Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Cluster analysis for market segmentation

45,444 views

Published on

Analysing Cluster for market segmentation.

Published in: Education
  • Login to see the comments

Cluster analysis for market segmentation

  1. 1. • It is a class of techniques used to classify cases into groups that are - • relatively homogeneous within themselves and • heterogeneous between each other • Homogeneity (similarity) and heterogeneity (dissimilarity) are measured on the basis of a defined set of variables • These groups are called clusters. 03/02/15 Cluster analysis for market segmentation
  2. 2. • The nature of Cluster Analysis is data exploration that conducted in repetitive fashion. Clusterization is not a single grouping, but the process of getting well interpretable groups of objects under consideration. 03/02/15 Cluster analysis for market segmentation
  3. 3. –Market segmentation is one of the most fundamental strategic marketing concepts: •grouping people (with the willingness, purchasing power, and the authority to buy) according to their similarity in several dimensions related to a product under consideration. –Markets can be segmented based on: •Demographics •Psychographics •Geographics •Product Benefits •Behavioral Segmentation 03/02/15 Cluster analysis for market segmentation
  4. 4. •Cluster analysis is especially useful for market segmentation. •Segmenting a market means dividing its potential consumers into separate sub-sets where •Consumers in the same group are similar with respect to a given set of characteristics •Consumers belonging to different groups are dissimilar with respect to the same set of characteristics •This allows one to calibrate the marketing mix differently according to the target consumer group. 03/02/15 Cluster analysis for market segmentation
  5. 5. • Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs • The underlying definition of cluster analysis procedures mimic the goals of market segmentation: - to identify groups of respondents that minimizes differences among members of the same group • highly internally homogeneous groups - while maximizing differences between different groups • highly externally heterogeneous groups • Market Segmentation solution depends on variables used to segment the market method used to arrive at a certain segmentation 03/02/15 Cluster analysis for market segmentation
  6. 6. • Product characteristics and the identification of new product opportunities. • Clustering of similar brands or products according to their characteristics allow one to identify competitors, potential market opportunities and available niches • Data reduction • Factor analysis and principal component analysis allow to reduce the number of variables. • Cluster analysis allows to reduce the number of observations, by grouping them into homogeneous clusters. • Maps profiling simultaneously consumers and products, market opportunities and preferences as in preference or perceptual mappings. 03/02/15 Cluster analysis for market segmentation
  7. 7. • Select a distance measure • Select a clustering algorithm • Define the distance between two clusters • Determine the number of clusters • Validate the analysis 03/02/15 Cluster analysis for market segmentation
  8. 8. • To measure similarity between two observations a distance measure is needed • With a single variable, similarity is straightforward • Example: income – two individuals are similar if their income level is similar and the level of dissimilarity increases as the income gap increases • Multiple variables require an aggregate distance measure • Many characteristics (e.g. income, age, consumption habits, family composition, owning a car, education level, job…), it becomes more difficult to define similarity with a single value • The most known measure of distance is the Euclidean distance, which is the concept we use in everyday life for spatial coordinates. 03/02/15 Cluster analysis for market segmentation
  9. 9. • Other distance measures: Chebychev, Minkowski, Mahalanobis • An alternative approach: use correlation measures, where correlations are not between variables, but between observations. • Each observation is characterized by a set of measurements (one for each variable) and bi-variate correlations can be computed between two observations. 03/02/15 Cluster analysis for market segmentation
  10. 10. • Hierarchical procedures • Agglomerative (start from n clusters to get to 1 cluster) • Divisive (start from 1 cluster to get to n clusters) • Non hierarchical procedures • K-means clustering 03/02/15 Cluster analysis for market segmentation
  11. 11. • Agglomerative: • Each of the n observations constitutes a separate cluster • The two clusters that are more similar according to same distance rule are aggregated, so that in step 1 there are n-1 clusters • In the second step another cluster is formed (n-2 clusters), by nesting the two clusters that are more similar, and so on • There is a merging in each step until all observations end up in a single cluster in the final step. • Divisive • All observations are initially assumed to belong to a single cluster • The most dissimilar observation is extracted to form a separate cluster • In step 1 there will be 2 clusters, in the second step three clusters and so on, until the final step will produce as many clusters as the number of observations. • The number of clusters determines the stopping rule for the algorithms 03/02/15 Cluster analysis for market segmentation
  12. 12. • These algorithms do not follow a hierarchy and produce a single partition • Knowledge of the number of clusters (c) is required • In the first step, initial cluster centres (the seeds) are determined for each of the c clusters, either by the researcher or by the software (usually the first c observation or observations are chosen randomly) • Each iteration allocates observations to each of the c clusters, based on their distance from the cluster centres • Cluster centres are computed again and observations may be reallocated to the nearest cluster in the next iteration • When no observations can be reallocated or a stopping rule is met, the process stops 03/02/15 Cluster analysis for market segmentation
  13. 13. • Given k, the k-means algorithm is implemented in four steps: 1. Partition objects into k nonempty subsets 2. Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster) 3. Assign each object to the cluster with the nearest seed point 4. Go back to Step 2, stop when no more new assignment. 03/02/15 Cluster analysis for market segmentation
  14. 14. • Example 03/02/15 Cluster analysis for market segmentation
  15. 15. Hierarchical Methods Non-hierarchical methods • No decision about the number of clusters • Problems when data contain a high level of error • Can be very slow, preferable with small data- sets • Initial decisions are more influential (one- step only) • At each step they require computation of the full proximity matrix • Faster, more reliable, works with large data sets • Need to specify the number of clusters • Need to set the initial seeds • Only cluster distances to seeds need to be computed in each iteration 03/02/15 Cluster analysis for market segmentation
  16. 16. • Algorithms vary according to the way the distance between two clusters is defined. • The most common algorithm for hierarchical methods include • single linkage method • complete linkage method • average linkage method • Ward algorithm • centroid method 03/02/15 Cluster analysis for market segmentation
  17. 17. • Single linkage method (nearest neighbour): distance between two clusters is the minimum distance among all possible distances between observations belonging to the two clusters. 03/02/15 Cluster analysis for market segmentation
  18. 18. • Complete linkage method (furthest neighbour): nests two cluster using as a basis the maximum distance between observations belonging to separate clusters. • Average linkage method: the distance between two clusters is the average of all distances between observations in the two clusters 03/02/15 Cluster analysis for market segmentation
  19. 19. • The distance between two clusters is the distance between the two centroids, • Centroids are the cluster averages for each of the variables • each cluster is defined by a single set of coordinates, the averages of the coordinates of all individual observations belonging to that cluster • Difference between the centroid and the average linkage method • Centroid: computes the average of the co-ordinates of the observations belonging to an individual cluster • Average linkage: computes the average of the distances between two separate clusters. 03/02/15 Cluster analysis for market segmentation
  20. 20. 03/02/15 Cluster analysis for market segmentation
  21. 21. 1. First perform a hierarchical method to define the number of clusters 2. Then use the k-means procedure to actually form the clusters The reallocation problem • Rigidity of hierarchical methods: once a unit is classified into a cluster, it cannot be moved to other clusters in subsequent steps • The k-means method allows a reclassification of all units in each iteration. • If some uncertainty about the number of clusters remains after running the hierarchical method, one may also run several k-means clustering procedures and apply the previously discussed statistical tests to choose the best partition. 03/02/15 Cluster analysis for market segmentation
  22. 22. • The observations are preliminarily aggregated into clusters using an hybrid hierarchical procedure named cluster feature tree. • This first step produces a number of pre-clusters, which is higher than the final number of clusters, but much smaller than the number of observations. • In the second step, a hierarchical method is used to classify the pre- clusters, obtaining the final classification. • During this second clustering step, it is possible to determine the number of clusters. The user can either fix the number of clusters or let the algorithm search for the best one according to information criteria which are also based on goodness-of-fit measures 03/02/15 Cluster analysis for market segmentation
  23. 23. 03/02/15 Cluster analysis for market segmentation
  24. 24. 03/02/15 Cluster analysis for market segmentation
  25. 25. 03/02/15 Cluster analysis for market segmentation
  26. 26. 03/02/15 Cluster analysis for market segmentation
  27. 27. 03/02/15 Cluster analysis for market segmentation
  28. 28. • It might seem that cluster analysis is too sensitive to the researcher’s choice. • This is partly due to the relatively small data-set and possibly to correlation between variables • However, all outputs point out to a segment with older and poorer household and another with younger and larger households, with high expenditures. • By intensifying the search and adjusting some of the properties, cluster analysis does help identifying homogeneous groups. • “Moral”: cluster analysis needs to be adequately validated and it may be risky to run a single cluster analysis and take the results as truly informative, especially in presence of outliers. 03/02/15 Cluster analysis for market segmentation
  29. 29. 03/02/15 Cluster analysis for market segmentation Sara Dolnicar University of Wollongong, sarad@uow.edu.au
  30. 30. 03/02/15 Cluster analysis for market segmentation
  31. 31. 03/02/15 Cluster analysis for market segmentation
  32. 32. 03/02/15 Cluster analysis for market segmentation
  33. 33. 03/02/15 Cluster analysis for market segmentation
  34. 34. 03/02/15 Cluster analysis for market segmentation
  35. 35.  Leonard Kaufman and Peter Rousseeuw (2005), Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, 337 p.  Mark Aldenderfer and Roger Blashfield (1984), Cluster Analysis (Quantitative Applications in the Social Sciences), SAGE Publications, Inc., 90 p.  Brian Everitt, Sabine Landau and Morven Leese (2001) Cluster Analysis, Oxford University Press, 248 p.  Marketing Segmentation ( http://www.beckmanmarketing8e.nelson.com/ppt/chapter03.pps. ) 03/02/15 Cluster analysis for market segmentation
  36. 36. 03/02/15 Cluster analysis for market segmentation
  37. 37. 03/02/15 Cluster analysis for market segmentation

×