SlideShare a Scribd company logo
1 of 53
Download to read offline
Islamic University of Gaza  ‐Environmental Engineering Department
Water TreatmentWater Treatment
EENV 4331
Lecture 3: Coagulation and Flocculation
Dr.   Fahid Rabah
1
3.1 Definition of Coagulation and Flocculation
 Coagulation and flocculation are two consecutive process 
(i.e. occur one after the other) that are used to remove 
colloidal particles from watercolloidal particles from water.
 Colloids are very small particles (turbidity and color causing 
particles) that can not be removed neither byparticles) that can not be removed neither by 
sedimentation (due to their light weight) nor by filtration.  
 Examples of colloids: soil particles, bacteria, viruses and Examples of colloids: soil particles, bacteria, viruses and 
color causing materials. These colloids are stable in solution 
and theoretically will stay there for ever unless an action is 
done to destabilize them. Coagulation and flocculation are 
the two processes used for this destabilization.
2
3 2 Colloidal Stability
 Colloids are very Small particles (0.01 to 1 m)
3.2 Colloidal Stability
 Most naturally occurring particles in water are negatively charged.
Since like charges repel these small particles or colloids will remainSince like charges repel, these small particles, or colloids, will remain
suspended almost indefinitely.
 A fixed layer of positive ions (counterions) is attracted to the negatively
charged colloids by electrostatic attraction. This layer is called stern
layer or fixed layer. This layer is surrounded by a movable diffuse layer
of counterions but with a lower concentration than that in the fixedof counterions but with a lower concentration than that in the fixed
layer. The two layers form what is called the double layer theory.
3
4
Turbidity
Suspended Solids Colloidal
Light , electrically chargedLight , electrically charged
particlesSettleable
Heavy particles
Non‐settleable
Uncharged Light particles
Coagulation
Coagulation
Not affected
Coagulation
Converted to
Uncharged Light particles
Coagulation
Not affected
Flocculation
Not affected
Flocculation
Converted to
Heavy particles
Flocculation
Converted to
Heavy particles
Sedimentation
Around 60% Settle
Sedimentation
Around 60% Settle
Sedimentation
Around 60% Settle
Filtration
Around 35 % filtered
Filtration
Around 35 % filtered
Filtration
Around 35 % filtered
5
Turbidity removal flowchart from surface water
 The surface between the two layers is called the shear surface. When
the colloid moves the fixed layer moves with it.
 The positive charge attached to the colloid in the stern layer is not The positive charge attached to the colloid in the stern layer is not
enough to neutralize the negative charge of the colloid. So there is a
net electrical potential around the colloid as shown in the Figure 3.1.
 The Electrical potential at the shear surface is called the Zeta potential
which is a measure of the repulsive force of the colloid to other colloids
having the same charge.having the same charge.
6
Figure 3.1:
Double layer charges and
Zeta potential around a colloid
7
 There are two major forces acting on colloids: There are two major forces acting on colloids:
1) Electrostatic repulsion
negative colloids repel other negatively charged colloidsnegative colloids repel other negatively charged colloids
orcerepultionFticEloctrostaF
1
 orcerepultionFticEloctrosta
d
FES ,2

2) Intermolecular attraction, or van der Waals,.
Ftt tiW ldVF
1

For a stable colloid the net energy is repulsive.
ForceattractionWaalderVan
d
FVan ,6

For a stable colloid the net energy is repulsive.
Figures 3.2  and  3.3   Illustrates these two main forces. 
8
d
Figure 3.2:
Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction
9
Figure 3.3:
Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction
10
3.3 Colloidal Destabilization and agglomeration
1. Colloidal Destabilization or Coagulation:
 It was illustrated that colloids are stable due to the net repulsive force 
between them consequently they will stay stable in suspension unless this 
net repulsive force is neutralized .
 The process of neutralization of the repulsive force is called destabilization . 
 Destabilization is achieved by a process called coagulation. 
 Coagulation is the process of destabilization of colloids by adding chemicals 
(Coagulants) with a counter charge to neutralize the charge  carried by the 
colloids. This will reduce the repelling force and gives the opportunity for 
the attractive forces to prevail and allow the particles and make them readythe attractive forces to prevail and allow the particles and make them ready 
to agglomerate and form bigger particles.
11
3.3 Colloidal Destabilization and agglomeration
2. Agglomeration or Flocculation ( Forming Flocs):
 After destabilization (i.e. Coagulation), particles will be ready to a tract and 
agglomerate and form flocs. But this agglomeration is slow and they need 
help to accelerate this agglomeration. 
 This help is called Flocculation “which is the slow stirring or gentle agitation 
to aggregate the destabilized particles and form a rapid settling floc”. 
 This gentle mixing increases the collisions between the particles and help 
them to agglomerate. Notice that rapid mixing will destroy the flocs, that's 
why we need gentle mixing.
12
3.4 Coagulation
1. Coagulants:
 Coagulants are chemicals that are added to water to destabilize colloids. Coagulants are chemicals that are added to water to destabilize colloids. 
The most common coagulants are given in the table below:
Type of coagulant formula most common Nyp g
form
aluminum sulfate Al2 (SO4)3. 14-18 H2O lumps or powder acidic
Sodium aluminate NaAlO2 or Na2Al2O4 Powder alkaline
Poly-aluminiumchloride Al (OH) Cl Solution or powder acidicPoly-aluminiumchloride Aln(OH)mCl3n-m Solution or powder acidic
Ferric sulfate Fe2(SO4)3.9H2O Small crystals acidic
Ferris chloride FeCl3. 6H2O Lumps or solution acidic
13
Ferrous sulfate FeSO4. 7H2O Small crystals acidic
2. Coagulation chemistry:
If  Alum  is used the following reactions occur:
• Al2(SO4)314H2O  2Al3++ 3SO4
2‐+ 14H2O
• 2Al3+ + colloids  neutralize surface charge• 2Al3+ + colloids  neutralize surface charge
• 2Al3+ + 6HCO3
‐  2Al(OH)3(s) + 6CO2
• If insufficient bicarbonate is available:
Al2(SO4)314H2O  2Al(OH)3(s) + 3H2SO4 + 14H2O
• Optimum pH: 5.5 to 6.5
• Operating pH: 5 to 8
• Since the coagulation reaction results in the decrease of the pH so• Since the coagulation reaction results in the decrease of the pH, so
• It is a common practice to add lime (Ca(OH)2) together with the coagulant
to increase the pH consequently countering the effect of pH decrease.
14
3. Factors affecting Coagulation
The two main factors affecting the coagulation process are: 
‐ Coagulant dosage g g
‐ pH of the water
The optimum dosage and optimum pH are determined by p g p p y
laboratory test called the Jar Test. the Jar test consists of six 
beakers filled with the water to be treated and then each is 
mixed and flocculated uniformly. A test is often conducted by 
first dosing each jar with the same value of coagulant and 
varying the pH of each jar The test can then be repeated byvarying the pH of each jar. The test can then be repeated by 
holding the pH constant and varying the coagulant dosage.
Figure (3.4) illustrates the jar test.
Figure(3.5) illustrates the effect of dosage and pH on the coagulation process.
15
16
Figure (3.4) The Jar Test
17
Figure 3.5:
Effect of coagulant dosage and pH on the coagulation process
4. Design of Coagulation tank:
A. As illustrated previously, coagulation requires the addition of a chemical
called “ coagulant.  The coagulant should be very well mixed with water to 
produce homogeneous mixture of the influent water and the coagulant to 
achieve the best  coagulation efficiency.ac e e e bes coagu a o e c e cy
B This mixing is achieved in a tank called Rapid mixer Figures 3 6 and 3 7B. This mixing is achieved in a tank called Rapid mixer. Figures 3.6 and 3.7
illustrate the geometry of the rapid mixer. It usually has  a square or circular 
cross section to achieve best mixing efficiency.
C. The most common mixers used in the coagulation tank are mechanical 
mixers. The most common types are : turbine, propeller, and paddle mixers.
Fi 3 8 ill t t th tFigure 3.8 illustrates these types.  
18
Figure 3.6 : Rapid mixer
19
Figure 3.6 : Rapid mixer
Figure 3.7 : Rapid mixer
20
Figure 3.7 : Rapid mixer
Figure 3.8 : types mechanical rapid mixer
21
D. Sizing the coagulations Rapid mixer tank:
i Tank Volume:i. Tank Volume:
V = Q*t
WhWhere,
V =  tank volume , m3
Q = design flow , m3/S
t   = detention time in the tank, S
The detention time in the rapid mixer is in the range of 20‐60 seconds. p g
This short time is enough to achieve complete mixing of the coagulant 
and to complete the coagulation   process.  The water depth is usually 
taken as 1.5 times the width of the tank if it is square or the diametertaken as 1.5 times the width of the tank if it is square or the diameter
if it is a circular. 
22
ii Power Requirements:ii. Power Requirements:
P = µVG2
hWhere,
P =  power transmitted to the water by the mixer, N.m/s  (Watt)
V = tank volume, m3
G = velocity gradient, S‐1
µ =  dynamic viscosity of water, N.s/m2
The velocity gradient is defined as the relative velocity between
two colloidal particles in water divided by the  distance between them. 
For example if two particles are 1 cm apart and the relative velocityFor example, if two particles are 1 cm apart and the relative velocity 
between the is 10 m/s, then 
G = 10 (mps)/0 01m = 1000 mps/m = 1000 S‐1G = 10 (mps)/0.01m = 1000 mps/m = 1000 S 1
Typical values of G in coagulation rapid mixing are given in the following
Table. 
23
Detention time (Seconds) G mps/m, or S‐1
Typical design values of the G for coagulation
Detention time (Seconds) G mps/m, or S
20 1000
30 900
40 790
50  or more 700
Example:
A rapid mixer is to be used for coagulation of surface water with high turbidity.
If the flow is 720 m3/h find the volume and dimensions of the tank and the
power requirements. Assume that the detention time is 20 seconds and G=1000
S‐1, µ = 1.518 X 10‐3 N.m/s2 at 5 oC.
Solution:Solution:
Q = 720 m3/h = 0.20 m3/s
V = 30*0.2 = 6 m3
Assume the tank cross section is square ,then V = W*W*1.5W=1.5 W3q ,
6= 1.5W3 , W = 1.587 m, d= 1.5*1.587 = 2.38 m.
P=µVG2 = 1.518X10‐3X6X 10002 = 9522 Watt = 9.522 Kw
24
3.5 Flocculation
1. Configurations of Flocculation tanks:
 The most common types of Flocculator are paddle and walking beam Flocculator. 
Figures 3.9 through 3.16 illustrate these types.
 Another type of tanks combine between flocculation and sedimentation in one 
tank  and called  solid contact Flocculator Clarifier. See Figures 3.17 and 3.18.
 Figures 3.19 and 3.20 illustrate the layout of a water treatment plant
with coagulation, flocculation and sedimentation tanks . 
25
2. Design of Flocculation tanks:
i. Tank Volume:
V = Q*t
Where,
V =  tank volume , m3
Q = design flow , m3/SQ des g o , /S
t   = detention time in the tank, S
The detention time in the flocculation  tank is much higher than that  in 
the rapid mixer It is in the range of 20‐60 minutesthe rapid mixer. It  is in the range of 20‐60 minutes. 
ii. Power Requirements:
P = µVG2
Where,
P =  power transmitted to the water by the mixer, N.m/s  (Watt)
V = tank volume, m3
G = velocity gradient, S‐1
26
G  velocity gradient, S
µ =  dynamic viscosity of water, N.s/m2
‐ The value of G*t is an important factor in the Flocculator. It has a range 
Of 104 to 105.  typical values of G  1s 15  to 60  S‐1.
In paddle Flocculator we usually use three compartments in series and G is tapered‐In paddle Flocculator, we usually use three compartments in series and  G is tapered 
gradually from the first to the third compartment. For example G1 = 60  S‐1, G2 =60  S‐1, 
G3 =60  S‐1.The average of the three values should be in the Above mentioned 
rage for G Tapering is needed to prevent the destruction of the growing flocks
The power is also expressed  in terms of the paddle mixer properties
as the following:
3
AC
rage for G.  Tapering is needed to prevent the destruction of the growing flocks
Where,
C D ffi i f i f ddl bl d di i L/W ( h bl )
2
3
ppD vAC
P


CD =   Drag coefficient, function of paddle blades dimensions, L/W (see the table)
Ap =  Area of the paddle blades, m2
ρ =   Water density, kg/m3
v velocity of the paddle relative to the water m/s it is the tangential velocityvp = velocity of the paddle relative to the water, m/s. it is the tangential velocity
of the blade tip, it is perpendicular to the radius of the paddle. 
If more than one blade is used on the paddle the power is expressed as:
 
2
3
33
3
22
3
11 ppppppD vAvAvAC
P



27
Values of the drag coefficient for paddle‐Wheel Flocculator
CDLength to width ration (L/W)
1.205
1.5020
1.90∞
dv 
The blades velocity is related to the rotational speed of the paddles 
By the following relation: 
dvp 
Where,
D = the distance between  the center lines of the two corresponding bladesp g
on the paddle, m , (see figure 3.9, the distances D1 , D2,D3) 
ω =  rotational speed  of the paddle, rev/s. 
28
Figure 3.9: Baddel Flocculator, Horizontal Shaft
29
Figure 3.10 : Horizontal-Shaft Paddle Flocculator, Axial flow pattern
30
Figure 3.10 : Horizontal Shaft Paddle Flocculator, Axial flow pattern
Figure 3.11: Horizontal-Shaft Paddle Flocculator, Cross flow pattern
31
Figure 3.11: Horizontal Shaft Paddle Flocculator, Cross flow pattern
Figure 3.12: Horizontal-Shaft Paddle Flocculator, Cross flow pattern
32
Figure 3.13: Vertical Shaft Baddel Flocculator
33
Figure 3.14: Vertical-Shaft Paddle Flocculator
34
Figure 3.14: Vertical Shaft Paddle Flocculator
35
Figure 3.15: Walking Beam-Shaft addle Flocculator
36
Figure 3.16 : Walking Beam Flocculator
Figure 3.17a : Solids Contact Flocculator Clarifier
37
Figure 3.17 b: Solids Contact Flocculator Clarifier
38
Figure 3.18 : Solids Contact Flocculator Clarifier
39
Sedimentation Tank
Vertical shaft Paddle
Flocculation tank
Coagulation Rapid Mixe
40
igure 3.19 : Layout of Coagulation Rapid mixer, flocculation and sedimentation Tanks
Figure 3.20 :g
Layout of
Rapid mix,
flocculation
and
Clarification
Tanks
41
Example 1:
42
43
44
45
46
47
Example 2:
3.20
48
49
3.9
50
51
52
53

More Related Content

What's hot

Sedimentation tanks in water treatment
Sedimentation tanks in water treatmentSedimentation tanks in water treatment
Sedimentation tanks in water treatmentRamodh Jayawardena
 
Characteristics of Waste-Water (Unit-I)
Characteristics of Waste-Water (Unit-I)Characteristics of Waste-Water (Unit-I)
Characteristics of Waste-Water (Unit-I)GAURAV. H .TANDON
 
Disinfection in water treatment plant
Disinfection in water treatment plantDisinfection in water treatment plant
Disinfection in water treatment plantDr. M Prasad
 
Disinfection of water
Disinfection of waterDisinfection of water
Disinfection of waterAshwani Kumar
 
Water treatment
Water treatmentWater treatment
Water treatmentGokul Saud
 
Purification anf disinfection of watert
Purification anf disinfection of watertPurification anf disinfection of watert
Purification anf disinfection of watertJasmine John
 
Coagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentCoagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentMohamed Azeem Nijamdeen
 
Water treatment II
Water treatment IIWater treatment II
Water treatment IILALIT SHARMA
 
Coagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentCoagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentMD. JAMILUR Rahman
 
Treatment of Water and Design Example on Sedimentation Tank
Treatment of Water and Design Example on Sedimentation TankTreatment of Water and Design Example on Sedimentation Tank
Treatment of Water and Design Example on Sedimentation TankVaibhav Kambale
 

What's hot (20)

Sedimentation tanks in water treatment
Sedimentation tanks in water treatmentSedimentation tanks in water treatment
Sedimentation tanks in water treatment
 
Water Treatment Plants
Water Treatment PlantsWater Treatment Plants
Water Treatment Plants
 
Characteristics of Waste-Water (Unit-I)
Characteristics of Waste-Water (Unit-I)Characteristics of Waste-Water (Unit-I)
Characteristics of Waste-Water (Unit-I)
 
Water treatment
Water treatmentWater treatment
Water treatment
 
Disinfection in water treatment plant
Disinfection in water treatment plantDisinfection in water treatment plant
Disinfection in water treatment plant
 
Disinfection of water
Disinfection of waterDisinfection of water
Disinfection of water
 
Water treatment
Water treatmentWater treatment
Water treatment
 
Self purification
Self purificationSelf purification
Self purification
 
Disinfection Process
Disinfection ProcessDisinfection Process
Disinfection Process
 
Waster water treatment
Waster water treatmentWaster water treatment
Waster water treatment
 
Purification anf disinfection of watert
Purification anf disinfection of watertPurification anf disinfection of watert
Purification anf disinfection of watert
 
Water Treatment Processes
Water Treatment ProcessesWater Treatment Processes
Water Treatment Processes
 
Coagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentCoagulation and flocculation in water treatment
Coagulation and flocculation in water treatment
 
Water treatment II
Water treatment IIWater treatment II
Water treatment II
 
Types of coagulants
Types of coagulantsTypes of coagulants
Types of coagulants
 
Coagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentCoagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatment
 
L 11 screen chamber
L 11 screen chamberL 11 screen chamber
L 11 screen chamber
 
Coagulation aided Sedimentation
Coagulation aided SedimentationCoagulation aided Sedimentation
Coagulation aided Sedimentation
 
Treatment of Water and Design Example on Sedimentation Tank
Treatment of Water and Design Example on Sedimentation TankTreatment of Water and Design Example on Sedimentation Tank
Treatment of Water and Design Example on Sedimentation Tank
 
Treatment and disposal of sludge
Treatment and disposal of sludgeTreatment and disposal of sludge
Treatment and disposal of sludge
 

Viewers also liked

Water treatment-lecture-1-eenv
Water treatment-lecture-1-eenvWater treatment-lecture-1-eenv
Water treatment-lecture-1-eenvusman1017
 
Water treatment-lecture-2-eenv
Water treatment-lecture-2-eenvWater treatment-lecture-2-eenv
Water treatment-lecture-2-eenvusman1017
 
Water treatment-lecture-5-eenv
Water treatment-lecture-5-eenvWater treatment-lecture-5-eenv
Water treatment-lecture-5-eenvusman1017
 
Water treatment-lecture-7-eenv
Water treatment-lecture-7-eenvWater treatment-lecture-7-eenv
Water treatment-lecture-7-eenvusman1017
 
Water treatment-lecture-6-eenv
Water treatment-lecture-6-eenvWater treatment-lecture-6-eenv
Water treatment-lecture-6-eenvusman1017
 
Water treatment-lecture-4-eenv
Water treatment-lecture-4-eenvWater treatment-lecture-4-eenv
Water treatment-lecture-4-eenvusman1017
 
Ppt coagulation and flocculation
Ppt coagulation and flocculationPpt coagulation and flocculation
Ppt coagulation and flocculationLokesh Saini
 
IWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaIWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaGWP SOUTHEAST ASIA
 
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...India Water Portal
 
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015India Water Portal
 
Iron and Manganese Removal
Iron and Manganese RemovalIron and Manganese Removal
Iron and Manganese RemovalPrateek Gupta
 
Water Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackWater Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackAshwin Dhanasekar
 
Aeration ppt by Sajal
Aeration ppt   by SajalAeration ppt   by Sajal
Aeration ppt by SajalSAJAL1428
 

Viewers also liked (20)

Water treatment-lecture-1-eenv
Water treatment-lecture-1-eenvWater treatment-lecture-1-eenv
Water treatment-lecture-1-eenv
 
Water treatment-lecture-2-eenv
Water treatment-lecture-2-eenvWater treatment-lecture-2-eenv
Water treatment-lecture-2-eenv
 
Water treatment-lecture-5-eenv
Water treatment-lecture-5-eenvWater treatment-lecture-5-eenv
Water treatment-lecture-5-eenv
 
Water treatment-lecture-7-eenv
Water treatment-lecture-7-eenvWater treatment-lecture-7-eenv
Water treatment-lecture-7-eenv
 
Water treatment-lecture-6-eenv
Water treatment-lecture-6-eenvWater treatment-lecture-6-eenv
Water treatment-lecture-6-eenv
 
Water treatment-lecture-4-eenv
Water treatment-lecture-4-eenvWater treatment-lecture-4-eenv
Water treatment-lecture-4-eenv
 
Ppt coagulation and flocculation
Ppt coagulation and flocculationPpt coagulation and flocculation
Ppt coagulation and flocculation
 
IWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaIWRM Evaluation Result_Malaysia
IWRM Evaluation Result_Malaysia
 
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
 
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
 
Chp 9
Chp 9Chp 9
Chp 9
 
Iron and Manganese Removal
Iron and Manganese RemovalIron and Manganese Removal
Iron and Manganese Removal
 
Water Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackWater Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & Flowback
 
Sand filter
Sand filterSand filter
Sand filter
 
Colloid
ColloidColloid
Colloid
 
Aeration ppt by Sajal
Aeration ppt   by SajalAeration ppt   by Sajal
Aeration ppt by Sajal
 
Ssf
SsfSsf
Ssf
 
Coagulation
CoagulationCoagulation
Coagulation
 
L 9 aeration
L 9 aerationL 9 aeration
L 9 aeration
 
Floculadores
FloculadoresFloculadores
Floculadores
 

Similar to Water treatment-lecture-3-eenv

Similar to Water treatment-lecture-3-eenv (20)

chapter 5.pptx
chapter 5.pptxchapter 5.pptx
chapter 5.pptx
 
VAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
VAN LEEUWEN 2011 Coagulation and Flocculation(0).pptVAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
VAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
 
Colloids By Sitwat Rafi
Colloids By Sitwat RafiColloids By Sitwat Rafi
Colloids By Sitwat Rafi
 
Colloids
ColloidsColloids
Colloids
 
237015090-jar-test-lab-report-doc.doc
237015090-jar-test-lab-report-doc.doc237015090-jar-test-lab-report-doc.doc
237015090-jar-test-lab-report-doc.doc
 
convetational.pptx
convetational.pptxconvetational.pptx
convetational.pptx
 
convetational.pptx
convetational.pptxconvetational.pptx
convetational.pptx
 
2 colloidal system
2 colloidal system2 colloidal system
2 colloidal system
 
Colloidal Dispersion ppt.pptx
Colloidal Dispersion ppt.pptxColloidal Dispersion ppt.pptx
Colloidal Dispersion ppt.pptx
 
2_5190405601405960384.pdf
2_5190405601405960384.pdf2_5190405601405960384.pdf
2_5190405601405960384.pdf
 
Physiology Colloids
Physiology ColloidsPhysiology Colloids
Physiology Colloids
 
Colloid chemistry
Colloid chemistryColloid chemistry
Colloid chemistry
 
Zeta
ZetaZeta
Zeta
 
Unit 2
Unit 2Unit 2
Unit 2
 
The Formation of Two-Phase Periodic Structures-Crimson Publishers
The Formation of Two-Phase Periodic Structures-Crimson PublishersThe Formation of Two-Phase Periodic Structures-Crimson Publishers
The Formation of Two-Phase Periodic Structures-Crimson Publishers
 
Colloids
ColloidsColloids
Colloids
 
The colloidal state
The colloidal stateThe colloidal state
The colloidal state
 
Coagulation & Flocculation
Coagulation & FlocculationCoagulation & Flocculation
Coagulation & Flocculation
 
Coagulation
CoagulationCoagulation
Coagulation
 
Lecture 1-18-10-2014
Lecture 1-18-10-2014Lecture 1-18-10-2014
Lecture 1-18-10-2014
 

Recently uploaded

DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 

Recently uploaded (20)

DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 

Water treatment-lecture-3-eenv

  • 2. 3.1 Definition of Coagulation and Flocculation  Coagulation and flocculation are two consecutive process  (i.e. occur one after the other) that are used to remove  colloidal particles from watercolloidal particles from water.  Colloids are very small particles (turbidity and color causing  particles) that can not be removed neither byparticles) that can not be removed neither by  sedimentation (due to their light weight) nor by filtration.    Examples of colloids: soil particles, bacteria, viruses and Examples of colloids: soil particles, bacteria, viruses and  color causing materials. These colloids are stable in solution  and theoretically will stay there for ever unless an action is  done to destabilize them. Coagulation and flocculation are  the two processes used for this destabilization. 2
  • 3. 3 2 Colloidal Stability  Colloids are very Small particles (0.01 to 1 m) 3.2 Colloidal Stability  Most naturally occurring particles in water are negatively charged. Since like charges repel these small particles or colloids will remainSince like charges repel, these small particles, or colloids, will remain suspended almost indefinitely.  A fixed layer of positive ions (counterions) is attracted to the negatively charged colloids by electrostatic attraction. This layer is called stern layer or fixed layer. This layer is surrounded by a movable diffuse layer of counterions but with a lower concentration than that in the fixedof counterions but with a lower concentration than that in the fixed layer. The two layers form what is called the double layer theory. 3
  • 4. 4
  • 5. Turbidity Suspended Solids Colloidal Light , electrically chargedLight , electrically charged particlesSettleable Heavy particles Non‐settleable Uncharged Light particles Coagulation Coagulation Not affected Coagulation Converted to Uncharged Light particles Coagulation Not affected Flocculation Not affected Flocculation Converted to Heavy particles Flocculation Converted to Heavy particles Sedimentation Around 60% Settle Sedimentation Around 60% Settle Sedimentation Around 60% Settle Filtration Around 35 % filtered Filtration Around 35 % filtered Filtration Around 35 % filtered 5 Turbidity removal flowchart from surface water
  • 6.  The surface between the two layers is called the shear surface. When the colloid moves the fixed layer moves with it.  The positive charge attached to the colloid in the stern layer is not The positive charge attached to the colloid in the stern layer is not enough to neutralize the negative charge of the colloid. So there is a net electrical potential around the colloid as shown in the Figure 3.1.  The Electrical potential at the shear surface is called the Zeta potential which is a measure of the repulsive force of the colloid to other colloids having the same charge.having the same charge. 6
  • 7. Figure 3.1: Double layer charges and Zeta potential around a colloid 7
  • 8.  There are two major forces acting on colloids: There are two major forces acting on colloids: 1) Electrostatic repulsion negative colloids repel other negatively charged colloidsnegative colloids repel other negatively charged colloids orcerepultionFticEloctrostaF 1  orcerepultionFticEloctrosta d FES ,2  2) Intermolecular attraction, or van der Waals,. Ftt tiW ldVF 1  For a stable colloid the net energy is repulsive. ForceattractionWaalderVan d FVan ,6  For a stable colloid the net energy is repulsive. Figures 3.2  and  3.3   Illustrates these two main forces.  8
  • 9. d Figure 3.2: Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction 9
  • 10. Figure 3.3: Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction 10
  • 11. 3.3 Colloidal Destabilization and agglomeration 1. Colloidal Destabilization or Coagulation:  It was illustrated that colloids are stable due to the net repulsive force  between them consequently they will stay stable in suspension unless this  net repulsive force is neutralized .  The process of neutralization of the repulsive force is called destabilization .   Destabilization is achieved by a process called coagulation.   Coagulation is the process of destabilization of colloids by adding chemicals  (Coagulants) with a counter charge to neutralize the charge  carried by the  colloids. This will reduce the repelling force and gives the opportunity for  the attractive forces to prevail and allow the particles and make them readythe attractive forces to prevail and allow the particles and make them ready  to agglomerate and form bigger particles. 11
  • 12. 3.3 Colloidal Destabilization and agglomeration 2. Agglomeration or Flocculation ( Forming Flocs):  After destabilization (i.e. Coagulation), particles will be ready to a tract and  agglomerate and form flocs. But this agglomeration is slow and they need  help to accelerate this agglomeration.   This help is called Flocculation “which is the slow stirring or gentle agitation  to aggregate the destabilized particles and form a rapid settling floc”.   This gentle mixing increases the collisions between the particles and help  them to agglomerate. Notice that rapid mixing will destroy the flocs, that's  why we need gentle mixing. 12
  • 13. 3.4 Coagulation 1. Coagulants:  Coagulants are chemicals that are added to water to destabilize colloids. Coagulants are chemicals that are added to water to destabilize colloids.  The most common coagulants are given in the table below: Type of coagulant formula most common Nyp g form aluminum sulfate Al2 (SO4)3. 14-18 H2O lumps or powder acidic Sodium aluminate NaAlO2 or Na2Al2O4 Powder alkaline Poly-aluminiumchloride Al (OH) Cl Solution or powder acidicPoly-aluminiumchloride Aln(OH)mCl3n-m Solution or powder acidic Ferric sulfate Fe2(SO4)3.9H2O Small crystals acidic Ferris chloride FeCl3. 6H2O Lumps or solution acidic 13 Ferrous sulfate FeSO4. 7H2O Small crystals acidic
  • 14. 2. Coagulation chemistry: If  Alum  is used the following reactions occur: • Al2(SO4)314H2O  2Al3++ 3SO4 2‐+ 14H2O • 2Al3+ + colloids  neutralize surface charge• 2Al3+ + colloids  neutralize surface charge • 2Al3+ + 6HCO3 ‐  2Al(OH)3(s) + 6CO2 • If insufficient bicarbonate is available: Al2(SO4)314H2O  2Al(OH)3(s) + 3H2SO4 + 14H2O • Optimum pH: 5.5 to 6.5 • Operating pH: 5 to 8 • Since the coagulation reaction results in the decrease of the pH so• Since the coagulation reaction results in the decrease of the pH, so • It is a common practice to add lime (Ca(OH)2) together with the coagulant to increase the pH consequently countering the effect of pH decrease. 14
  • 15. 3. Factors affecting Coagulation The two main factors affecting the coagulation process are:  ‐ Coagulant dosage g g ‐ pH of the water The optimum dosage and optimum pH are determined by p g p p y laboratory test called the Jar Test. the Jar test consists of six  beakers filled with the water to be treated and then each is  mixed and flocculated uniformly. A test is often conducted by  first dosing each jar with the same value of coagulant and  varying the pH of each jar The test can then be repeated byvarying the pH of each jar. The test can then be repeated by  holding the pH constant and varying the coagulant dosage. Figure (3.4) illustrates the jar test. Figure(3.5) illustrates the effect of dosage and pH on the coagulation process. 15
  • 17. 17 Figure 3.5: Effect of coagulant dosage and pH on the coagulation process
  • 18. 4. Design of Coagulation tank: A. As illustrated previously, coagulation requires the addition of a chemical called “ coagulant.  The coagulant should be very well mixed with water to  produce homogeneous mixture of the influent water and the coagulant to  achieve the best  coagulation efficiency.ac e e e bes coagu a o e c e cy B This mixing is achieved in a tank called Rapid mixer Figures 3 6 and 3 7B. This mixing is achieved in a tank called Rapid mixer. Figures 3.6 and 3.7 illustrate the geometry of the rapid mixer. It usually has  a square or circular  cross section to achieve best mixing efficiency. C. The most common mixers used in the coagulation tank are mechanical  mixers. The most common types are : turbine, propeller, and paddle mixers. Fi 3 8 ill t t th tFigure 3.8 illustrates these types.   18
  • 19. Figure 3.6 : Rapid mixer 19 Figure 3.6 : Rapid mixer
  • 20. Figure 3.7 : Rapid mixer 20 Figure 3.7 : Rapid mixer
  • 21. Figure 3.8 : types mechanical rapid mixer 21
  • 22. D. Sizing the coagulations Rapid mixer tank: i Tank Volume:i. Tank Volume: V = Q*t WhWhere, V =  tank volume , m3 Q = design flow , m3/S t   = detention time in the tank, S The detention time in the rapid mixer is in the range of 20‐60 seconds. p g This short time is enough to achieve complete mixing of the coagulant  and to complete the coagulation   process.  The water depth is usually  taken as 1.5 times the width of the tank if it is square or the diametertaken as 1.5 times the width of the tank if it is square or the diameter if it is a circular.  22
  • 23. ii Power Requirements:ii. Power Requirements: P = µVG2 hWhere, P =  power transmitted to the water by the mixer, N.m/s  (Watt) V = tank volume, m3 G = velocity gradient, S‐1 µ =  dynamic viscosity of water, N.s/m2 The velocity gradient is defined as the relative velocity between two colloidal particles in water divided by the  distance between them.  For example if two particles are 1 cm apart and the relative velocityFor example, if two particles are 1 cm apart and the relative velocity  between the is 10 m/s, then  G = 10 (mps)/0 01m = 1000 mps/m = 1000 S‐1G = 10 (mps)/0.01m = 1000 mps/m = 1000 S 1 Typical values of G in coagulation rapid mixing are given in the following Table.  23
  • 24. Detention time (Seconds) G mps/m, or S‐1 Typical design values of the G for coagulation Detention time (Seconds) G mps/m, or S 20 1000 30 900 40 790 50  or more 700 Example: A rapid mixer is to be used for coagulation of surface water with high turbidity. If the flow is 720 m3/h find the volume and dimensions of the tank and the power requirements. Assume that the detention time is 20 seconds and G=1000 S‐1, µ = 1.518 X 10‐3 N.m/s2 at 5 oC. Solution:Solution: Q = 720 m3/h = 0.20 m3/s V = 30*0.2 = 6 m3 Assume the tank cross section is square ,then V = W*W*1.5W=1.5 W3q , 6= 1.5W3 , W = 1.587 m, d= 1.5*1.587 = 2.38 m. P=µVG2 = 1.518X10‐3X6X 10002 = 9522 Watt = 9.522 Kw 24
  • 25. 3.5 Flocculation 1. Configurations of Flocculation tanks:  The most common types of Flocculator are paddle and walking beam Flocculator.  Figures 3.9 through 3.16 illustrate these types.  Another type of tanks combine between flocculation and sedimentation in one  tank  and called  solid contact Flocculator Clarifier. See Figures 3.17 and 3.18.  Figures 3.19 and 3.20 illustrate the layout of a water treatment plant with coagulation, flocculation and sedimentation tanks .  25
  • 26. 2. Design of Flocculation tanks: i. Tank Volume: V = Q*t Where, V =  tank volume , m3 Q = design flow , m3/SQ des g o , /S t   = detention time in the tank, S The detention time in the flocculation  tank is much higher than that  in  the rapid mixer It is in the range of 20‐60 minutesthe rapid mixer. It  is in the range of 20‐60 minutes.  ii. Power Requirements: P = µVG2 Where, P =  power transmitted to the water by the mixer, N.m/s  (Watt) V = tank volume, m3 G = velocity gradient, S‐1 26 G  velocity gradient, S µ =  dynamic viscosity of water, N.s/m2
  • 27. ‐ The value of G*t is an important factor in the Flocculator. It has a range  Of 104 to 105.  typical values of G  1s 15  to 60  S‐1. In paddle Flocculator we usually use three compartments in series and G is tapered‐In paddle Flocculator, we usually use three compartments in series and  G is tapered  gradually from the first to the third compartment. For example G1 = 60  S‐1, G2 =60  S‐1,  G3 =60  S‐1.The average of the three values should be in the Above mentioned  rage for G Tapering is needed to prevent the destruction of the growing flocks The power is also expressed  in terms of the paddle mixer properties as the following: 3 AC rage for G.  Tapering is needed to prevent the destruction of the growing flocks Where, C D ffi i f i f ddl bl d di i L/W ( h bl ) 2 3 ppD vAC P   CD =   Drag coefficient, function of paddle blades dimensions, L/W (see the table) Ap =  Area of the paddle blades, m2 ρ =   Water density, kg/m3 v velocity of the paddle relative to the water m/s it is the tangential velocityvp = velocity of the paddle relative to the water, m/s. it is the tangential velocity of the blade tip, it is perpendicular to the radius of the paddle.  If more than one blade is used on the paddle the power is expressed as:   2 3 33 3 22 3 11 ppppppD vAvAvAC P    27
  • 28. Values of the drag coefficient for paddle‐Wheel Flocculator CDLength to width ration (L/W) 1.205 1.5020 1.90∞ dv  The blades velocity is related to the rotational speed of the paddles  By the following relation:  dvp  Where, D = the distance between  the center lines of the two corresponding bladesp g on the paddle, m , (see figure 3.9, the distances D1 , D2,D3)  ω =  rotational speed  of the paddle, rev/s.  28
  • 29. Figure 3.9: Baddel Flocculator, Horizontal Shaft 29
  • 30. Figure 3.10 : Horizontal-Shaft Paddle Flocculator, Axial flow pattern 30 Figure 3.10 : Horizontal Shaft Paddle Flocculator, Axial flow pattern
  • 31. Figure 3.11: Horizontal-Shaft Paddle Flocculator, Cross flow pattern 31 Figure 3.11: Horizontal Shaft Paddle Flocculator, Cross flow pattern
  • 32. Figure 3.12: Horizontal-Shaft Paddle Flocculator, Cross flow pattern 32
  • 33. Figure 3.13: Vertical Shaft Baddel Flocculator 33
  • 34. Figure 3.14: Vertical-Shaft Paddle Flocculator 34 Figure 3.14: Vertical Shaft Paddle Flocculator
  • 35. 35 Figure 3.15: Walking Beam-Shaft addle Flocculator
  • 36. 36 Figure 3.16 : Walking Beam Flocculator
  • 37. Figure 3.17a : Solids Contact Flocculator Clarifier 37
  • 38. Figure 3.17 b: Solids Contact Flocculator Clarifier 38
  • 39. Figure 3.18 : Solids Contact Flocculator Clarifier 39
  • 40. Sedimentation Tank Vertical shaft Paddle Flocculation tank Coagulation Rapid Mixe 40 igure 3.19 : Layout of Coagulation Rapid mixer, flocculation and sedimentation Tanks
  • 41. Figure 3.20 :g Layout of Rapid mix, flocculation and Clarification Tanks 41
  • 43. 43
  • 44. 44
  • 45. 45
  • 46. 46
  • 47. 47
  • 49. 49
  • 51. 51
  • 52. 52
  • 53. 53