Principles_of_WDM__1674788675.pdf
Principles_of_WDM__1674788675.pdfPrinciples_of_WDM__1674788675.pdf
Principles_of_WDM__1674788675.pdf
 
258116349-DWDM-Basic-Presentation.pdf
258116349-DWDM-Basic-Presentation.pdf258116349-DWDM-Basic-Presentation.pdf
258116349-DWDM-Basic-Presentation.pdf
 
Simulation and Performance Analysis of Dispersion Compensation using DCF in P...
Simulation and Performance Analysis of Dispersion Compensation using DCF in P...Simulation and Performance Analysis of Dispersion Compensation using DCF in P...
Simulation and Performance Analysis of Dispersion Compensation using DCF in P...
 
Course Wave Division Multiplexing (CWDM): TechNet Augusta 2015
Course Wave Division Multiplexing (CWDM): TechNet Augusta 2015Course Wave Division Multiplexing (CWDM): TechNet Augusta 2015
Course Wave Division Multiplexing (CWDM): TechNet Augusta 2015
 
dwdm_pocket_guide.pdf
dwdm_pocket_guide.pdfdwdm_pocket_guide.pdf
dwdm_pocket_guide.pdf
 
How to use WDM technology to expand fiber capacity.pdf
How to use WDM technology to expand fiber capacity.pdfHow to use WDM technology to expand fiber capacity.pdf
How to use WDM technology to expand fiber capacity.pdf
 
Dense wavelength division multiplexing (DWDM): A Review
Dense wavelength division multiplexing (DWDM): A Review Dense wavelength division multiplexing (DWDM): A Review
Dense wavelength division multiplexing (DWDM): A Review
 
Wdm
WdmWdm
Wdm
 
Performance Analysis of Optical Code Division Multiple Access (OCDMA) System
Performance Analysis of Optical Code Division Multiple Access (OCDMA) SystemPerformance Analysis of Optical Code Division Multiple Access (OCDMA) System
Performance Analysis of Optical Code Division Multiple Access (OCDMA) System
 
Dwdm
DwdmDwdm
Dwdm
 
WDM.ppt
WDM.pptWDM.ppt
WDM.ppt
 
analysis on design and implementation of 4×10 gb s wdm tdm pon with disparate...
analysis on design and implementation of 4×10 gb s wdm tdm pon with disparate...analysis on design and implementation of 4×10 gb s wdm tdm pon with disparate...
analysis on design and implementation of 4×10 gb s wdm tdm pon with disparate...
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
 
SPACE DIVISION MULTIPLEXING (SDMA)
SPACE DIVISION MULTIPLEXING (SDMA)SPACE DIVISION MULTIPLEXING (SDMA)
SPACE DIVISION MULTIPLEXING (SDMA)
 
CSP IP Networks
CSP IP NetworksCSP IP Networks
CSP IP Networks
 
Optical cdma and tdma
Optical cdma and tdmaOptical cdma and tdma
Optical cdma and tdma
 
FDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMOFDM,OFDM,OFDMA,MIMO
FDM,OFDM,OFDMA,MIMO
 

More from Anuradha Udunuwara

More from Anuradha Udunuwara (18)

7998 - Broadband Technologies and Multimedia Services Final
7998 - Broadband Technologies and Multimedia Services Final7998 - Broadband Technologies and Multimedia Services Final
7998 - Broadband Technologies and Multimedia Services Final
 
8000 - Fibre Optic Access Network
8000 - Fibre Optic Access Network8000 - Fibre Optic Access Network
8000 - Fibre Optic Access Network
 
Carrier Ethernet - What and Why
Carrier Ethernet - What and Why  Carrier Ethernet - What and Why
Carrier Ethernet - What and Why
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
12 tips on changing the game
12 tips on changing the game12 tips on changing the game
12 tips on changing the game
 
FTTH Basics
FTTH BasicsFTTH Basics
FTTH Basics
 
FTTX with Passive Optical Networks
FTTX with Passive Optical NetworksFTTX with Passive Optical Networks
FTTX with Passive Optical Networks
 
CSP related Standards and SDOs
CSP related Standards and SDOsCSP related Standards and SDOs
CSP related Standards and SDOs
 
Carrier Ethernet
Carrier EthernetCarrier Ethernet
Carrier Ethernet
 
Communications Service Provider Networks
Communications Service Provider NetworksCommunications Service Provider Networks
Communications Service Provider Networks
 
Data Communication and Internet
Data Communication and InternetData Communication and Internet
Data Communication and Internet
 
CSP industry overview
CSP industry overviewCSP industry overview
CSP industry overview
 
Broadband.Doing it right.
Broadband.Doing it right.Broadband.Doing it right.
Broadband.Doing it right.
 
Next Generation OTN
Next Generation OTNNext Generation OTN
Next Generation OTN
 
Why EoMPLS for CE
Why EoMPLS for CEWhy EoMPLS for CE
Why EoMPLS for CE
 
Future of wire line access networks
Future of wire line access networksFuture of wire line access networks
Future of wire line access networks
 
PBB-TE
PBB-TEPBB-TE
PBB-TE
 
Metro Ethernet Concepts
Metro Ethernet ConceptsMetro Ethernet Concepts
Metro Ethernet Concepts
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Recently uploaded (20)

Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 

WDM principles

  • 1. WDM Principles February 2014 1 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 2. How to increase network capacity? Space Division Multiplexing (SDM) • Add fiber & equipment • Time & Cost Time Division Multiplexing (TDM) • PDH/SDH (STM16->STM-64(10G)>STM-256(40G) • Cost & Complexity Wavelength Division Multiplexing (WDM) • Economical, mature & quick 2 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 3. What’s WDM? • A technology that utilizes the properties of refracted light to both combine and separate optical signals based on their wavelengths within the optical spectrum • Different signals with specific wavelength are multiplexed into a fiber for transmission 3 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 4. What’s WDM? , Contd., Gas Station Free Way Petrol Car Freeway Petrol Car Gas Station Gray Car Colored Car Driveway : Fiber : Supervisory Signal : Optical relay : Client Service : Service in different channels (wavelength) : Optical wavelength 4 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 5. Advantages of WDM • Ultra high capacity • Data transparency transmission – Doesn’t change the structure or any byte in the frame for the client signal • Long haul transmission • Compatible with existing optical fibers • High performance-to-cost-ratio (unit traffic cost) – However, projects get long time to break-even • High networking flexibility, economy and reliability • Smooth expansion 5 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 6. WDM system key technologies • Optical multiplexer (MUX) and demultiplexer • Optical Amplifier (Amp) • Supervisory channel • Optical Source 6 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 7. Optical Multiplexer Unit: Multiplex several services with different wavelength into one main path signal Optical Amplifier: Amplifies the optical signal 1 A P A OLA nm OSC Optical Transponder Unit: Access the client services & convert the wavelength compiled with ITU standard OTU1 P P OA n A P P OA OTUn Optical Line Amplifier O M U 2 1 A 1, 2..n P OTU2 System structure 1, 2..n A OTU1 Optical De-multiplexer Unit: De-multiplex one main path signal into several individual signals nm OSC O D U 2 n OTU2 OTUn OSC Optical Supervisory Channel: Terminate & Re-generation. Not amplification. A P Active Passive 7 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 8. OTU- Optical Transponder Unit Optical to Electrical conversion O Non-color E (Not defined by ITU-T) E O Ex:1310 nm short reach SMF 1550 nm long reach SMF Wavelength conversion 850 nm MMF Electrical to Optical conversion Color (Defined by ITU-T) Ex:1: 1550.51 nm 2 :1551.23 nm Can’t use these in WDM without OTU SMF-Single Mode Fiber MMF-Multi Mode Fiber 8 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 9. Loss • Passive => Loss (power reduction) – Ex:- Input power to the MUX 0 dB. Output power from the MUX -6 dB. Therefore the loss is 6 dB • Loss can be due to splicing, distance, bending, aging, connectors Source: http://www.thefoa.org/tech/lossbudg.htm Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU 9
  • 10. Transmission Modes • Single fiber unidirectional – 2 optical fibers • Single fiber bidirectional – Only 1 optical fiber – Ex:- CWDM, to reduce cost Coarse WDM 10 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 11. Application modes • Open system – NO special requirements for multiplex terminal optical interface – Only requirement is that these interfaces meet the optical interface standards defined in ITU-T • Integrated system – Doesn’t adopt wavelength conversion technology – Requires that the wavelength of the optical signal at the multiplex terminal confirms to the specifications for the WDM system 11 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 12. c=f • c = velocity of light in a vacuum = 3 x 108 m/s (constant) • f = frequency (Hz) •  = wavelength (m) • f1/ • Refractive index n = c / v • v = speed of light in a material • In an optical fiber, since the n of core is higher than n of cladding the light refracts 12 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 13. Fiber cable types • G.652 • G.653 – Main application: submarine • G.655 – Best fiber for WDM – Expensive 13 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 14. Single vs. multi mode Source: http://osd.com.au/multimode-versus-singlemode/ High Attenuation (3 dB/km) High dispersion Expensive today (because of less demand) Attenuation = 0.22 dB.km (G.652 @ 1550nm) No mode dispersion Mode=Path of light 14 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 15. WDM network topologies • Point to Point • Ring • Mesh Cost  Complexity  Reliability  15 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 16. CWDM vs. DWDM DWDM CWDM Source: http://www.cable360.net/tech/strategy/businesscases/30007.html CWDM- Coarse WDM, DWDM-Dense WDM Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU 16
  • 17. Since f  1 / , channel spacing can be denotes as both distance and frequency CWDM vs. DWDM, cont., Types CWDM DWDM Channel spacing (Grid) 20 nm (fixed) 100 GHz/ 50 GHz/ 25 GHz 1311~1611 nm (All bands) C-band: 1529nm~1561nm L-band: 1570nm~1603nm 18 x 10 Gbps 192 x 10 Gbps Laser Un-cooled Laser Cooled Laser Cost 70% 100% 100 km (max) 5000 km Band Capacity (max) Application As CWDM works in all 5 bands, amplification is NOT possible 17 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 18. Linear and non-linear effects • Linear ( distance) – Attenuation – Dispersion • Non-Linear – Four Way Mixing (FWM) • Chromatic • Polarization 18 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 19. Attenuation Lowest loss band Water peak Source: http://osd.com.au/multimode-versus-singlemode/ 19 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 20. Dispersion • Physical phenomenon of signal distortion caused when various modes carrying signal energy or different frequencies of the signal have different group velocity and disperse from each other during propagation • Digital modulation -> carrier frequency+ multiple other frequencies -> different speeds -> Inter Symbol Interference (ISI) -> Bit errors • Color 2 types – Mode dispersion • – Dominant in MMF Chromatic dispersion (CD) • • Dominant in SMF Ex:- Rainbow – • Light through water traverse at different speeds Dispersion affects the own channel Source: http://www.bubblews.com/news/2058509-somewhere-over-the-rainbow 20 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 21. Chromatic dispersion A phenomenon that the phase velocity and group velocity of light propagating in a transparent medium depend on the optical frequency. A related quantitative measure is the Group Velocity Dispersion (GVD) Source: https://www.upc.edu/patents/TO/ict-and-electronic-technologies/chromatic-dispersion-1.jpg 21 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 22. Chromatic dispersion, cont., G.655: little dispersion to avoid FWM G.652: widely used, need DCF for high rate transmission Dispersion coefficient G.653 17 ps/nm/km 4.5 ps/nm/km 1310 1550 Wavelength/nm 22 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 23. Dispersion Compensation Fiber (DCF) DCM (Dispersion Compensation Module) . Usually placed at bottom of rack Source: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5719 Dispersion-> DCF ->Dispersion longer fiber distance -> attenuation  -> Optical Amplifiers -> noise  -> S/N If the total accumulated dispersion (ps/nm) is less than 800 for 10 Gbps/STM-64, then DCM is not required 23 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 24. Polarization Mode Dispersion (PMD) • Resulting from different propagation velocities of 2 states of cross polarization of optical signal in fiber • Can’t avoid • Due to – Manufacturing process – Installation/usage (temperature, vibration, bending (DCM) Source: http://www.fiberoptics4sale.com/wordpress/optical-fiber-dispersion/ • Both PMD and CD are sensitive at higher bit rates 24 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 25. Optical source • Key requirements – Large dispersion tolerance value – Standard and stable wavelength • ITU-T recommends the maximum deviation of the channel frequency to be <=10% of channel spacing 25 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 26. Modulators • Direct • Electro-Absorption (EA) External – Ex:- for 40 G • Mach-Zehnder (M-Z) External – Ex:- for 40 G • Coherent – Ex:- for 100 G – No DCM required 26 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 28. S (signal) OA Amplifier • Compensates the loss • Any analog signal system has noise. Optical signal is also analog • More Amps-> more accumulated noise (N)->S/N->BIR – Amp keeps Signal (S) constant. • Solution: re-generation • Amplification and regeneration gives unlimited distance, theoretically 28 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 29. Amplifier types • EDFA - Erbium Doped Fiber Amplifier – Widely used • RFA - Raman Fiber Amplifier – Uses non-linearity effect – Uses high power class 4 laser • Use APC (Angular Physical Contact) connectors instead of PC – Ex:-LC/APC (Lucent Connector), SC/APC, FC/APC – 20 km distance • Need to maintain splice loss <0.1dB within 1st 10 km and <0.2dB within next 10 km – Low noise – Low gain efficiency (10~12 dB) 29 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 30. EDFA Source: http://www.tlc.unipr.it/bononi/ricerca/edfa.html Source: http://spie.org/x33612.xml 30 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 32. Optical Multiplexer and demultiplexer • TFF - Thin Film Filter – when no. of channels<16 • AWG - Arrayed Waveguide Grating – when no. of channels>=16 – expensive 32 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 33. TFF 0.1 dB loss. Therefore max. of 16 channels Has the lowest power Source: http://www.fiberoptics4sale.com/wordpress/what-is-multilayer-dielectric-thin-film-filter/ 33 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 34. AWG All have the same power Source: http://docstore.mik.ua/univercd/cc/td/doc/product/mels/cm1500/dwdm/dwdm_ovr.htm 34 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 35. Supervisory technologies • OSC - Optical Supervisory Channel – Often used in backbone systems – Uses OTN (G.709) framing (similar to SDH) on OUT board – Costly • ESC - Electrical Supervisory Channel – Often used in metropolitan systems – OTU is mandatory at every site • OLA sites don’t have OUT. Therefore can’t mange OLAs with ESC 35 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 36. Related ITU-T recommendations • • • • • • G.652 - SMF G.655 - Dispersion-shifted SMF G.661/G.662/G.663 - OAs G.671 - Passive optical components G.957 - SDH optical interfaces G.691 - Optical interfaces for single channel STM64, STM-256 systems & other SDH systems with OA G.692 - Optical interfaces for multi-channel systems with OA G.709 - OTN interfaces • G.975 - FEC for submarine systems 36 Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU
  • 37. About the Author 37 Eng. Anuradha Udunuwara is a Chartered Engineer by profession based in Sri Lanka. He has over a decade industry experience in strategy, architecture, engineering, design, plan, implementation and maintenance of CSP Networks using both packet-switched (PS) and Circuit-Switched (CS) technologies, along with legacy to NGN migration. Eng. Anuradha is a well-known in the field of CSP industry, both locally and internationally. Graduated from University of Peradeniya, Sri Lanka in 2001 with an honors in Electrical & Electronic Engineering, Eng. Anuradha is a corporate member of the Institution of Engineers Sri Lanka, a professional member of British Computer Society, a member of Institution of Electrical & Electronic Engineers, a member of Institution of Engineering & Technology (formerly Institution of Electrical Engineers), a member of the Computer Society of Sri Lanka, a life member of Sri Lanka Association for the Advancement of Science, a senior member of the Carrier Ethernet Forum, a member of the Internet Society, a member of the Internet Strategy Forum, a member of the Internet Strategy Forum Network, a member & a senior contributor of the Ethernet Academy, a member of the NGN/IMS forum and a member of the Peradeniya Engineering Faculty Alumni Association. He is also an ITIL foundation certified and the only MEF-CECP in the country. In his spare time Anuradha enjoys spending time with his family, playing badminton, photography, reading and travelling. Anuradha Udunuwara | udunuwara@ieee.org | www.linkedin.com/in/anuradhau | @AnuradhU