Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License   Lab...
This session…. <ul><li>Overview of the practical… </li></ul><ul><li>Statistical analysis…. </li></ul><ul><li>Take a look a...
The Practical <ul><li>Determine the thiocyanate (SCN - ) in a sample of your saliva using a colourimetric method of analys...
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License   Typ...
Beer-Lambert Law <ul><ul><li>Beers Law states that  absorbance is proportional to concentration  over a certain concentrat...
Beer-Lambert Law <ul><li>Beer’s law is valid at low concentrations, but breaks down at higher concentrations </li></ul><ul...
Beer-Lambert Law <ul><li>If your unknown has a higher concentration than your highest standard, you have to ASSUME that li...
Quantitative Analysis <ul><li>A < 1 </li></ul><ul><ul><li>If A > 1: </li></ul></ul><ul><ul><ul><li>Dilute the sample </li>...
Quantitative Analysis This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England...
Statistical Analysis This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England ...
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License   Mea...
Normal Distribution This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England &...
Mean and Standard Deviation This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: E...
Standard Deviation <ul><li>Measures the variation of the samples: </li></ul><ul><ul><li>Population std (  ) </li></ul></u...
   or s? <ul><li>In forensic analysis, the rule of thumb is: </li></ul><ul><ul><li>If n > 15 use   </li></ul></ul><ul><u...
Absolute Error and Error % <ul><li>Absolute Error </li></ul><ul><ul><li>Experimental value – True Value </li></ul></ul><ul...
Confidence limits This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & W...
Control Data <ul><li>Work out the mean and standard deviation of the control data </li></ul><ul><ul><li>Use only 1 value p...
Control Data <ul><li>Calculate the Absolute Error and the Error % </li></ul><ul><ul><li>True value of [SCN – ] in the cont...
Control Data <ul><li>Plot a Control Chart for the control data </li></ul>This work is licensed under a Creative Commons At...
Significance <ul><li>Divide the data into six groups: </li></ul><ul><ul><li>Smokers </li></ul></ul><ul><ul><li>Non-smokers...
Significance <ul><li>Plot the values on a bar chart </li></ul><ul><li>Add error bars (y-axis)  </li></ul><ul><ul><li>at th...
Significance This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales ...
Identifying Significance <ul><li>In the most simplistic terms: </li></ul><ul><ul><li>If there is no overlap of error bars ...
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License   Ack...
Upcoming SlideShare
Loading in …5
×

of

Chemical and Physical Properties: Practical Session Slide 1 Chemical and Physical Properties: Practical Session Slide 2 Chemical and Physical Properties: Practical Session Slide 3 Chemical and Physical Properties: Practical Session Slide 4 Chemical and Physical Properties: Practical Session Slide 5 Chemical and Physical Properties: Practical Session Slide 6 Chemical and Physical Properties: Practical Session Slide 7 Chemical and Physical Properties: Practical Session Slide 8 Chemical and Physical Properties: Practical Session Slide 9 Chemical and Physical Properties: Practical Session Slide 10 Chemical and Physical Properties: Practical Session Slide 11 Chemical and Physical Properties: Practical Session Slide 12 Chemical and Physical Properties: Practical Session Slide 13 Chemical and Physical Properties: Practical Session Slide 14 Chemical and Physical Properties: Practical Session Slide 15 Chemical and Physical Properties: Practical Session Slide 16 Chemical and Physical Properties: Practical Session Slide 17 Chemical and Physical Properties: Practical Session Slide 18 Chemical and Physical Properties: Practical Session Slide 19 Chemical and Physical Properties: Practical Session Slide 20 Chemical and Physical Properties: Practical Session Slide 21 Chemical and Physical Properties: Practical Session Slide 22 Chemical and Physical Properties: Practical Session Slide 23 Chemical and Physical Properties: Practical Session Slide 24 Chemical and Physical Properties: Practical Session Slide 25
Upcoming SlideShare
Chemical Structure: Chemical Bonding. Molecular Orbitals
Next
Download to read offline and view in fullscreen.

1 Like

Share

Download to read offline

Chemical and Physical Properties: Practical Session

Download to read offline

Lecture materials for the Introductory Chemistry course for Forensic Scientists, University of Lincoln, UK. See http://forensicchemistry.lincoln.ac.uk/ for more details.

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Chemical and Physical Properties: Practical Session

  1. 1. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License Lab 6: Saliva Practical Beer-Lambert Law University of Lincoln presentation
  2. 2. This session…. <ul><li>Overview of the practical… </li></ul><ul><li>Statistical analysis…. </li></ul><ul><li>Take a look at an example control chart… </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  3. 3. The Practical <ul><li>Determine the thiocyanate (SCN - ) in a sample of your saliva using a colourimetric method of analysis </li></ul><ul><li>Calibration curve to determine the [SCN - ] of the unknowns </li></ul><ul><li>This was ALL completed in the practical class </li></ul><ul><li>Some of your absorbance values may have been higher than the absorbance values of your top standards… is this a problem???? </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  4. 4. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License Types of data QUALITATIVE Non numerical i.e what is present? QUANTITATIVE Numerical: i.e. How much is present?
  5. 5. Beer-Lambert Law <ul><ul><li>Beers Law states that absorbance is proportional to concentration over a certain concentration range </li></ul></ul><ul><ul><li>A =  cl </li></ul></ul><ul><ul><li>A = absorbance </li></ul></ul><ul><ul><li> = molar extinction coefficient (M -1 cm -1 or mol -1 L cm -1 ) </li></ul></ul><ul><ul><li>c = concentration (M or mol L -1 ) </li></ul></ul><ul><ul><li>l = path length (cm) (width of cuvette) </li></ul></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  6. 6. Beer-Lambert Law <ul><li>Beer’s law is valid at low concentrations, but breaks down at higher concentrations </li></ul><ul><li>For linearity, A < 1 </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License 1
  7. 7. Beer-Lambert Law <ul><li>If your unknown has a higher concentration than your highest standard, you have to ASSUME that linearity still holds ( NOT GOOD for quantitative analysis) </li></ul><ul><li>Unknowns should ideally fall within the standard range </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License 1
  8. 8. Quantitative Analysis <ul><li>A < 1 </li></ul><ul><ul><li>If A > 1: </li></ul></ul><ul><ul><ul><li>Dilute the sample </li></ul></ul></ul><ul><ul><ul><li>Use a narrower cuvette </li></ul></ul></ul><ul><ul><ul><ul><li>(cuvettes are usually 1 mm, 1 cm or 10 cm) </li></ul></ul></ul></ul><ul><li>Plot the data (A v C) to produce a calibration ‘curve’ </li></ul><ul><li>Obtain equation of straight line (y=mx) from line of ‘best fit’ </li></ul><ul><li>Use equation to calculate the concentration of the unknown(s) </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  9. 9. Quantitative Analysis This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  10. 10. Statistical Analysis This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  11. 11. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License Mean The mean provides us with a typical value which is representative of a distribution
  12. 12. Normal Distribution This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  13. 13. Mean and Standard Deviation This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License MEAN
  14. 14. Standard Deviation <ul><li>Measures the variation of the samples: </li></ul><ul><ul><li>Population std (  ) </li></ul></ul><ul><ul><li>Sample std (s) </li></ul></ul><ul><li> = √(  (x i – µ ) 2 /n) </li></ul><ul><li>s =√(  (x i – µ ) 2 /(n-1)) </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  15. 15.  or s? <ul><li>In forensic analysis, the rule of thumb is: </li></ul><ul><ul><li>If n > 15 use  </li></ul></ul><ul><ul><li>If n < 15 use s </li></ul></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  16. 16. Absolute Error and Error % <ul><li>Absolute Error </li></ul><ul><ul><li>Experimental value – True Value </li></ul></ul><ul><li>Error % </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  17. 17. Confidence limits This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License 1  = 68% 2  = 95% 2.5  = 98% 3  = 99.7%
  18. 18. Control Data <ul><li>Work out the mean and standard deviation of the control data </li></ul><ul><ul><li>Use only 1 value per group </li></ul></ul><ul><ul><ul><li>Which std is it?  or s? </li></ul></ul></ul><ul><li>This will tell us how precise your work is in the lab </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  19. 19. Control Data <ul><li>Calculate the Absolute Error and the Error % </li></ul><ul><ul><li>True value of [SCN – ] in the control = 2.0 x 10 –3 M </li></ul></ul><ul><li>This will tell us how accurately you work, and hence how good your calibration is!!! </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  20. 20. Control Data <ul><li>Plot a Control Chart for the control data </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License 2.5  2 
  21. 21. Significance <ul><li>Divide the data into six groups: </li></ul><ul><ul><li>Smokers </li></ul></ul><ul><ul><li>Non-smokers </li></ul></ul><ul><ul><li>Male </li></ul></ul><ul><ul><li>Female </li></ul></ul><ul><ul><li>Meat-eaters </li></ul></ul><ul><ul><li>Rabbits </li></ul></ul><ul><li>Work out the mean and std for each group (  or s?) </li></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  22. 22. Significance <ul><li>Plot the values on a bar chart </li></ul><ul><li>Add error bars (y-axis) </li></ul><ul><ul><li>at the 95% confidence limit – 2.0  </li></ul></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  23. 23. Significance This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  24. 24. Identifying Significance <ul><li>In the most simplistic terms: </li></ul><ul><ul><li>If there is no overlap of error bars between two groups, you can be fairly sure the difference in means is significant </li></ul></ul>This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License
  25. 25. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales License Acknowledgements <ul><li>JISC </li></ul><ul><li>HEA </li></ul><ul><li>Centre for Educational Research and Development </li></ul><ul><li>School of natural and applied sciences </li></ul><ul><li>School of Journalism </li></ul><ul><li>SirenFM </li></ul><ul><li>http://tango.freedesktop.org </li></ul>
  • CharrevieTingson

    Nov. 15, 2013

Lecture materials for the Introductory Chemistry course for Forensic Scientists, University of Lincoln, UK. See http://forensicchemistry.lincoln.ac.uk/ for more details.

Views

Total views

2,866

On Slideshare

0

From embeds

0

Number of embeds

617

Actions

Downloads

21

Shares

0

Comments

0

Likes

1

×